Kaksi sovellusta robustien päätössuositusten tuottamisesta
|
|
- Aarne Hämäläinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Esitelmä 12 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Kaksi sovellusta robustien päätössuositusten tuottamisesta Antti Toppila
2 Esitelmä 12 Antti Toppila sivu 2/19 Optimointiopin seminaari Kevät 2011 Sisältö Kustannustehokas investointi Murray-Darling-jokialueen luonnonvaroihin ja ekosysteemipalveluihin (Bryan 2010) Innovaatioiden ennakointia (Könnölä ym. 2007) Kotitehtävä
3 Esitelmä 12 Antti Toppila sivu 3/19 Optimointiopin seminaari Kevät 2011 Kustannustehokas investointi Murray-Darling-jokialueen luonnonvaroihin ja ekosysteemipalveluihin (Bryan 2010) Kyse julkisen sektorin ympäristöhankkeiden kohdentaminen MD-jokialueelle Rahaa 69 MAUD ( 51 MEUR) 46 hankkeen rahoittamiseen km 2 kokoisen alueen sidosryhmiä edusti 43 päätöksentekijää
4 Esitelmä 12 Antti Toppila sivu 4/19 Optimointiopin seminaari Kevät 2011 Julkisen rahan tehokas käyttö Notaatio Kohteet k = 1,..., K Kohteen hyöty B k Kohteen kustannus C k Investointiaste r k Budjetti R T Malli (E-max) max s.e. K k=1 r k C k B k 0 r k C k k K r k = R T k=1
5 Esitelmä 12 Antti Toppila sivu 5/19 Optimointiopin seminaari Kevät 2011 Tehokkaan portfolion vertaaminen aiempiin lähestymistapoihin Haluttiin verrata perinteisiin valintamenetelmiin Muuttamalla tehtävän kohdefuntiota tai rajoitetta: Hyötyperustainen valinta (B-rank): max K r k B k k=1 Kustannusperustainen valinta (C-rank): max K r k C k k=1 Aiempien sitoumusten rajoittama valinta (E-max ): C k r k C k, missä Ck aiemmin sidottu määrä hankkeeseen k
6 Esitelmä 12 Antti Toppila sivu 6/19 Optimointiopin seminaari Kevät 2011 Robustisuus epävarmuuksien suhteen Hankkeiden kustannuksia C k, hyötyjä B k, tai budjettia R T ei tunnettu tarkkaan Kullekin epävarmalle parametrille määritettiin ala- ja yläraja sekä näiden väliin asettuva uskottavin arvo C min k Ck ml Ck max missä Ck min ja Ck max kustannuksen ala- ja ylärajat ja C ml uskott. k kust. hankkeelle k Kullekin budjettivaihtoehdolle määritettiin kolme portfoliota vastaten päätössääntöjä Optimistinen (Maximax) Pessimistinen (Maximin) Uskottavin (paras kun kaikki parametrit saavat uskottavimman arvonsa) Näitä portfolioita tarkasteltiin kunkin strategian E-max, E-max, C-rank ja B-rank suhteen
7 Esitelmä 12 Antti Toppila sivu 7/19 Optimointiopin seminaari Kevät 2011 Hankkeiden kustannustehokkuus Hankekohtaiset kustannustehokkuudet vaihtelivat Kuvassa suurin ja pienin mahdollinen kustannustehokkuus (intervalit) Kuvassa myös uskottavimmilla arvoilla lasketut kustannustehokkuudet (palkkien oikeat reunat)
8 Esitelmä 12 Antti Toppila sivu 8/19 Optimointiopin seminaari Kevät 2011 Paretopinnat Optimistisen, uskottavimman ja pessimistisen portfolion suurin, uskottavin ja pienin arvo, vastaavasti, eri priorisointistrategioilla
9 Esitelmä 12 Antti Toppila sivu 9/19 Optimointiopin seminaari Kevät 2011 Päätössuositusten muodostaminen Kullakin tavoitteella haluttiin löytää projektit, jotka olivat hyviä kaikkien päätössääntäjen mielessä Määriteltiin ydinluku (vrt. edellinen esitemä) päätössääntöjen ja budjettien yli seuraavasti CI s,k = 100 p P s r s,k C k / P s missä s {E-max, E-max, C-rank, B-rank} on strategia, P s strategian s mukaiset kolmen päätössäännön ja kolmen budjetin määrittämät portfoliot ja r s,k investoinnin optimaalinen taso strategialla s Huomiona että nyt ydinluku määritelty jatkuville muuttujille
10 Esitelmä 12 Antti Toppila sivu 10/19 Optimointiopin seminaari Kevät 2011 Päätössuositukset Täysi, osittainen ja nolla sijoitus, ydinluku ja luokitus ydin, ulko ja rajahankkeisiin
11 Esitelmä 12 Antti Toppila sivu 11/19 Optimointiopin seminaari Kevät 2011 Innovaatioiden ennakointia (Könnölä ym. 2007) Kauppa- ja teollisuusministerion Ennakointifoorumilla tehty ennakointihanke Etsittiin heikkoja signaaleja jotka indikoisivat tulevia innovaatioita Hankkeeseen osallistui n. 50 teollisuuden, julkisen vallan, tutkimuksen ja yritysten edustajaa
12 Esitelmä 12 Antti Toppila sivu 12/19 Optimointiopin seminaari Kevät 2011 Heikkojen signaalien etsiminen Innovaatiot arvioitiin kolmen kriteerin suhteen asteikolla 1-7 Könnölä ym. määrittelivät näiden avulla potentiaaliset heikot signaalit seuraavasti: Korkea keskiarvo ja pieni varianssi trendi Erittäin matala keskiarvo (ja tästä johtuen pieni varianssi) kohina Tarpeeksi korkea keskiarvo ja kohtalainen varianssi heikko signaali Ongelma seurasi siitä että käytettiin kolmea kriteeriä uutuusarvo, relevanssi ja käypyys joiden painoja ei tunnettu Könnölä ym. käyttivät RPM-mentelmää jotta he saisivat mallin robustiksi kriteeripainojen suhteen
13 Esitelmä 12 Antti Toppila sivu 13/19 Optimointiopin seminaari Kevät 2011 Yhteisymmärysperustainen lähestymistapa Keskiarvolla kuvataan yhteisymmärrysratkaisua Esim. Vaihtoehto voi saada erittäin korkean arvon vain jos lähes kaikki samaa mieltä tästä RPM-menetelmällä kiinostavat vaihtoehdot löytyvät ratkaisemalla tehtävä: max z 1,...,z m s.e. ( m n z j i=1 j=1 m z j R j=1 z j {0, 1} j w A S w A w A i ā ij ) missä z j valintamuutuja, ā ij vaihtoehdon j attribuutin i piste, w A keskiarvojen painot, R budjetti ja S w A käyvät painot
14 Esitelmä 12 Antti Toppila sivu 14/19 Optimointiopin seminaari Kevät 2011 Erimielisyysperustainen lähestymistapa Ne vaihtoehdot joista on eniten erimielisyyttä ovat ne joiden varianssi on suuri Halutaan löytää myös heikot signaalit, joten täydennetään edellistä formulointia: max z 1,...,z m s.e. ( m n z j i=1 j=1 m z j R j=1 z j {0, 1} j (w A, w V ) S w w A i ā ij + n i=1 wi V σ ij 2 missä σ 2 ij vaihtoehdon j attribuutin i otosvarianssi, w V varianssien painot ja S w käypä painoavaruus )
15 Esitelmä 12 Antti Toppila sivu 15/19 Optimointiopin seminaari Kevät 2011 Painoavaruuksien valitseminen Yhteisymmärrys (attribuutit tasavertaisia) S w A = {w 3 i=1 w A i Erimielisyys (haluttiin korostaa eroja) S w = { w 3 i=1 (w A i w1 A w2 A w3 A, } wi V 1 36 i, i = 1, w i 0 i} + wi V ) = 1, w i 0, wi V w A i
16 Esitelmä 12 Antti Toppila sivu 16/19 Optimointiopin seminaari Kevät 2011 Päätössuositukset Könnölä Yhteisymmärrys et al. / Technological Forecasting & Social Change 74 (2007) Erimielisyys Fig. 1. Core indices of ideas within the theme Health case and social services with regard to consensus and
17 Esitelmä 12 Antti Toppila sivu 17/19 Optimointiopin seminaari Kevät 2011 Viitteet Bryan, B. A., Development and Application of a Model for Robust, Cost-Effective Investment in Natural Capital and Ecosystem Services, Biological Conservation 143/7, pp Könnölä, T., Brummer, V., Salo, A., Diversity in foresight: Insights from the fostering of innovation ideas, Technological Forecasting & Social Change 74/5, pp
18 Esitelmä 12 Antti Toppila sivu 18/19 Optimointiopin seminaari Kevät 2011 Kotitehtävä 1/2 Bryanin portfolioiden edustavuus Bryan (2010) käytti budjettikohtaisten ydinlukujen laskemiseen Maximax portfoliota Maximin portfoliota Uskottavin portfoliota Tutkitaan näitä portfolioita RPM-viitekehyksessä (ks. edelliset esitykset) Oletus: painoja ei rajattu, attribuuttiarvot tarkkoja Oletetaan että em. portfolioiden perusteella laskettu ydinluku projektille on 100 % / 0 %. Onko tällöin välttämättä ydinluku 100 % / 0 % kaikkien ei-dominoitujen portfolioiden yli? Jos ei, millaisia portfolioita ei huomioida?
19 Kotitehtävä 2/2 Vihje Vihje: oheisen kaltaista kuvaajaa kannatta käyttää Kuvaan on piirretty esimerkinomaisesti portfoliot p 1,..., p 4 Arvo Portfolion arvo muuttuu lineaarisesti attribuuttipainojen w 1 ja w 2 = 1 w 1 mukaan w 1 = 0 w 2 = 1 p 1 p 2 p 3 p 4 w 1 = 1 w 2 = 0 Esitelmä 12 Antti Toppila sivu 19/19 Optimointiopin seminaari Kevät 2011
Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi
Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Mat-2.4142 Optimointiopin seminaari 9.2.2011 Lähteet: Salo, A. & Hämäläinen, R. P., 2010.
Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely)
Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely) Juha Kännö 23..22 Ohjaajat: TkL Antti Punkka, DI Eeva Vilkkumaa Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa
Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus
Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Mat-2.4142 Optimointiopin seminaari 2.3.2011 Lähteet: Clemen, R. T., & Smith, J. E. (2009). On the Choice of Baselines
Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla
Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla Mat-2.4142 Optimointiopin seminaari kevät 2011 Lähde: Liesiö, J., Mild, P., Salo, A., 2008. Robust portfolio
Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely)
Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely) Jussi Hirvonen 23.03.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Projektiportfolion valinta
Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille
Mat Optimointiopin seminaari
reference rogramming portfoliopäätösanalyysissa: Robust ortfolio Modeling (RM) -menetelmä Lähteet: Mat-2.4142 Optimointiopin seminaari 16.2.2011 Liesiö, J., Mild,., Salo, A., 2007. reference programming
Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely)
Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely) Markus Losoi 30.9.2013 Ohjaaja: DI Antti Toppila Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Preference Programming viitekehys tehokkuusanalyysissä
Preference Programming viitekehys tehokkuusanalyysissä Mat-2.4142 Optimointiopin seminaari kevät 2011 Salo, A., Punkka, A., 2011. Ranking Intervals and Dominance Relations for Ratio-Based Efficiency Analysis,
Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen
Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen 07.05.2012 Ohjaaja: Raimo Hämäläinen Valvoja: Raimo Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
Referenssipiste- ja referenssisuuntamenetelmät
Referenssipiste- ja referenssisuuntamenetelmät Optimointiopin seminaari - Kevät 2000 / 1 Esitelmän sisältö Menetelmien ideat Menetelmien soveltaminen Menetelmien ominaisuuksia Optimointiopin seminaari
INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti
12.11.1999 INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E Mat-2.142 Optimointiopin seminaari Referaatti Syksy 1999 1. JOHDANTO Thomas M. Stratin artikkeli Decision Analysis Using Belief Functions käsittelee
Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa
Juha Kännö Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa Perustieteiden korkeakoulu Kandidaatintyö Espoo 23..22 Vastuuopettaja: Prof. Ahti Salo Työn ohjaajat: TkL Antti Punkka DI Eeva Vilkkumaa
Projektiportfolion valinta
Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Kotitehtävän 1 ratkaisu Kotitehtävä Kirkwood, G. W., 1997. Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets,
Additiivinen arvofunktio projektiportfolion valinnassa
Esitelmä 5 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Additiivinen arvofunktio projektiportfolion valinnassa Antti Toppila 2.2.2011 Esitelmä 5 Antti Toppila sivu 2/19 Optimointiopin seminaari
Lisää satunnaisuutta ja mahdollisuus keskeyttää projekti
isää satunnaisuutta ja mahdollisuus keskeyttää projekti Esitelmä 7 - Mika lmoniemi Optimointiopin seminaari - Syksy isää satunnaisuutta Tähän mennessä on käytetty vain yhtä satunnaismuuttujaa tuotteen
Investointimahdollisuudet ja investoinnin ajoittaminen
Investointimahdollisuudet ja investoinnin ajoittaminen Ajoituksen ratkaisu dynaamisella optimoinnilla Optimointiopin seminaari - Syksy 000 / Esitelmän sisältö Investoinnin ajoitusongelman esittely Ongelman
, tuottoprosentti r = X 1 X 0
Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen
Luento 6: Monitavoiteoptimointi
Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa
Diskreettiaikainen dynaaminen optimointi
Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u
Yhteistyötä sisältämätön peliteoria
Yhteistyötä sisältämätön peliteoria jarkko.murtoaro@hut.fi Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Käsitteistö Työkalut Nashin tasapaino Täydellinen tasapaino Optimointiopin seminaari
Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen
Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen Optimointiopin seminaari - Syksy 000 / 1 Mallin laajennus Toiminta voidaan väliaikaisesti keskeyttää ja käynnistää uudelleen Keskeyttämisestä
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
Signalointi: autonromujen markkinat
Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli
Esteet, hyppyprosessit ja dynaaminen ohjelmointi
Esteet, hyppyprosessit ja dynaaminen ohjelmointi Juha Martikainen 4.10.2000 Oppikirjan sivut 83-87 ja 93-98 Optimointiopin seminaari - Syksy 2000 / 1 Esteet (määritelmät) Muistellaan menneitä: Ajelehtiva
Tulevaisuustiedon paradoksit kokemuksia innovaatioaihioiden seulonnasta
Tulevaisuustiedon paradoksit kokemuksia innovaatioaihioiden seulonnasta Ahti Salo Teknillinen korkeakoulu PL 1100, 02015 TKK 1 2 3 Teknillinen korkeakoulu Ennakoinnin lähtökohtia Perustarve Järjestelmien
Finpro Foresight. Toimitusjohtaja Kari Häyrinen Finpro ry 9-11-2010
Finpro Foresight Toimitusjohtaja Kari Häyrinen Finpro ry 9-11-2010 Finpron Missio Rakentamassa kansainvälisesti menestyvää Suomea Strategy 2010-2012 / Finpro ry 2 Finpron toiminnan perusta Kilpailukykyä
Mat Optimointiopin seminaari
Lähde: Preferenssi-informaatio DEA-malleissa: Value Efficiency Analysis (VEA) -menetelmä Mat-2.4142 Optimointiopin seminaari 23.3.2011 Halme, M., Joro, T., Korhonen, P., Wallenius, J., 1999. A Value Efficiency
Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
Mat-2.4194 Research Course in Systems Science: Trends and Developments in Decision Analysis. Home Assignment
Mat-2.4194 Research Course in Systems Science: Trends and Developments in Decision Analysis Punkka / Liesiö Home Assignment Malli Tavoitteena on tarkastella siltojenkorjausohjelman laatimista RPM-menetelmällä.
Additiivinen arvofunktio
Additiivinen arvofunktio Mat-.44 Optimointiopin seminaari kevät 0 Preferenssi Päätöksentekijällä preferenssi vaihtoehtojen a,b A välillä a parempi kuin b ( a b) b parempi kuin a ( b a) Indifferentti vaihtoehtojen
Haitallinen valikoituminen: Kahden tyypin malli
Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies
Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.
Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).
Harha mallin arvioinnissa
Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö
Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization
Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization 7.5.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Tausta Ilmavoimilla tärkeä rooli maanpuolustuksessa Rauhan aikana
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä
OPTIMAALINEN INVESTOINTIPÄÄTÖS
OPTIMAALINEN INESTOINTIPÄÄTÖS Keskiarvoon palautuvalle prosessille ja Poissonin hyppyprosessille Optimointiopin seminaari - Syksy 000 / 1 I. KESKIAROON PALAUTUA PROSESSI Investoinnin kohde-etuuden arvo
Maaseutuohjelman hanketukien valintaperusteet
Maaseutuohjelman hanketukien valintaperusteet Valintaperusteet muodostuvat alueella valittavissa toimenpiteissä neljästä aihealueesta, joiden alla esitetään tätä avaavia alakohtia, jotka konkretisoivat
Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely)
Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely) Santtu Saijets 16.6.2014 Ohjaaja: Juuso Liesiö Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P
Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen
Paretoratkaisujen visualisointi. Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L
Paretoratkaisujen visualisointi Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L 1. Johdanto Monitavoiteoptimointitehtävät ovat usein laajuutensa takia vaikeasti hahmotettavia
2 DEA sovellusta. Mat Optimointiopin seminaari kevät S ysteemianalyysin. Laboratorio Aalto-yliopisto
2 DEA sovellusta Mat-2.4142 Optimointiopin seminaari kevät 2011 Sisältö Using Data Envelopment Analysis to Evaluate Efficiency in the Economic Performance of Chinese Cities (Charnes ym. 1989) Managing
Inversio-ongelmien laskennallinen peruskurssi Luento 2
Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +
Investointimahdollisuudet ja niiden ajoitus
Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen
Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla
Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Optimointiopin seminaari - Syksy 2000 / 1 Esitelmän sisältö Investointien peruuttamattomuuden vaikutus investointipäätökseen Investointimahdollisuuksien
Paretoratkaisujen visualisointi
Paretoratkaisujen visualisointi Optimointiopin seminaari - Kevät 2000 / 1 Esityksen sisältö Vaihtoehtoisten kohdevektorien visualisointi Arvopolut Palkkikaaviot Tähtikoordinaatit Hämähäkinverkkokaavio
Päätöksentekomenetelmät
L u e n t o Hanna Virta / Liikkeenjohdon systeemit Päätöksentekomenetelmät Luennon sisältö Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Päätösongelmia löytyy joka paikasta Päästökauppa:
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
Päätöksentekomenetelmät
L u e n t o Päätöksentekomenetelmät Luennon sisältö Hanna Virta / Liikkeenjohdon systeemit Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Johdanto päätöksentekoon Päätösongelmia löytyy
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus
Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)
Talousmatematiikan perusteet
kevät 19 / orms.30 Talousmatematiikan perusteet 8. harjoitus, viikko 11 (11.03..03.19) L Ma 12 A2 R0 Ti 14 16 F43 R01 Ma 12 14 F43 L To 08 A2 R02 Ma 16 18 F43 R06 To 12 14 F140 R03 Ti 08 F42 R07 Pe 08
Atte Moilanen Helsingin yliopisto, Biotieteiden laitos
Miksi ekologiset kompensaatiot epäonnistuvat? Kompensaatioiden määrittämisen avainkohtia. Koneen säätiön seminaari 9.6.2017 Atte Moilanen Helsingin yliopisto, Biotieteiden laitos 0 Vaatimukset onnistumiselle
Kehittämishankkeiden valintakriteerit ohjelmakaudella
21.5.2015 Kehittämishankkeiden valintakriteerit ohjelmakaudella 2014-2020 Maa- ja metsätalousministeriö on 4.3.2015 vahvistanut Manner-Suomen maaseudun kehittämisohjelman 2014-2020 toteutuksessa käytettävät
Sovellus: Portfoliopäätösanalyysi lentoliikenteen parantamisen tukena
Sovellus: Portfoliopäätösanalyysi lentoliikenteen parantamisen tukena Mat-2.4142 Optimointiopin seminaari kevät 2011 Sisällys 1. Ongelma: Lentoliikenteen parannus 2. Ongelma: Projektien valinta 3. Esimerkki
Harjoitus 7: vastausvihjeet
Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.
Bifurkaatiot dierentiaaliyhtälöissä. Systeemianalyysin. Antti Toppila laboratorio. Teknillinen korkeakoulu
Esitelmä 21 Antti Toppila sivu 1/18 Optimointiopin seminaari Kevät 2007 Bifurkaatiot dierentiaaliyhtälöissä Antti Toppila 18.04.2007 Esitelmä 21 Antti Toppila sivu 2/18 Optimointiopin seminaari Kevät 2007
Ennakointi, tulevaisuusajattelu ja strategiset tiekartat
VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Ennakointi, tulevaisuusajattelu ja strategiset tiekartat Mikko Dufva Foresight, organizational dynamics and systemic change team, VTT mikko.dufva@vtt.fi @mdufva
Virtuaaliamk liikkuvuus Case Turun AMK Yhteyshenkilöpäivät 5.2.2008 - Juha Knuuttila
Virtuaaliamk liikkuvuus Case Turun AMK Yhteyshenkilöpäivät 5.2.2008 - Juha Knuuttila Liikkuvuus tavoite vai keino? Kokemuksia liikkuvuuden edistämisestä -2006 Kokemuksia liikkuvuuden edistämisestä 2007
Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä
Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Mat-2.4142 Optimointiopin seminaari kevät 2011 Esityksen rakenne I osa Tehokkuudesta yleisesti DEA-mallin perusajatus CCR-painotus II osa
Optimaalisen tuotekehitysportfolion valinta kasvuyrityksessä
Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Optimaalisen tuotekehitysportfolion valinta kasvuyrityksessä Kandidaatintyö 21.8.2014 Santtu Saijets Työn
Mat Lineaarinen ohjelmointi
Mat-2.3140 Lineaarinen ohjelmointi 4.10.2007 Luento 4 Ekstreemipisteiden optimaalisuus ja Simplex (kirja 2.4-2.6, 3.1-3.2) Lineaarinen ohjelmointi - Syksy 2007 / 1 Luentorunko Degeneroituvuus Ekstreemipisteiden
MAT INVESTOINTITEORIA. (5 op) Kevät Ville Brummer / Pekka Mild / Ahti Salo
MAT - 2.114 INVESTOINTITEORIA (5 op) Kevät 2008 Ville Brummer / Pekka Mild / Ahti Salo 1 Opintojakson sisältö Taustaa Kattaa matemaattisen investointiteorian perusteet: Teemoja sivuttu osin muilla Mat-2
b 1. b m ) + ( 2b Ax) + (b b)
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26
Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?
MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo
RPM-menetelmän päätössääntöjen tilastollinen vertailu
Mat-2.4108 Sovelletun matematiikan erikoistyöt RPM-menetelmän päätössääntöjen tilastollinen vertailu Topi Sikanen 55670A Tfy N 30.9.2008 Sisältö 1 Johdanto 2 2 Projektiportfolion valinta epätäydellisellä
Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä
4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen
4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus
Harjoitus 4: Matlab - Optimization Toolbox
Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen
riippumattomia ja noudattavat samaa jakaumaa.
12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta
4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =
BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B
Investointimahdollisuudet ja investointien ajoittaminen
Investointimahdollisuudet ja investointien ajoittaminen Optimaalisen investointistrategian ominaispiirteitä eli parametrien vaikutus ratkaisuun Optimointiopin seminaari - Syksy 000 / Optimointiopin seminaari
k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu
LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja
JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö
JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän
Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.
7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f
Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio
17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
2. Teoriaharjoitukset
2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien
Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet
Mat-2.142 Optimointiopin seminaari kevät 2000 Monitavoiteoptimointi Optimointiopin seminaari - Kevät 2000 / 1 Tavoitteet Monitavoitteisten optimointitehtävien ratkaisukäsitteet ja soveltamismahdollisuudet
Parametrin estimointi ja bootstrap-otanta
Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista
Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä
Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa
Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa Mat-2.4142 Optimointiopin seminaari kevät 2011 Kleinmuntz ja Kleinmuntz1999 TEHTÄVÄ Sairaalan strategisen investointibudjetin
Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio
Johdannaisanalyysi Contingent Claims Analysis Juha Leino 11.10.2000 Optimointiopin seminaari - Syksy 2000 / 1 Oletukset Yritys tuottaa tuotetta, jonka hinta on x x noudattaa geometrista Brownin liikettä
2 sovellusta: VEA + preferenssiinformaation. varmuusalueilla
2 sovellusta: VEA + preferenssiinformaation mallintaminen varmuusalueilla Mat-2.4142 Optimointiopin seminaari kevät 2011 Lähteet: Korhonen ym.: Value efficiency analysis of academic research Thompson ym.:
Mat Lineaarinen ohjelmointi
Mat-.4 Lineaarinen ohjelmointi..7 Luento 7 Duaalisimple ja herkkyysanalyysi (kirja 4.5, 5., 5.5-5.6) Lineaarinen ohjelmointi - Syksy 7 / Duaalisimple Herkkyysanalyysi Luentorunko Parametrinen ohjelmointi
Harjoitus 1 (20.3.2014)
Harjoitus 1 (20.3.2014) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Hämeenlinna 4 = Imatra 5 = Jyväskylä. 5 2 149(5) 190(4) 113(1)
Mat Lineaarinen ohjelmointi
Mat-.34 Lineaarinen ohjelmointi 5..7 Luento Kertausta Lineaarinen ohjelmointi - Syksy 7 / LP ja Simplex Kurssin rakenne Duaalisuus ja herkkyysanalyysi Verkkotehtävät Kokonaislukutehtävät Lineaarinen ohjelmointi
Projektin arvon määritys
Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin
Piiri K 1 K 2 K 3 K 4 R R
Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä
Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Toistetut pelit MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Elmeri Lähevirta The document can be stored and made available to the public on the open internet pages of Aalto University.
Valaistus. Ulkovalaisimet. Case study. Oulun katuvalaistus. Optimaalinen valaistus optimaaliseen hintaan Oulu, Suomi
Valaistus Ulkovalaisimet Case study Oulun katuvalaistus Optimaalinen valaistus optimaaliseen hintaan Oulu, Suomi Selenium LED ClearWay Taustaa Oulu on Pohjois-Suomen vanhin kaupunki, johon ovat 1.1.2013
LähiTapiola Varainhoito Oy 28.3.2014 1
Avain Suomen velkaongelmien ratkaisuun: uskottava kasvustrategia Sijoitusmessut 2014, Tampere-Talo Ekonomisti Timo Vesala, YK:n vastuullisen sijoittamisen periaatteiden (PRI) allekirjoittaja 28.3.2014
Peliteoria luento 2. May 26, 2014. Peliteoria luento 2
May 26, 2014 Pelien luokittelua Peliteoriassa pelit voidaan luokitella yhteistoiminnallisiin ja ei-yhteistoiminnallisiin. Edellisissä kiinnostuksen kohde on eri koalitioiden eli pelaajien liittoumien kyky
MS-C2105 Optimoinnin perusteet Malliratkaisut 5
MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien
Harjoitus 6 ( )
Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.