FYS-6300 MOLEKYYLIEN JA NANO- RAKENTEIDEN KVANTTITEORIA VIIKKO. Luento. Laskuharjoituksia ja
|
|
- Juho Palo
- 10 vuotta sitten
- Katselukertoja:
Transkriptio
1 Laajuus: Luentoja: Laskuharjoituksia ja demonstraatioita: Luennoija: Laskuharjoitukset: Aika ja paikka: Oppikirja: 6 op 48 h 12 x 2 h Tapio Rantala, prof. SG219, puh Etunimi.Sukunimi@tut.fi Mikael Kuisma, SG222 ti SG312 (Lu) SG312 (Lu) to SG312 (Harj) P.W. Atkins and R.S. Friedman: Molecular Quantum Mechanics (4. painos); ja S.V. Gaponenko: Optical Properties of Semiconductor Nanocrystals, Cambridge Studies in Modern Optics Luentomoniste: luentomateriaali vuodelta 2010 saatavilla ( Perustiedot: MNQT, sl 2013 RAKENTEIDEN KVANTTITEORIA Fysiikan tai mian perusopinnot i Joulukuu Marraskuu Lokakuu Syyskuu Elokuu VIIKKO 35 ti MNQT, sl 2013 AIKATAULU sl ti 37 ti 38 ti 39 ti 40 ti 41 ti ti 44 ti 45 ti 46 ti 47 ti 48 ti 49 ti Luento to to to to to to to to to to to to to Tentti to ti Harjoitus Huom! FYS-6300 MOLEKYYLIEN JA NANO- Tenttiviikko Tenttiviikko ii Tentit: (sekä ja )
2 iii iv SISÄLTÖ Johdantoa Mustan kappaleen säteily Kiinteiden aineiden ominaislämpö Valosähköinen ilmiö... 4 ja Compton ilmiö Atomien spektrit Aineen aaltoluonne... 6 ja Epätarkkuusperiaate Kvanttimekaniikan perusteet... 7 Kvanttimekaniikan operaattorit Lineaariset operaattorit Ominaisfunktiot ja ominaisarvot Esityksistä Kommutoivat operaattorit Operaattoreiden konstruointi Funktioiden "skalaaritulo" ja normitus Diracin bra t-merkintätapa Hermiittiset operaattorit Kvanttimekaniikan postulaatit Tila ja aaltofunktio Suureet ja operaattorit Mittaustulokset Aaltofunktion tulkinta Aaltofunktio ja sen yhtälö Schrödingerin yhtälön separoiminen Komplementaarisuus ja aikaevoluutio Komplemantaariset ja yhtäaikaiset suureet Epätarkkuusperiaate Epätarkkuusperiaatteen seurauksia Energian ja ajan välinen epätarkkuusrelaatio Aikaevoluutio ja säilymislait Matriiseista kvanttimekaniikassa Matriisielementit Hamiltonin operaattorin diagonalisointi Schrödingerin yhtälö ja etenevät aallot Valoaallon eteneminen Hiukkasten eteneminen Hiukkasten eteneminen aaltoina Suoraviivainen lii ja harmonien oskillaattori "Hyvinkäyttäytyvät" aaltofunktiot Aaltoyhtälön ominaisuuksia Aaltofunktion kaarevuus Kvalitatiiviset ratkaisut ja kvantittuminen Tunneloituminen Etenevä lii Energia ja liimäärä Etenevä lii Harmoninen oskillaattori Pyörimislii ja vetyatomi Pyörimislii ympyräradalla tai kiinteän akselin ympäri Hamiltonin operaattori ja Schrödingerin yhtälö Liimäärämomentti (impulssimomentti) Aaltofunktion muoto Klassillinen raja Pyörimislii pallon pinnalla Aaltoyhtälö ja -funktio Hiukkasen liimäärämomentti Palloharmonisten funktioiden graafinen esittäminen Jäykkä roottori Lii Coulombin sisntässä Vetyatomin Schrödingerin yhtälö Radiaali- ja rotaatioliikiden separointi Radiaalinen Schrödingerin yhtälö Todennäköisyystiheys ja radiaalinen jakautumafunktio Atomiorbitaalit Liimäärämomentti Liimäärämomenttioperaattorit Operaattorit ja niiden kommutaatiorelaatiot... 45
3 v vi 4.2. Liimäärämomentti"vektori" Tikapuuoperaattorit Sallitut tilat Tikapuuoperaattoreilla "operointi" Liimäärämomenttioperaattoreiden ominaisarvot Operaattoreiden matriisielementit Liimäärämomenttioperaattorin ominaisfunktiot Spin Liimäärämomenttien kytytyminen Kytytymätön ja kytytynyt tila Kokonaisliimäärämomentin sallitut arvot Kytytymisen vektorimalli Clebsh Gordan rtoimet Usean liimäärämomentin kytytyminen Ryhmäteoria Symmetria Symmetriaoperaatiot Molekyylien luokittelu Ryhmäteoria ja matriisit Ryhmä Ryhmän rtotaulu Matriisiesitykset Matriisiesityksen ominaisuuksia Esitysten karakteeri Karakteerit ja luokat Redusoitumattomat esitykset Ortogonaalisuusteoreemat Redusoidut esitykset Esitysten redusoiminen Symmetria-adaptoituneet kannat Orbitaalien symmetriasta Atomaaristen p-orbitaalien symmetriaominaisuudet Suora-tulokanta ja atomaariset d-orbitaalit Suora-tuloryhmä Integraalien symmetriaominaisuuksista Symmetria ja degeneraatio Rotaatioryhmät Rotaatio-operaattorit Pallon pisteryhmä Häiriöteoriaa ja variaatioteoreema Ajastariippumaton häiriöteoria Kahden tason häiriöteoria Usean tason häiriöteoria Ensimmäisen rtaluvun energiatermi Ensimmäisen rtaluvun korjaus aaltofunktioon Toisen rtaluvun energiatermi Käytännön näkökohtia Toisen rtaluvun energiatermin approksimointia Degeneroituneiden tilojen häiriöteoria Variaatioteoria Variaatioteoreema Rayleigh-Ritz variaatiomenetelmä Hellmann Feynman teoreema Ajastariippuva häiriöteoria Kahden tason ajastariippuva häiriöteoria Rabin oskillaatiot Yleinen ajasta riippuva häiriöteoria Fermin kultainen sääntö Einsteinin transitiotodennäköisyydet (A ja B) Tilojen elinajat ja spektriviivojen leveys Atomien ranne ja spektrit Vetyatomin spektri Transitiot ja transitioenergiat Valintasäännöt Elektronin rata- ja spinimpulssimomentit Spin ratakytntä Spektrin hienoranne Spektritermit Alkalimetalliatomien spektrit Heliumin ranne Heliumatomi Heliumatomin viritetyt tilat Heliumin spektri Paulin periaate Monielektroniset atomit Kesisnttä- ja orbitaaliapproksimaatio Alkuaineiden jaksollinen järjestelmä Slaterin atomiorbitaalit
4 vii viii Itseytyvät eli SCF menetelmät Monielektronisten atomein spektritermit Hundin säännöt LS- ja jj-kytntä Ulkoisen ntän vaikutus atomiin Zeeman-ilmiö Stark-ilmiö Molekyylien ranne Born Oppenheimer-approksimaatio Born Oppenheimer approksimaation perustelu Vetymolekyyli-ioni Molekyyliorbitaalimenetelmä LCAO Vetymolekyyli Konfiguraatiovuorovaikutus Kaksiatomiset molekyylit Heteronukleaariset kaksiatomiset molekyylit Moniatomiset molekyylit Symmetriaan adaptoituneet kantafunktiot Hüclin MO-menetelmä ja konjugoituneet π-elektronit Kiteiden kaistaranteen "syntyminen" "Tight binding"-approksimaatio Elektroniranteen lasminen "METHODS IN COMPUTATIONAL CHEMISTRY" Hartree Fock SCF-menetelmä Yksi-elektronikuva Hartree Fock-menetelmä "Restricted" ja "unrestricted" Hartree Fock Roothaanin yhtälöt STO- ja GTO-kantajoukot Kantajoukon koko riippuvuus ja suppeneminen Elektroni elektronikorrelaatio "Configuration state function" (CSF) Konfiguraatiovuorovaikutus (CI) CI-hitelmän katkaiseminen MCSCF ja MRCI Møller Plesset-häiriöteoria Tiheysfunktionaaliteoria (DFT) Local-density approximation (LDA) "Evolution of Quantum Theory" and other Kiteen elektronitiloista Eräitä yksinrtaisia malleja Elektroni yksidimensioisessa potentiaalikuopassa Elektroni pallosymmetrisessä potentiaalikuopassa Elektroni Coulombin potentiaalissa Elektroni jaksollisessa potentiaalissa Kolmidimensioisen kiteen elektronitilat Kvasihiukkaset Elektronit alhaisissa dimensioissa Elektronitilat ideaalisessa nanokiteessä Kiteestä klusteriin "Weak confinement" "Strong confinement" Molekyylistä klusteriin "puolijohdemolekyyli" Puolijohdeklusterin elektroniset transitiot Kokoluokat About "self-assebly of nano-scale structures" and
5 ix KIRJALLISUUTTA P.W. Atkins, R.S. Friedman: Molecular Quantum Mechanics (Oxford University Press, Oxford, New York, 3rd ed. 1997) M. Weissbluth: Atoms and Molecules (Academic Press, New York, 1983) R.G. Parr and W. Yang: Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, New York, 1989) T.T. Rantala: Local-Density Electronic Structure Calculations on the Spectra and Reactivity of Metals Acta Univ. Ouluensis A 184 (1987) Jean Louis Calais: Quantum Chemistry Workbook (John Wiley & Sons,New York, 1994) I. Lindgren och S. Svanberg: Atomfysik (Universitetsförlaget Uppsala, LiberTryck Stockholm, 1974) A. Hinchliffe: Computational Quantum Chemistry (John Wiley & Sons,Chichester, New York, 1989) S.V. Gaponenko: Optical Properties of Semiconductor Nanocrystals Cambridge Studies in Modern Optics (Cambridge University Press, Cambridge, 1998)
FYS-6300 MOLEKYYLIEN JA NANO- RAKENTEIDEN KVANTTITEORIA
MNQT, kl 2010 i FYS-6300 MOLEKYYLIEN JA NANO- RAKENTEIDEN KVANTTITEORIA Laajuus: Luenja: Laskuharjoituksia ja demonstraatioita: Luennoija: Laskuharjoitukset: Aika ja paikka: Oppikirja: 6 op 48 h 12 x 2
766326A Atomifysiikka 1 - Syksy 2013
766326A Atomifysiikka 1 - Syksy 2013 Luennot n. 46 tuntia Torstaisin 8-10 sali IT116 Perjantaisin 8-10 sali L6 Poikkeuksia: to 19.9. luento vain 8-9 to 17.10. luento vain 8-9 to 14.11. luento vain 8-9
9. Elektronirakenteen laskeminen
9. Elektronirakenteen laskeminen MNQT, sl 2013 159 MNQT, sl 2013 160 Tarkastellaan vielä eri menetelmiä seuraavan jaottelun mukaisesti. Elektronirakenteen laskeminen tarkoittaa tavallisesti tarkasteltavan
S-114.1327 Fysiikka III (Est, 6,0 op) Viikko 11
S-114.1327 Fysiikka III (Est, 6,0 op) LUENTOSUUNNITELMA KEVÄT 2007, 2. PUOLILUKUKAUSI Toisen puolilukukauden aikana käydään läpi keskeiset kohdat Kvanttifysiikan opetusmonisteen luvuista 3-7. Laskuharjoituksia
9. Elektronirakenteen laskeminen
9. Elektronirakenteen laskeminen MNQT, sl 2015 165 MNQT, sl 2015 166 Tarkastellaan vielä eri menetelmiä seuraavan jaottelun mukaisesti. Elektronirakenteen laskeminen tarkoittaa tavallisesti tarkasteltavan
4. Liikemäärämomentti
4. Liikemäärämomentti Jatkossa tarkastellaan toisaalta yleisiä (ja tarkkoja) menetelmiä, sellaisia kuin liikemäärämomenttialgebra ja ryhmäteoria, sekä toisaalta approksimointimenetelmiä, sellaisia kuin
MNQT, kl Ryhmäteoria
MNQT, kl 2010 59 5. Ryhmäteoria Ottamalla huomioon ratkaistavan systeemin symmetriaominaisuudet päästään yleensä tarkasteluissa ja ratkaisemisessa vähemmällä työllä. Erityisesti silloin, jos kvalitatiivinen
1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
J 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
Johdantoa. 0.1 Mustan kappaleen säteily. Musta kappale (black body): Kvanttimekaniikka. Wienin siirtymälaki jakautuman maksimille on
MNQT, sl 2015 1 MNQT, sl 2015 2 Johdantoa Kvanttimekaniikka tarvittiin selittämään uusia kokeellisia havaintoja korvaa Newtonin yhtälön Schrödingerin yhtälöllä, joka on tavallaan pienten hiukkasten "liikeyhtälö"
ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005
KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI
Laskennalinen kemia. Menetelmien hierarkia: Molekyyligeometria Molekyylimekaniikka Molekyylidynamiikka
Laskennalinen kemia Menetelmien hierarkia: Molekyyligeometria Molekyylimekaniikka Molekyylidynamiikka Molekyyligeometria ja elektronirakenteet Empiiriset menetelmät (Hückel, Extended Hückel) Semi-empiiriset
Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
7. Atomien rakenne ja spektrit
7. Atomien rakenne ja spektrit Atomien rakenteella tarkoitetaan niiden elektroniverhojen rakennetta, erilaisia jakautumia ja erityisesti elektronien energiatiloja. Atomien spektreillä taas tarkoitetaan
Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 14: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
Luento5 8. Atomifysiikka
Atomifysiikka Luento5 8 54 Kvanttimekaniikan avulla ymmärrämme atomin rakenteen ja toiminnan. Laser on yksi esimerkki atomien ja valon kvanttimekaniikasta. Luennon tavoite: Oppia ymmärtämään atomin rakenne
Gaussian type orbitals (GTO) basis functions assume the radial part e αr2. Sc. cartesian GTO functions take the form
QTMN, 2016 173 9.4. STO and GTO basis sets For an accurate, but easy presentation of molecular orbitals a good basis set is needed. In general, a complete basis consists of an infinite numer of basis functions,
Kvanttimekaniikka I tentti : 4 tehtävää, 4 tuntia
Kvanttimekaniikka I.. 4 tentti : 4 tehtävää, 4 tuntia. (a (p. Olkoon H systeemin Hamiltonin operaattori, ja A jotakin observaabelia kuvaava operaattori. Johda Ehrenfestin teoreema d A dt = ī [A, H] + A
Tilat ja observaabelit
Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ
780392A/782631S Fysikaalinen kemia II, 5 op / 4 op
78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto
2m 2 r + V (r) ψ n (r) = ɛ n ψ n (r)
Kvanttimekaniikka I. 5. 4 tentti : 4 tehtävää, 4 tuntia. (a (p. Tarkastellaan keskeisliikettä potentiaalissa V (r = V (r, missä r = r on keskeisliikkeeseen liittyvä suhteellinen etäisyys. Separoi Schrödingerin
8. MONIELEKTRONISET ATOMIT
8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä
Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw
Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw
1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
Osallistumislomakkeen viimeinen palautuspäivä on maanantai
Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:
Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset
Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit
Luku 11: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H
Luku 11: Molekyylien rakenne Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H + 2 ja muut kaksiatomiset molekyylit Hückel approksimaatio 1 Elektronien liike on hyvin
Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering. Atomien väliset sidokset
Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit
Molekyylit. Atomien välisten sidosten muodostuminen
Molekyylit. Johdanto. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit 6. Orgaaniset
Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
Aikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
Luku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit
Luku 10: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit 1 n 1 = 3 n 1 = 4 n 1 = 2 n 1 =1 Vetyatomin spektri koostuu viivoista Viivojen sijainti
Atomien rakenteesta. Tapio Hansson
Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista
Luku 10: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H
Luku 10: Molekyylien rakenne Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H + 2 ja muut kaksiatomiset molekyylit Hückel approksimaatio 1 Molekyylien elektronirakennetta
ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
OPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit
Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi
Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi Harris luku 7 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Yleistetään viidennen luvun sidottujen tilojen
Lisävaatimuksia aaltofunktiolle
Lisävaatimuksia aaltofunktiolle (1) Koska Ψ*Ψ on äärellinen => Ψ on äärellinen. () Koska P = Ψ*Ψdτ => Ψ on yksiselitteinen. (3) Ψ on jatkuva. (4) dψ/dτ on jatkuva. Esimerkki Epäkelpoja aaltofunktioita
1 Aaltofunktio, todennäköisyystulkinta ja normitus
KEMA5 syksy 16 Kertausta keskeisistä asioista 1 Aaltofunktio, todennäköisyystulkinta ja normitus Kvanttimekaniikassa tarkasteltavaa systeemiä kuvaa aaltofunktio ψ. Aaltofunktio on puhtaan matemaattinen
FYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
FYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 16. lokakuuta 2013 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
5.1 Johdanto 185. 5.2 Helium-atomi 186. 5.3 Keskeiskenttämalli 201. 5.4 Paulin kieltosääntö 206. 5.5 Atomien elektronirakenne 208
MONIELEKTRONIATOMIT 5. Johdanto 85 5. Helium-atomi 86 5.3 Keskeiskenttämalli 0 5.4 Paulin kieltosääntö 06 5.5 Atomien elektronirakenne 08 5.6 L--kytkentä monen elektronin atomeissa 3 5.7 Röntgenspektrien
Aineaaltodynamiikkaa
Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset
Fysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
FYSA2031 Potentiaalikuoppa
FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali
TONI YLENIUS VAN DER WAALS -VUOROVAIKUTUS ELEKTRONIRAKEN- NETEORIASSA: LASKUMENETELMIEN VERTAILU. Diplomityö
TONI YLENIUS VAN DER WAALS -VUOROVAIKUTUS ELEKTRONIRAKEN- NETEORIASSA: LASKUMENETELMIEN VERTAILU Diplomityö Tarkastaja: professori Tapio Rantala Tarkastaja ja aihe hyväksytty Luonnontieteiden ja ympäristötekniikan
Kvanttimekaniikan perusteet
Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aineaaltokenttä ja todennäköisyystiheys
Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:
Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Rotaatio eli pyörimisliike Vibraatio eli värähdysliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön
pääkiertoakseli #$%%ä 2C 2 C 2!"
Tehtävä 1 Määritä seuraavien molekyylien pisteryhmät: (a) H 3 N H 3 N l o l NH 3 + NH 3 urataan lohkokaaviota: lineaari!"!" suuri symmetria 2s v #$%%ä 2v!" pääkiertoakseli #$%%ä 2 2 2!" s h Vastaavasti:
FYS-1270 Laaja fysiikka IV: Aineen rakenne
i FYS-1270 Laaja fysiikka IV: Aineen rakenne Laajuus: 7 ECTS Luennot: 56 h Tapio Rantala, prof., SG219 Ti 13 15 SJ204/TB219 8 10 SG312 FirstName.LastName@tut.fi http://www.tut.fi/~trantala/opetus Harjoitukset:
Potentiaalikuoppa, työohje
Potentiaalikuoppa, työohje 16. lokakuuta 2018 Johdanto Kvanttimekaniikassa potentiaalikuopalla tarkoitetaan järjestelmää, jossa hiukkasen liike on rajoitettu äärelliseen alueeseen. Tästä seuraa ominaisenergian
Kvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri
Kvanttimekaniikka: Luento 2 Mar$kainen Jani- Petri Assarointimainos Fyssa tarvitsee assareita Noin 30 euroa tun$+ lisiä tyypillises$ n. 4h/viikko, muba voi olla enemmän/vähemmän Opintosuoritukset+ lyhyt
Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
Spin ja atomifysiikka
Spin ja atomifysiikka Harris luku 8 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Lämmittelykysymys Pohdi parin kanssa 5 min Kysymys Atomin säde on epämääräinen käsite. Miksi?
SISÄLTÖ MITÄ FYSIIKKA ON KLASSILLINEN FYSIIKKA
1 MODERNI FYSIIKKA Tapio Rantala Teoreettinen ja laskennallinen materiaalifysiikka Elektronirakenneteoria http://www.tut.fi/semiphys SISÄLTÖ MITÄ FYSIIKKA ON KLASSILLINEN FYSIIKKA MODERNI FYSIIKKA KVANTTIFYSIIKKA
TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)
TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on
Sidotut tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 5. Mikro- ja nanotekniikan laitos
Sidotut tilat Harris luku 5 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tähän asti tutkittu aineaaltojen ominaisuuksia Seuraavaksi ryhdytään käyttämään aineaaltoja
Korrespondenssiperiaate. Tapio Hansson Oulun Yliopisto, Fysiikan laitos Ohjaaja: Mikko Saarela
Korrespondenssiperiaate Tapio Hansson Oulun Yliopisto, Fysiikan laitos Ohjaaja: Mikko Saarela Sisältö 1 Johdanto 2 2 Liikeyhtälöt 2 2.1 Klassisen mekaniikan liikeyhtälöt................ 2 2.2 Poissonin
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN
Potentiaalikuoppa, työohje
Potentiaalikuoppa, työohje 16. lokakuuta 013 Johdanto Kvanttimekaniikassa potentiaalikuopalla tarkoitetaan järjestelmää, jossa hiukkasen liike on rajoitettu äärelliseen alueeseen. Tästä seuraa ominaisenergian
Demo: Kahden elektronin spintilojen muodostaminen
Demo: Kahden elektronin spintilojen muodostaminen Tämän demonstraation tarkoituksena on havainnollistaa kvanttimekaniikan operaattoriformalismin soveltamista kahden elektronin systeemin spintilojen muodostamiseen.
S Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
Potentiaalikuoppa, työohje 12. lokakuuta 2015
Potentiaalikuoppa, työohje 12. lokakuuta 2015 12. lokakuuta 2015 Johdanto Kvanttimekaniikassa potentiaalikuopalla tarkoitetaan järjestelmää, jossa hiukkasen liike on rajoitettu äärelliseen alueeseen. Tästä
Vedynkaltaiset radiaaliaaltofunktiot Roothaan Hall- ja CI-menetelmissä
Vedynkaltaiset radiaaliaaltofunktiot Roothaan Hall- ja CI-menetelmissä Pro Gradu -tutkielma Henrik Kurkela henrik.kurkela@gmail.com Oulun Yliopisto Luonnontieteellinen tiedekunta Fysiikan koulutusohjelma
8. MONIELEKTRONISET ATOMIT
8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä
OPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit
FYSA235, Kvanttimekaniikka I, osa B, tentti Tentin yhteispistemäärä on 48 pistettä. Kaavakokoelma ja CG-taulukko paperinipun lopussa.
FYSA5, Kvanttimekaniikka I, osa B, tentti..4 Tentin yhteispistemäärä on 48 pistettä. Kaavakokoelma ja CG-taulukko paperinipun lopussa.. Selitä lyhyesti (a) Larmorin prekessio [ pt] (b) Clebsch-Gordan kertoimet
TEOREETTINEN FYSIIKKA TEKNIIKAN TUKENA
TEOREETTINEN FYSIIKKA 1 TEKNIIKAN TUKENA Tapio Rantala Fysiikka Tampereen teknillinen yliopisto http://www.tut.fi/semiphys SISÄLTÖ MITÄ FYSIIKKA ON Filosofiaa vai arkipäivää? Tiedettä vai tekniikkaa? MATERIAALIFYSIIKKA
(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme
S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät
11. MOLEKYYLIT. Kvanttimekaniikka on käyttökelpoinen molekyyleille, jos se pystyy selittämään atomien välisten sidosten syntymisen.
11. MOLEKYYLIT Vain harvat alkuaineet esiintyvät luonnossa atomeina (jalokaasut). Useimmiten alkuaineet esiintyvät yhdisteinä: pieninä tai isoina molekyyleinä, klustereina, nesteinä, kiinteänä aineena.
KVANTTIMEKANIIKKA II A. Mikko Saarela
KVANTTIMEKANIIKKA II 76333A Mikko Saarela kevät 0 i Sisältö Matriisimekaniikkaa 3. Lineaariset vektoriavaruudet..................... 3.. Diracin merkinnät...................... 3.. Ortonormaalit kantajärjestelmät..............
, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,
S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion
Kvanttimekaaninen atomimalli. "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman
Kvanttimekaaninen atomimalli "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman Tunnin sisältö 1. 2. 3. 4. 5. 6. 7. Kvanttimekaaninen atomimalli Orbitaalit Kvanttiluvut Täyttymisjärjestys
Shrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
766334A Ydin- ja hiukkasfysiikka
1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen
FYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
FY1 Fysiikka luonnontieteenä
Ismo Koponen 10.12.2014 FY1 Fysiikka luonnontieteenä saa tyydytystä tiedon ja ymmärtämisen tarpeelleen sekä saa vaikutteita, jotka herättävät ja syventävät kiinnostusta fysiikkaa kohtaan tutustuu aineen
Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura
Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat
Monen elektronin atomit
Monen elektronin atomit Helium atomi Keskimääräisen kentän approksimaatio Aaltofunktion symmetria hiukkasvaihdossa Paulin kieltosääntö Alkuaineiden jaksollinen järjestelmä Heliumin emissiospektri Vety
Nyt. = R e ik R ψ n (r + R R ) = e ik R [ = e ik R b n ψ n (r R),
Tiukan sidoksen malli Tarkastellaan sellaisia kiderakenteita, joissa atomien elektronien aaltofunktiot ovat lokalisoituneet isäntäionien läheisyyteen. Jos unohdetaan periodisuuden vaikutukset, elektronien
Aineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos
Aineen aaltoluonne Harris luku 4 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Aineaallot Heisenbergin epätarkkuusperiaate Fourier-muunnos ja epätarkkuusperiaate Aineaaltojen
TEEMU SALMI PSEUDOPOTENTIAALIEN KÄYTTÖ POLKUINTEGRAALI- MONTE CARLO -SIMULOINNEISSA. Diplomityö
TEEMU SALMI PSEUDOPOTENTIAALIEN KÄYTTÖ POLKUINTEGRAALI- MONTE CARLO -SIMULOINNEISSA Diplomityö Tarkastaja: Prof. Tapio Rantala Tarkastaja ja aihe hyväksytty Teknis-luonnontieteellisen tiedekunnan tiedekuntaneuvoston
MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN
MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN PRO GRADU -TUTKIELMA SAKARI MIKKONEN OULUN YLIOPISTO FYSIKAALISTEN TIETEIDEN LAITOS 2005 Sisällysluettelo
Voima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
Fysikaalinen kemia 2 (KEMA225, 4 op) syksy 2011
Fysikaalinen kemia 2 (KEMA225, 4 op) syksy 2011 Luennot: Henrik Kunttu, Nanoscience Center, huone YN213; puh: 050-5996134; henrik.m.kunttu@jyu.fi Laskuharjoitukset: Lauri Nykänen; lauri.j.a.nykanen@.jyu.fi
6.8. Elektronien välisistä vuorovaikutuksista 6.8.1. Vaihto- ja korrelaatiovuorovaikutus
6.8. Elektronien välisistä vuorovaikutuksista 6.8.1. Vaihto- ja korrelaatiovuorovaikutus Vapaaelektronimallin jokainen elektroni kokee taustavarauksen ja muiden elektronien Coulombin potentiaalin keskimääräistettynä
Fysikaalisen kemian syventävät työt CCl 4 -molekyylin Ramanspektroskopia
Fysikaalisen kemian syventävät työt CCl 4 -molekyylin Ramanspektroskopia Tiina Kiviniemi 11. huhtikuuta 2008 1 Johdanto Tämän työn tarkoituksena on tutustua käytännön Ramanspektroskopiaan sekä molekyylien
3.1 Varhaiset atomimallit (1/3)
+ 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti
Vaihdetaan ryhmässä (1) summausindeksiksi K, jolloin saadaan (E E 0 k K 1
Heikot periodiset potentiaalit Useiden metallien (alkuaineryhmissä I, II, III ja IV) johde-elektronit liikkuvat heikossa kiteen ionien muodostamassa potentiaalissa, sillä näillä metalleilla on s- tai p-elektroni
T R Hψ = H(r + R)ψ(r + R) = H(r)ψ(r + R) Kahden peräkkäisen translaation vaikutus ei riipu
Elektronit periodisessa potentiaalissa Tarkastellaan täydellistä Bravais n hilan kuvaamaa kidettä. Vaikka todelliset kiinteät aineet eivät esiinnykään täydellisinä hiloina, voidaan poikkeamat periodisuudesta
Kvanttimekaniikkaa yhdessä ulottuvuudessa
Kvanttimekaniikkaa yhdessä ulottuvuudessa Kvanttiefektit ovat tärkeitä nanoskaalassa. Tässä on ksenon-atomeilla tehtyjä kirjaimia metallipinnalla. Luennon tavoite: Ymmärtää kvanttimekaniikan perusperiaatteet
13 Atomien sidokset. H 2 molekyylistä.
13 Atomien sidokset Tähän asti kurssilla on ainoastaan keskusteltu atomien elektronitiloista ja niiden ominaisuuksista. Kun atomit muodostavat yhdisteitä muuttuvat prosessissa elektronien ominaistilat.
Aineen ja valon vuorovaikutukset
Aineen ja valon vuorovaikutukset Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tutkitaan aineen ja valon vuorovaikutuksia Ensiksi tutustutaan häiriöteoriaan, jonka