9. Elektronirakenteen laskeminen



Samankaltaiset tiedostot
9. Elektronirakenteen laskeminen

Laskennalinen kemia. Menetelmien hierarkia: Molekyyligeometria Molekyylimekaniikka Molekyylidynamiikka

Gaussian type orbitals (GTO) basis functions assume the radial part e αr2. Sc. cartesian GTO functions take the form

Luku 9: Atomien rakenne ja spektrit. v=bmivwz-7gmu v=dvrzdcnsiyw

FYS-6300 MOLEKYYLIEN JA NANO- RAKENTEIDEN KVANTTITEORIA VIIKKO. Luento. Laskuharjoituksia ja

6. Vapaaelektronikaasu

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset

7. Atomien rakenne ja spektrit

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

J 2 = J 2 x + J 2 y + J 2 z.

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

Monen elektronin atomit

FYS-6300 MOLEKYYLIEN JA NANO- RAKENTEIDEN KVANTTITEORIA

TONI YLENIUS VAN DER WAALS -VUOROVAIKUTUS ELEKTRONIRAKEN- NETEORIASSA: LASKUMENETELMIEN VERTAILU. Diplomityö

Teknillinen korkeakoulu Mat Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Vedynkaltaiset radiaaliaaltofunktiot Roothaan Hall- ja CI-menetelmissä

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH ) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Matriisit ja vektorit Matriisin käsite Matriisialgebra. Olkoon A = , B = Laske A + B, , 1 3 3

Kvanttifysiikan perusteet 2017

Sähköstaattinen energia

S Fysiikka III (EST) Tentti ja välikoeuusinta

Luku 11: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2

Sähköstaattinen energia

Useita oskillaattoreita yleinen tarkastelu

Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

13 Atomien sidokset. H 2 molekyylistä.

Kvanttimekaniikka I tentti : 4 tehtävää, 4 tuntia

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Tilat ja observaabelit

Luku 10: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko

T R Hψ = H(r + R)ψ(r + R) = H(r)ψ(r + R) Kahden peräkkäisen translaation vaikutus ei riipu

1 Aaltofunktio, todennäköisyystulkinta ja normitus

YHTEYDEN OTTAMINEN CSC:N KONEELLE HIPPU

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

2m 2 r + V (r) ψ n (r) = ɛ n ψ n (r)

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

5.1 Johdanto Helium-atomi Keskeiskenttämalli Paulin kieltosääntö Atomien elektronirakenne 208

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

(1.1) Ae j = a k,j e k.

Demo: Kahden elektronin spintilojen muodostaminen

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Vyöteoria. Orbitaalivyöt

Muodonmuutostila hum

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

H7 Malliratkaisut - Tehtävä 1

Galliumarsenidipintojen pistevirheiden tunnelointimikroskooppikuvien mallintaminen

5.10. HIUKKANEN POTENTIAALIKUOPASSA

Matematiikka B2 - Avoin yliopisto

780392A/782631S Fysikaalinen kemia II, 5 op / 4 op

Mustan kappaleen säteily

Molekyylit. Atomien välisten sidosten muodostuminen

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Aineen ja valon vuorovaikutukset

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe , malliratkaisut

Kanta ja Kannan-vaihto

FYSA235, Kvanttimekaniikka I, osa B, tentti Tentin yhteispistemäärä on 48 pistettä. Kaavakokoelma ja CG-taulukko paperinipun lopussa.

Matematiikka B2 - TUDI

Symmetriaryhmät ja niiden esitykset. Symmetriaryhmät, /26

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Nyt. = R e ik R ψ n (r + R R ) = e ik R [ = e ik R b n ψ n (r R),

Voima ja potentiaalienergia II Energian kvantittuminen

2 Yhtälöitä ja epäyhtälöitä

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

6.8. Elektronien välisistä vuorovaikutuksista Vaihto- ja korrelaatiovuorovaikutus

Talousmatematiikan perusteet, L2

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

Korkeammat derivaatat

Luku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

MS-A0004/A0006 Matriisilaskenta

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

4. Liikemäärämomentti

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Laskennallinen tutkimus TMA/H 2 O ALD-prosessista

23 VALON POLARISAATIO 23.1 Johdanto Valon polarisointi ja polarisaation havaitseminen

Korkeammat derivaatat

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering. Atomien väliset sidokset

Tyyppi metalli puu lasi työ I II III

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)

12. Eristeet Vapaa atomi

MNQT, kl Ryhmäteoria

766334A Ydin- ja hiukkasfysiikka

TEEMU SALMI PSEUDOPOTENTIAALIEN KÄYTTÖ POLKUINTEGRAALI- MONTE CARLO -SIMULOINNEISSA. Diplomityö

pääkiertoakseli #$%%ä 2C 2 C 2!"

Johdantoa. 0.1 Mustan kappaleen säteily. Musta kappale (black body): Kvanttimekaniikka. Wienin siirtymälaki jakautuman maksimille on

Transkriptio:

9. Elektronirakenteen laskeminen MNQT, sl 2013 159 MNQT, sl 2013 160 Tarkastellaan vielä eri menetelmiä seuraavan jaottelun mukaisesti. Elektronirakenteen laskeminen tarkoittaa tavallisesti tarkasteltavan systeemin elektronien ajasta riippumattoman Schrödingerin yhtälön ratkaisemista eli stationäärisen tilan aaltofunktioiden ja (energian) ominaisarvojen määrittämistä. Lisäksi voidaan vielä ottaa huomioon myös lämpötila tai tehdä relativistinen tarkastelu.

Tarkastellaan epärelativistisen ajasta riippumattoman Schrödingerin yhtälön H ψ(r, R) = E(R) ψ(r, R) ratkaisemista Born Oppenheimer-approksimaatiossa, missä r = {r i } ja R = {R I } ovat elektronien ja ytimien koordinaatit. Tällöin elektronien kokonaisenergia E(R) riippuu ydinkonfiguraatiosta ja on osa ytimien välistä potentiaalifunktiota eli potentiaalienergiapintaa (PES, engl. potential energy hypersurface). Kun ytimien välinen Coulombin repulsioenergia erotetaan pois jää elektroniseksi hamiltonin operaattoriksi H =!2 2m n 2 i i n i N Z I e 2 I 4πε0 r Ii + 1 2 missä r Ii = r i R I, r ij = r i r j ja {Z I } ovat ytimien varaukset, kun molekyylissä on elektroneja n ja ytimiä N kappaletta. Ratkaisumenetelmiä, joissa käytetään vain ytimien varauksia, luonnonvakioita ja edellä esitettyä elektronien kvanttiteoriaa (sekä tavallisesti jotakin ydinkonfiguraatiota) sanotaan ab initio- tai "first-principles"-menetelmiksi. Ns. semiempiirisissä menetelmissä on parametrisoitu joitakin osia hamiltonin operaattorista ja/tai aaltofunktioista sovittamalla (joillekin tunnetuille systeemeille) saatavia tuloksia joihinkin kokeellisiin arvoihin. Ab initio-menetelmät voidaan jakaa kahteen päätyyppiin: ns. aaltofunktiomenetelmään, jotka perustuvat Hartree Fockteoriaan, ja tiheysfunktionaaliformalismiin (engl. densityfunctional formalism), jossa lähtökohtana on tarkasteltavan systeemin elektronitiheys. Ydinkonfiguraatiosta riippuva elektroninen energia tulisi voida ratkaista ns. kemiallisella tarkkuudella, 0.01 ev (~ 1 kjmol 1 ). Tällöin molekyylien sidospituudet ja sidoskulmat sekä eri konformaatioiden väliset ja reaktioiden aktivaatioenergiat voitaisiin määrittää riittävällä tarkkuudella. n MNQT, sl 2013 161 e 2 4πε0 r ij i j, (9.1) (9.2) METHODS IN COMPUTATIONAL CHEMISTRY MOLECULAR MECHANICS, DYNAMICS (& MONTE CARLO) give geometries conformations dynamics but not electronic structure SEMI-EMPIRICAL METHODS give electronic structure (bonding, molec. orb.) but not "independent" results AB INITIO METHODS give "everything" static independently but not dynamics large systems inexpensive AB INITIO MOLECULAR DYNAMICS ab initio with dynamics Solving N i MS Isabella 5 May 1994 162 Newtonian mechanics M d2 R µ µ dt = 2 µ E or optimization or Metropolis Monte Carlo α E β 0 β α E β 0 β α E c 1 c 2 c 3 = 0 with empirical α and β N,M 1 2 i2 + Z µ +... Ψ(X) = E Ψ(X) r iµ i, µ numerically µ ψ n = δe δψ n * + M µ R µ = µ E m Λ nm ψ m

MNQT, sl 2013 163 MNQT, sl 2013 164 Hartree Fock SCF-menetelmä 9.1. Yksi-elektronikuva Jos ei oteta huomioon elektroni elektronivuorovaikutuksia kovin yksityiskohtaisesti tai ollenkaan, niin tietyllä ydinkonfiguraatiolla R koko n elektronin aaltofunktio voidaan separoida yksi-elektroniaaltofunktioiksi ψ u o ja missä ja kun H o ψ o = E o ψ o, H o = Σ i n h i h i ψ u o(r i ) = E u o ψ u o(r i ), ψ o (r 1, r 2,..., r n ) = ψ a o(r 1 ) ψ b o(r 2 )... ψ z o(r n ). Kun yksi-elektronifunktioihin liitetään spin-funktio, saadaan spin-orbitaalit φ u (x i ) = ψ u o(r i ) σ u (i) ja kun sitä vastaava ψ o tehdään antisymmetriseksi, ks. kappale 7.11, saadaan ψ o (x 1, x 2,..., x n ; R) = (n!) 1/2 det φ a (x 1 ) φ b (x 2 )... φ z (x n ) 9.2. Hartree Fock-menetelmä = (n!) 1/2 det φ a (1) φ b (2)... φ z (n). (9.3a) (9.3b) (9.4) (9.5) (9.6) Yksi-elektronikuva voidaan vielä säilyttää, kun jokaisen elektronin kokemaan ytimen potentiaaliin lisätään muiden elektronien keskimääräinen (molekyylin symmetrian mukainen) Coulombin potentiaali, ns. Hartree-potentiaali. Atomien tapauksessa tämä on ns. keskeiskenttä-approksimaatio. Hartree Fock-menetelmässä siis jokainen n elektronia kokee (n 1):n muun elektronin Hartree-potentiaalin, jolloin merkitään ψ o ψ. Etsitään nyt parhaat spin-orbitaalit variaatioperiaatteella minimoimalla Rayleighin suhde mistä seuraavat ns. Hartree Fock-yhtälöt, ks. kirjan liite 11, ts. yksi-elektroniyhtälö f i φ u (x i ) = ε u φ u (x i ) jokaiselle spin-orbitaalille φ u ; u = a, b,..., z. Fock-operaattori f i voidaan kirjoittaa muotoon (ks. kappale 7.15 ja yht. 7.47 49) f i = h i + Σ u [d J u (i) K u (i)], missä d = 1 on spin-degeneraatio sekä Coulombin operaattori J u ja vaihto-operaattori K u ovat ja Huomaa, että E = ψ H ψ ψ ψ J r ψ s (1) = ψ r * (2) e 2 4πε 0 r 12 ψ r (2) d2 ψ s (1) K r ψ s (1) = ψ r * (2) e 2 4πε 0 r 12 ψ s (2) d2 ψ r (1) J u (i) φ u (i) = K u (i) φ u (i). (9.7) (9.8) (9.9) Spin-orbitaalit ratkaistaan itseytyvästi (engl. self consistent field, SCF), kuten kappaleessa 7.15 esitettiin, ja siten, että perustilassa ψ = Φ 0 on n alimman energian spin-orbitaalia miehitetty. Nämä antavat kontribuution Fock-operaattoriin. Fockoperaattorilla on ääretön määrä ominaisfunktioita ja -arvoja, joiden erilaisilla miehityksillä saadaan erilaisia viritettyjä tiloja. Hermiittisen Fock-operaattorin ominaisfunktiot muodostavat ortogonaalisen ja täydellisen funktiojoukon., (9.10a) (9.10b)

MNQT, sl 2013 165 MNQT, sl 2013 166 9.3. "Restricted" ja "unrestricted" Hartree Fock Jos atomin tai molekyylin orbitaalit ovat "suljetut" (engl. closed) eli täydet, on spin-tila singletti, S = 0, koska jokaisella orbitaalilla on tällöin yhtä monta α- ja β-elektronia. Hartree - Fock (HF) -kokonaisaaltofuntktio on tällöin Φ 0 = (n!) 1/2 det ψ a α ψ a β ψ b α ψ b β... ψ z α ψ z β. Avointen eli vajaasti täytettyjen orbitaalien tapauksessa tätä sanotaan restricted HF (RHF) aaltofunktioksi, kun taas saman tilan kuvaaminen ns. unrestricted HF (UHF) aaltofunktiolla Φ 0 = (n!) 1/2 det ψ a1 α ψ a2 β ψ b1 α ψ b2 β... ψ z1 α ψ z2 β johtaa siihen, että orbitaalit voivat riippua spinistä, esim. ψ a1 (r) ψ a2 (r). Atomien RHF-aaltofunktio on operaattorin S 2 ominaisfunktio ominaisarvolla S(S+1)h 2, mutta UHF-aaltofunktio ei sitä yleisesti ole, ks. kirjan esim. 9.1. 9.4. Roothaanin yhtälöt Pallosymmetriaa (atomit) alemmissa symmetrioissa (molekyylit) HF-aaltofunktio ratkaistaan yleensä sarjakehitelmänä kantafunktiojoukon {θ j } avulla. Orbitaalin ψ u (r) HF-yhtälö (7.47) on muotoa f k ψ u (r k ) = ε u ψ u (r k ), jonka ratkaisu voidaan esittää sarjakehitelmän avulla. ψ u (r k ) = Σ j M c ju θ j (r) (9.11) (9.12) (9.14) Sijoittamalla (9.14) yhtälöön (9.12), kertomalla vasemmalta θ i *:llä, "integroimalla" ja käyttämällä merkintöjä peittointegraali S ij = θ i *(r) θ j (r) dr, joka on peittomatriisin elementti, sekä vastaava Fock-matriisin elementti F ij = θ i *(r k ) f k θ j (r k ) dr k, saadaan yhtälö jokaiselle i = 1, 2,..., M; ns. Roothaanin yhtälöt. Ne voidaan esittää myös matriisiyhtälönä F c u = ε u S c u, missä F ={F ij }, S ={S ij }, c u = {c ju } jokaisella u = a, b,..., z (M kappaletta). Nämä M kappaletta yhtälöitä voidaan esittää myös muodossa F c = S c ε, missä c = {c u } = {c ju } ja ε = {ε ju }, kun ε ju = ε u. Ratkaisu, ominaisarvot ε u ja niitä vastaavat ominaisvektorit c u, on määritettävä itseytyvästi (SCF), koska osa Fock-operaattorista, ks. yht. (7.47 49), riippuu ratkaisuista F ij = h ij + Σ l,m P l m { il 1/r 12 jm il 1/r 12 mj }(9.26) missä ns. tiheysmatriisin elementit ovat P l m = d Σ u c l u * c mu. Tässä d on orbitaalin ψ u miehitys, tavallisesti 2. (9.17) (9.18) (9.19) (9.20) (9.27) Ns. kaksi-elektroni-integraalien (ij l m) = il 1/r 12 jm lukumäärä on suuri, luokkaa M 4, joten se on merkittävä osa sekä laskennallista työtä ja/tai laskun ajaksi talletettavaa dataa.

MNQT, sl 2013 167 MNQT, sl 2013 168 9.5. STO- ja GTO-kantajoukot Jotta atomin tai molekyylin spin-orbitaalit voitaisiin esittää tarkasti variaatioperiaatteen sallimalla tavalla, tarvitaan siihen erittäin hyvä kantajoukko, esim. täydellinen jolloin M =. Ratkaisua tällaisen kantajoukon avulla sanotaan Hartree Fockrajaksi (engl. HF limit) ja poikkeamaa siitä kantajoukon katkaisuvirheeksi (engl. basis-set truncation error). Slaterin tyypin kantafunktioissa (engl. Slater type orbitals, STO) on radiaaliosassa funktio e ζr, missä ζ on orbitaalieksponentti, ks. kappale 7.14. Funktiojoukko {e ζr } ζ on täydellinen, kun ζ R, mutta käytännössä valitaan muutama ζ l sovittamalla STO-atomiorbitaaleihin. STO-kantaa käytetään vain vähän sen vuoksi, että kaksi-elektroni-integraalien laskeminen STO-kannassa ei ole käytännöllistä. Gaussin tyypin kantajoukossa (engl. Gaussian type orbitals, GTO) on radiaaliosassa funktio e αr 2. Ns. karteesiset GTOfunktiot ovat muotoa θ ijk (r) = x i y j z k e αr2, (9.28) missä r q r c = r = x ^i + y ^j + z ^k, i, j ja k ovat ei-negatiivisia kokonaislukuja, r c on "keskipisteen" (tavallisesti ytimen) paikka ja r q on elektronin q paikka. Kun l = i + j + k, niin l = 0 on s-tyypin, l = 1 on p- tyypin, l = 2 on d-tyypin, jne. GTO. Jos x i y j z k korvataan palloharmonisilla funktioilla Y l ml, niin siitä muodostuu ns. "spherical gaussians"-kanta. Diagonalisoitavan Fock-matriisin kokoa voidaan rajoittaa, kun GTO-kannan funktioita yhdistellään ns. "kontraktiolla". "Contracted GTO" χ j = Σ i d ji g i (9.29) on koottu useasta ns. primitiivi GTO-funktiosta g i sopivalla tavalla määrätyillä kertoimilla d ji (esim. sovittamalla χ j atomaarisiin orbitaaleihin). Molekyyliorbitaalit muodostetaan sitten kehitelminä (9.30) ψ i = Σ j c ji χ j.

MNQT, sl 2013 169 MNQT, sl 2013 170 GTO-kantajoukkojen kontraktiomenetelmiä on useita, esim.: minimal basis set DZ, double zeta basis set TZ, triple zeta basis set SV, split valence basis set DZP, double zeta basis set plus polarization STO NG, esim. STO 3G (4s)/[2s], (9s5p)/[3s2p] 3 21G, 6 31G*, 6 31G** Eräs kantajoukon puutteellisuudesta aiheutuva virhe on ns. "basis-set superposition error", jota korjataan ns. "counterpoise correction"-korjauksella. 9.6. Kantajoukon koko riippuvuus ja suppeneminen Elektroni elektronikorrelaatio HF-teoria ottaa elektronien välisen Coulombin repulsion huomioon vain keskimääräisenä. Se on tapana ilmaista siten, että HF-teoria ei ota huomioon ns. korrelaatiovuorovaikutuksia. Tätä käytetäänkin korrelaatioilmiöiden määritelmänä. 9.7. "Configuration state function" (CSF) Kun kantafunktioiden lukumäärä on M, saadaan 2M spin-orbitaalia, joista voidaan miehittää n kappaletta eri tavalla. Merkitään perustilan miehitystä vastaavaa Slaterin determinanttia Φ o ja yhdesti viritettyä Φ p a ja kahdesti viritettyä Φ pq ab, jne. CSF on mikä tahansa tällainen determinantti tai niiden lineaarikombinaatio, joka on kaikkien hamiltonin operaattorin kanssa kommutoivien operaattorien ominaisfunktio, esim. operaattori S 2. Taulukko 9.1. HF SCF-energioita (yksikkönä Hartree = 27.21165 ev = 4.35975 aj Taulukko 9.2. HF SCF-sidospituuksia (yksikkönä Bohr = 0.529177 Å)

MNQT, sl 2013 171 MNQT, sl 2013 172 9.8. Konfiguraatiovuorovaikutus (CI) Tarkka n elektronin muodostaman systeemin aaltofunktio voidaan kirjoittaa muotoon Ψ = C 0 Φ 0 + Σ a,p C ap Φ a p + Σ a<b,p<q C ab pq Φ ab pq + + Σ a<b<c,p<q<r C abc pqr Φ abc pqr +... sarjakehitelmänä kaikista mahdollisista edellä määritellyistä CSF:stä, kunhan niiden spin-orbitaalit on esitetty täydellisessä yksi-elektronikannassa. Siten siis CSF:t tai n-elektronideterminantit muodostavat täydellisen CSF-kannan n-elektroniaaltofunktioille. Tarkka aaltofunktio Ψ ei edusta enää Hartree Fock-teorian yksi-elektronikuvan mukaista yhtä miehityskonfiguraatiota, vaan useita sellaisia. Sen vuoksi ilmiötä kutsutaan konfiguraatioiden sekoittumiseksi tai konfiguraatiovuorovaikutukseksi (engl. mixing, configuration interaction, CI). Käsitteet "full CI" ja "basis set correlation energy" on määritelty kuvassa 9.7. Korrelaatioilmiöitä voidaan luonnehtia myös rakenteelliseksi tai dynaamiseksi tavallaan elektronien liiketilojen mukaan. (9.31) 9.9. CI-kehitelmän katkaiseminen Kertoimet C tilan Ψ CSF-sarjakehitelmään (9.31) saadaan samoin kuin edellä kertoimet c spin-orbitaalin ψ i sarjakehitelmään (9.14) diagonalisoimalla hamiltonin matriisi. Matriisielementeistä useat häviävät ja tärkeimmät CSF-kantafunktiot ovat Φ 0 ja kahdesti viritetyt Φ ab pq. Brillouinin teoreeman mukaan esim. Φ 0 H Φ a p = 0. Sen mukaan kuinka kehitelmä (9.31) katkaistaan (engl. limited CI) voidaan nimetä mm. seuraavia CI-tasoja: DCI SDCI SDTQCI Katkaistulta CI-menetelmältä puuttuu ns. "size-consistency". 9.10. MCSCF ja MRCI CI-menetelmässä kaikki CSF-funktiot on "rakennettu" samoilla Φ 0 -konfiguraatiolle HF-menetelmällä optimoiduilla spin-orbitaaleilla. Jos myös kertoimet c kehitelmässä (9.14) ψ = Σ jm c ji θ j optimoidaan samalla kun kertoimet C kehitelmässä (9.31), on kyseessä "multiconfiguration SCF" (MCSCF) -menetelmä. MCSCF-aaltofunktiossa ei välttämättä ole yhtä ainoaa peruskonfiguraatiota Φ 0, jota "parannetaan" viritetyillä tiloilla. "Complete active-space SCF" (CASSCF) on MCSCF-menetelmä, jossa yksi-elektroniorbitaalit jaetaan kolmeen ryhmään (inactive, active, virtual) sen mukaan kuinka niiden virityksiä otetaan mukaan CSF-tiloissa. "Multireference CI" (MRCI) on CI- ja MCSCF-menetelmien välimuoto, joka kuvaa hyvin korrelaatioilmiöitä pienellä määrällä CSF-funktioita. Esim. MRCI-menetelmän "size-consistency" virhe on pieni.

MNQT, sl 2013 173 MNQT, sl 2013 174 9.11. Møller Plesset-häiriöteoria Monihiukkashäiriöteoria (engl. many-body perturbation theory, MBPT) on toinen vaihtoehto HF-teorian parantamiseksi systemaattisella tavalla. Häiriöteoria ei nojaudu variaatioteoreemaan, mutta sen etuna on "size consistency". Møller Plesset-häiriöteoriassa valitaan vertailutilan operaattoriksi yksi elektroni-fock-operaattoreiden summa H (0) = Σ i f i. HF-aaltofunktio Φ 0 on myös tämän operaattorin ominaisfunktio, ks. kirjan esim. 9.4. Valitaan 1. kertaluvun häiriöksi operaattori H (1) = H H (0), joka "korjaa" vertailutilan H (0) energian Hartree Fockenergiaksi, kun H on molekyylin hamiltonin operaattori (9.1b). Hartree Fock-energia on siis E HF = E (0) + E (1), missä ja E (0) = Φ 0 H (0) Φ 0 E (1) = Φ 0 H (1) Φ 0. Toisen kertaluvun korjaus on E (2) = J 0 ψ J H (1) ψ 0 ψ 0 H (1) ψ J (9.39) (9.40) (9.43) (9.44), (9.45) E (0) E J missä Φ J ovat "viritettyjä" CSF-funktioita. Osoittajassa olevista matriisielementeistä häviävät kaikki muut paitsi ne, joissa Φ J on kahdesti virittynyt CSF. Tätä toisen kertaluvun MP-teoriaa merkitään MP2. Kolmannen ja neljännen kertaluvun MP-teorioita merkitään MP3 ja MP4. Tiheysfunktionaaliteoria (DFT) DFT on vaihtoehtoinen menetelmä ratkaistaessa elektronisysteemin Schrödingerin aaltoyhtälöä (9.1). DFT on luonnollinen lähestymistapa suurille systeemeille (kiinteä aine, klusterit, suuret molekyyli), kun taas Hartree Fock- ja siihen nojautuvat aaltofunktioteoriat ovat sitä pienille (atomit, pienet molekyylit). Peruslähtökohtana DFT:ssä on se, että elektronisysteemin perustilan energia ja kaikki ominaisuudet tietyssä ulkoisessa (esim. ytimien muodostamassa) potentiaalissa riippuvat yksikäsitteisesti elektronisysteemin elektronitiheydestä ρ(r). Kun otetaan käyttöön yksi-elektroniaaltofunktiot eli ns. Kohn Sham-orbitaalit ψ i (yksi-elektronikuva), voidaan perustilan kokonaisenergia kirjoittaa muotoon E[ρ] =!2 2m missä + 1 2 n i ψ i * (r) i 2 ψ i * (r) dr ρ(r) = Σ i ψ i (r) 2. (9.48) Tämän energialausekkeen 1. termi on kineettinen energia, 2. on elektronien energia ytimien potentiaalissa (ja/tai jossakin ulkoisessa potentiaalissa), 3. on Hartree-energia ja viimeinen ns. vaihto- ja korrelaatioenergia. Energia riippuu siis elektronitiheysfunktiosta ja on siten ns. funktionaali E[ρ]. Yo. energiafunktionaali on tarkka energian lauseke sisältäen myös kaikki korrelaatioeffektit, mutta ongelma on siinä, ettei viimeisen termin E xc [ρ] funktionaalista muotoa tunneta. Toinen probleema on tietysti Kohn Sham-orbitaalien löytäminen. N I e 2 ρ(r i ) ρ(r j ) 4πε 0 r ij dr i dr j + E xc [ρ], Z I e 2 4πε 0 r I ρ(r) dr (9.49)

MNQT, sl 2013 175 MNQT, sl 2013 176 Kun sovelletaan tavalliseen tapaan variaatioperiaatetta energialausekkeeseen (9.48), saadaan Kohn Sham-yksi-elektroniorbitaaleille samoin kuin HF-teoriassakin yksi-elektroniyhtälöt missä f = 2m!2 i 2 f ψ i = ε i ψ i, N Z I e 2 I 4πε0 r I + 1 2 e 2 ρ(r j ) 4πε 0 r ij dr j + V xc [ρ] (9.50a) (9.50b) ja V xc [ρ] = δe xc[ρ]. (9.51) δρ Jos E xc [ρ] olisi tunnettu, voitaisiin vaihto- ja korrelaatiopotentiaali V xc [ρ] laskea sen funktionaaliderivaattana. Eräs DFT:n eduista on se, että formalismissa säilytetään yksielektronikuva vaikka myös korrelaatioilmiöt on otettu täysin huomioon. Siitä johtuu, että Kohn Sham-orbitaalien fysikaalinen tulkinta eräänlaisina kvasi-elektronitiloina on erilainen kuin aaltofunktioteoriassa. Voidaan esim. osoittaa, että ylimmän miehitetyn Kohn Sham-orbitaalin orbitaalienergia on täsmälleen ko. systeemin 1. ionisaatioenergia! Historiallisesti tiheysfunktionaaliteoriaa edelsi Thomas Fermimenetelmä atomien energioiden laskemiseksi niiden varaustiheyksistä. Elektronien kineettisen energian laskeminen (tai arvioiminen) varaustiheydestä oli menetelmän "uusi asia". Slaterin HF-teoriasta johtama (vaihtovuorovaikutusta approksimoimalla) ns. X α -menetelmä oli myös tavallaan seuraavaksi esiteltävän LDA:n kaltainen ja sen edeltäjä. Unkarilainen Gáspár oli esittänyt niinikään samanlaisia ajatuksia jo ennen Slateria. "Local-density approximation" (LDA) Jotta DFT:tä voitaisiin soveltaa käytäntöön, on vaihto- ja korrelaatioenergiafunktionaali E xc [ρ] approksimoitava tarkasteltavalle elektronitiheysfunktiolle ρ(r). Tämä funktionaali tunnetaan tarkasti homogeeniselle elektronikaasulle, jota voidaan kuvata yhdellä parametrillä ρ 0 tai r s = (3 / 4πρ 0 ) 1/3. Koska siis homogeenisen elektronikaasun vaihto- ja korrelaatioenergia elektronia kohti ε xc [ρ 0 ] = ε x [ρ 0 ] + ε c [ρ 0 ] tunnetaan, voidaan sitä käyttää arvioitaessa epähomogeenisen elektronitiheyden vaihto- ja korrelaatioenergiaa seuraavasti: E xc [ρ] = ρ(r) ε xc LDA (ρ(r)) dr, (9.52) missä ε xc LDA (ρ(r)) = ε xc [ρ 0 ], kun ρ 0 = ρ(r). Siis kussakin paikassa r approksimoidaan suuretta ε xc homogeenisen elektronikaasun vastaavalla suureella, kun ρ 0 = ρ(r). Tämä on LDA. LDA:n voi odottaa olevan hyvän esim. metallien johde-elektronien tapauksessa, mutta se on osoittautunut yllättävän hyväksi approksimaatioksi myös molekyylien ja atomienkin tapauksessa. Yleisesti LDA:n voidaan odottaa olevan käyttökelpoinen silloin, kun elektronijakautuman vaihto- ja korrelaatioaukko on lokalisoitunut elektronin ympärille. Kun HF-teorian avulla voidaan ratkaista tarkasti yhden elektronin systeemi, esim. vetyatomi, niin LDA on tarkka taas äärettömän suurelle homogeeniselle elektronisysteemille. Näiden ääripäiden välissä rakenteesta riippuvat korrelaatioilmiöt on otettava huomioon ja HF-teoriaan ne lisätään CI-muodossa. Toistaiseksi parhaat LDA:n korjaukset perustuvat "non-lokaaleihin" funktioihin ε xc NL (ρ(r); ρ(r)). Myös eräänlaiset interpolaatiot tai sekoitukset aaltofunktioteorian ja DFT:n välillä ovat osoittautuneet käyttökelpoisiksi. Leikillisesti voidaan sanoa, että aaltofunktioteorian hamiltonin operaattori on tarkka, mutta aaltofunktio ei (CI-kehitelmä), kun taas DFT:n tapauksessa asia on päin vastoin (V xc [ρ] on approksimaatio).

MNQT, sl 2013 177 MNQT, sl 2013 178 Kiinteiden aineiden elektronirakenne