Yleistä tietoa kokeesta
|
|
- Kaarina Hovinen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 Yleistä tietoa kokeesta Kurssikoe järjestetään maanantai 7.5. klo jossakin Exactumin auditorioista. Korvaava kurssikoe keskiviikkona (yleisenä tenttipäivänä) klo jossakin Exactumin auditorioista. Korvaavaan kurssikokeeseen ilmoittaudutaan Oodissa (ilmoittautumisaika erilliskokeeseen päättyy klo 23:59) Seuraava erilliskoe on ke klo 10-14, johon ilmoittaudutaan Oodissa (ilmoittautumisaika erilliskokeeseen päättyy klo 23:59). Kurssikokeessa sallitut apuvälineet ovat 1) laskin sekä 2) lunttilappu. (MAOLtaulukoita ei sallita.) Lunttilapun pitää olla itse laadittu ja käsinkirijoitettu (eli ei tietokoneella tulostettu), eikä sillä ole muita rajoituksia kuin sen koko: yksi A4- kokoinen arkki (molemmat puolet saa käyttää). Korvaavassa kurssikokeessa ja erilliskokeissa (korvaa nyt siis korvaavan) saa käyttää laskinta. Korvaavassa kokeessa sallitut apuvälineet ovat samat kuin erilliskokeessa (ja samoin säädöksin kuin erilliskokeista) johtuen käytännön rajoitteista. Erilliskokeen tehtäväpaperin ohessa on kuitenkin minun (Petteri) laatima käsinkirjoitettu luntti. Tämän laitan ennen keskiviikkoa kurssisivulle nähtäväksi. Tämä hieman tasaa tilannetta. Koealue: 1. monisteen luvut kalvot sisältävät täsmennyksiä sekä Raon-Blackwellin lauseen luvussa 4 (ja pari korjaustakin, mutta myös pianovirheitä) joten niihinkin kannattaa perehtyä, vaikka asia löytyykin monisteesta 3. Harjoitukset H1A-H8B (myös kertaustehtäviä kannattaa katsoa, koska usein ne voivat sisältää tehtäviä, jotka ovat lähellä koetehtäviä)
2 Kokeitten arvostelusta Arvostelusta: käytän arvionnissa perusperiaatetta "palkitse onnistumisista, älä rankaise virheistä". Tämä tarkoittaa käytännössä, että 1. vaikka tehtävän ns. lopputulos olisi näennäisesti varsin "etäällä" optimisuorituksen lopputuloksesta, voi pisteitä tulla silti paljon. 2. Vastaavasti vaikka lopputulos olisikin oikea, niin onnistumisia voi olla vähänkin (esim. laskin antaa suoraan vastauksen). 3. Eli: kerro aina mitä olet tekemässä tai mitä mielestäsi tulisi tehdä :-) tämä kannattaa vaikka tehtävää et osaisikaan loppuun asti. Arvostelusta: tämä tosin hidastaa arvostelua ja arvostelen kaikki kokeet, joten aikaa menee muutama viikko arvosteluun. Laitan Presemoon väliaikatietoja, kuinka pitkällä tarkastus on milloinkin (prosentteina).
3 Kokeessa ei kysytä seuraavia asioita: Kokeessa ei kysytä seuraavia asioita: Lauseen todistus (mutta tulos että su-estimaattori on tarkentuva säännöllisille malleille tarvitaan kyllä :) ) Lauseen todistus (mutta tulos että su-estimaattori on asymptoottisesti normaalijakautunut säännöllisille malleille tarvitaan kyllä :) ) Ei niitä asioita, mitä ei varsinkaan harjoituksissa käsitelty... (tähän ehkä lisää)
4 Muuta lisätietoa kokeeseen valmistautumisesssa: Muuta lisätietoa kokeeseen valmistautumisesssa Seuraavat aiheet ovat esiintyneet usein kurssikokeissa / erilliskokeissa eri käsitteiden määritelmät ja selitykset tilastollisen mallin johtaminen (eli yptnf/ytf:n f_y selvittäminen) su-estimaatin tai su-estimaattorin selvittäminen perusteluineen su-estimaatti muunnokselle g(θ) kun su-estimaatti θ tiedetään su-estimaattorin asymptoottinen jakauma Fisherin informaation tai havaitun informaation laskeminen pistemäärän laskeminen momenttimenetelmä ja sen antamien estimaattorien määrääminen tyhjentävän tunnusluvun etsiminen parametrin g(θ) estimaattorin T osoittaminen harhattomaksi parametrin g(θ) estimaattorin T = T (n) estimaattorin osoittaminen tarkentuvaksi estimaattorin tehokkuuden määrääminen (eli informaatioey on tärkeä tietää) estimaattorin täystehokkuuden selvittäminen (mitä tarkoittaa täystehokkuus ja miten sen voi tarkistaa, kuten edellinen kohta) kahden estimaattorin paremmuuden vertailu (yleensä olettaen, että ne ovat harhattomia) Tämä liittyy tehokkuuteen ja keskineliövirheeseen Jonkin kolmesta testisuureesta (uskottavuusosamäärä, Waldin testisuure, Raon (pistemäärä)testisuure) johtaminen kriittisen alueen määrääminen ja nollahypoteesin testaus eri testisuureilla (tämä tarvii taulukkoja ja laskinta) luottamusjoukon tai -välin määrääminen (yleensä ei tarvita numeerista väliä eli laskin ei ole välttämätön) saranasuureet (mitä tarkoittaa, ja miten sen voi todeta (kertymäfunktio tiheysfunktio/pistetn-funktio))... (tähän lisää) kokeen yhteydessä on tarvittavat taulukot ja myös perustiedot kokeessa tarvittavista jakaumista
5 Kokeen aikana Tee laskuissa järkevyystarkistuksia: onko laskemani tn p välillä 0 p 1? (Tiedämme, että tapahtuman todennäköisyys toteuttaa tuon aina) onko laskemani varianssi tai Fisherin informaatio varmasti 0? (Varianssi on sm:n (X-EX)^2 odotusarvo, joten se on aina ei-negatiivinen ja apulauseen mukaan ainakin säännöllisen mallin Fisherin informaatio on pistemääräsm:n varianssi :) ) onko kovarianssimatriisi (esimerkiksi Fisherin informaatio) varmasti symmetrinen ja positiivisesti semidefiniitti? onko johtamani uskottavuusfunktio varmasti 0? Jos törmäät laskussa hankalaan kohtaan ja joudut aikapulaan, niin selosta koepaperissa, millä strategialla olet laskua laskemassa. Hyvästä strategiasta voi saada suuren osan jaossa olevista pisteistä. kysymyksiä voi (ja kannattaa tehdä) presemon kautta. Pidempiäkin vastauksia voin antaa (mitkä kirjoitan käsin (tai LaTeXilla), laitan kuvan Flingaan, tai laitan tiedoston sivulle ja kerron siitä presemossa)
Kertausluento. Tilastollinen päättely II - 2. kurssikoe
Kertausluento Tilastollinen päättely II - 2. kurssikoe Yleistä tietoa TP II -2. kurssikokeesta 2. kurssikoe maanantaina 6.5.2019 klo 12.00-14.30 jossakin Exactumin auditoriossa Kurssikokeeseen ilmoittaudutaan
LisätiedotKertausluento. Tilastollinen päättely II - 1. kurssikoe
Kertausluento Tilastollinen päättely II - 1. kurssikoe Yleistä tietoa TP II -1. kurssikokeesta 1. Kurssikoe on to 7.3 klo 12.00-14.30 (jossakin Exactumin auditorioista, salijako selvinnee tuolloin torstiana).
LisätiedotYleistä tietoa kokeesta
Yleistä tietoa kokeesta Kurssikoe on pe 27.10. klo 12.00-14.30 (jossakin auditorioista). Huomaa tasatunti! Seuraava erilliskoe on ke 1.11 klo 16-20, johon ilmoittaudutaan Oodissa (ilmoittautumisaika erilliskokeeseen
LisätiedotYleistä tietoa kokeesta
Yleistä tietoa kokeesta Kurssikoe on ma 18.12. klo 12.00-14.30 (jossakin auditorioista). Huomaa tasatunti! Seuraava erilliskoe on ke 10.1.2018 klo 10-14, johon ilmoittaudutaan Oodissa (ilmoittautumisaika
Lisätiedot3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin
3 Yleistä estimointiteoriaa Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3.1 Johdanto Tähän mennessä olemme tarkastelleet estimointia
Lisätiedot3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin
3 Yleistä estimointiteoriaa Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3.1 Johdanto Tähän mennessä olemme tarkastelleet estimointia
Lisätiedot3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
Lisätiedot5.7 Uskottavuusfunktioon perustuvia testejä II
5.7 Uskottavuusfunktioon perustuvia testejä II Tässä pykälässä pohditaan edellä tarkasteltujen kolmen testisuureen yleistystä malleihin, joiden parametri on useampiulotteinen, ja testausasetelmiin, joissa
LisätiedotTilastollinen päättely II (MAT22003), kevät 2018
Tilastollinen päättely II (MAT22003), kevät 2018 Petteri Piiroinen 14.1.2018 Tilastollinen päättely II -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Pakollinen
LisätiedotTässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä
LisätiedotTilastollinen päättely II (MAT22003), kevät 2019
Tilastollinen päättely II (MAT22003), kevät 2019 Petteri Piiroinen 13.1.2019 Tilastollinen päättely II -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Pakollinen
LisätiedotMS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Todennäköisyyslaskennan kertaus Satunnaismuuttujat ja tn-jakaumat Tunnusluvut χ 2 -, F- ja t-jakauma Riippumattomuus Tilastotieteen
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
LisätiedotMaximum likelihood-estimointi Alkeet
Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X
LisätiedotIlkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
LisätiedotTN-IIa (MAT22001), syksy 2017
TN-IIa (MAT22001), syksy 2017 Petteri Piiroinen 4.9.2017 Todennäköisyyslaskennan IIa -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Suositus: toisen vuoden
Lisätiedot6.1.2 Luottamusjoukon määritelmä
6.1.1 Johdanto Olemme tarkastelleet piste-estimointia: tavoitteemme oli etsiä tunnuslukuja t, joilla piste t(y) hyvä arvio mallin parametrille θ (tai sen muunnokselle g(θ)). Pelkän piste-estimaatin esittäminen
LisätiedotTilastollinen päättömyys, kevät 2017 Harjoitus 6B
Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen
LisätiedotEstimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
LisätiedotOsa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
LisätiedotGripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta
MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita
LisätiedotVäliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
LisätiedotHY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät Ratkaisuehdotuksia
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 14..2017 Ratkaisuehdotuksia 1. Olkoon θ positiivinen parametri, ja asetetaan 2θ 1 y exp y 2 /θ), kun y > 0 fy; θ) = 0, muuten
LisätiedotHY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia Tehtäväsarja I 1. Jatkoa Harjoitus 8A tehtävään 3. Muodosta odotusarvolle µ approksimatiivinen
LisätiedotJos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
LisätiedotABHELSINKI UNIVERSITY OF TECHNOLOGY
Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai
LisätiedotJohdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
Lisätiedot2. Uskottavuus ja informaatio
2. Uskottavuus ja informaatio Viimeksi käsittelimme uskottavuusfunktioita, log-uskottavuusfunktioita ja su-estimaatteja Seuraavaksi tarkastelemme parametrin muunnoksia ja kuinka su-estimaatit käyttäytyvät
LisätiedotJohdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
LisätiedotTilastollisia peruskäsitteitä ja Monte Carlo
Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia
Lisätiedot30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
LisätiedotNormaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
Lisätiedot4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
Lisätiedot5 Hypoteesien testaaminen
5 Hypoteesien testaaminen Seuraavaksi tutustumme tilastollisiin testeihin ja niihin liittyviin peruskäsitteisiin Esittelemme aluksi hypoteesit sekä testisuureet ja puhumme p-arvosta (eli havaitusta merkitsevyystasosta)
LisätiedotTilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
Lisätiedot2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
LisätiedotTN-IIa (MAT22001), syksy 2018
TN-IIa (MAT22001), syksy 2018 Petteri Piiroinen 4.9.2018 Todennäköisyyslaskennan IIa -kurssin asema opetuksessa Tilastotieteen opintosuunnassa pakollinen aineopintojen kurssi. Suositus: toisen vuoden syksyllä
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
LisätiedotTestejä suhdeasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman
LisätiedotJos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan
17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten
LisätiedotTodennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
LisätiedotTilastollinen päättely II, kevät 2017 Harjoitus 2A
Tilastollinen päättely II, kevät 07 Harjoitus A Heikki Korpela 3. tammikuuta 07 Tehtävä. (Monisteen tehtävä.3 Olkoot Y,..., Y n Exp(λ. Kirjoita vastaava tilastollisen mallin lauseke (ytf. Muodosta sitten
LisätiedotJohdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
Lisätiedotl (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka
Lisätiedottilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
Lisätiedotedellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾
ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos
LisätiedotYksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi
LisätiedotJohdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle
LisätiedotKoska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.
24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ
LisätiedotYksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
LisätiedotHarjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
LisätiedotTilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu
ilastollinen päättely 5.. Johdanto Estimointi, Joukkoestimointi, Kriittinen alue, uottamusjoukko, uottamustaso, uottamusväli, Otos, Parametri, Peittotodennäköisyys, Piste-estimointi, Väliestimaatti, Väliestimaattori,
LisätiedotTN IIa ja TN IIb yleistä keskustelua
TN IIa ja TN IIb yleistä keskustelua 10:03» Hei. Aloitin uuden keskustelun tälle vuodelle ja uudelle kurssille. Tervetuloa! 06:43» Hei, onko kurssin materiaali vielä saatavilla? Ymmärsinkö oikein että
LisätiedotTestit laatueroasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten
LisätiedotTilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
Lisätiedot5 Hypoteesien testaaminen
5 Hypoteesien testaaminen Seuraavaksi tutustumme tilastollisiin testeihin ja niihin liittyviin peruskäsitteisiin Esittelemme aluksi hypoteesit sekä testisuureet ja puhumme p-arvosta (eli havaitusta merkitsevyystasosta)
LisätiedotTilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1
Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet
LisätiedotOdotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
LisätiedotLisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
Lisätiedot3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4
Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ
LisätiedotParametrin estimointi ja bootstrap-otanta
Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista
LisätiedotTilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
Lisätiedot1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa
LisätiedotJohdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
LisätiedotSallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa
Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II. kurssikoe 18.1.15 Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa
LisätiedotP(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu
1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotMAB2 Geometria, Opintokortti. Nimi:
MAB2 Geometria, Opintokortti Nimi: Minimivaatimukset kurssin suorittamiseksi: Vihkoon on laskettu laadukkaasti vähintään 50 tehtävää Opiskelija palauttaa viimeistään kokeeseen o Opintokortin täytettynä
LisätiedotTilastolliset menetelmät. Osa 1: Johdanto. Johdanto tilastotieteeseen KE (2014) 1
Tilastolliset menetelmät Osa 1: Johdanto Johdanto tilastotieteeseen KE (2014) 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä ja malleja, joiden avulla reaalimaailman ilmiöistä voidaan
LisätiedotIlkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset
LisätiedotTilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
LisätiedotSallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
Lisätiedot11. laskuharjoituskierros, vko 15, ratkaisut
11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa
LisätiedotTentissä ratkaistaan neljä ohjelmointitehtävää Javalla. Tentti kestää kolme tuntia.
Tentti Tentti Tentissä ratkaistaan neljä ohjelmointitehtävää Javalla. Tentti kestää kolme tuntia. Tule paikalle viimeistään noin 20 minuuttia ennen tentin alkua, koska tentti pyritään aloittamaan tasalta.
Lisätiedot2. Uskottavuus ja informaatio
2. Uskottavuus ja informaatio Aluksi käsittelemme uskottavuus- ja log-uskottavuusfunktioita Seuraavaksi esittelemme suurimman uskottavuuden estimointimenetelmän Ensi viikolla perehdymme aiheeseen lisääkö
LisätiedotTutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
Lisätiedot1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
LisätiedotMTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
LisätiedotSisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4
Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9
Lisätiedot¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.
10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn
LisätiedotTilastollinen päättömyys, kevät 2017 Harjoitus 5b
Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy
LisätiedotMTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
LisätiedotMATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2019 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
LisätiedotAkateemiset taidot. Tapaaminen 11
Akateemiset taidot Tapaaminen 11 Kurssikokeet Muista ottaa mukaan kirjoitusvälineet ja opiskelijakortti tai henkilöllisyystodistus Koepaperiin tulee laittaa oma nimi, opiskelijanumero, kurssin nimi, päivämäärä
LisätiedotJohdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
LisätiedotMAY1 Luvut ja lukujonot, opintokortti
MAY1 Luvut ja lukujonot, opintokortti Nimi: Minimivaatimukset kurssin suorittamiseksi: Vihkoon on laskettu laadukkaasti vähintään 50 tehtävää. Opiskelija palauttaa viimeistään kokeeseen o Opintokortin
LisätiedotIlkka Mellin Aikasarja-analyysi Suurimman uskottavuuden menetelmä
Ilkka Mellin Aikasarja-analyysi Suurimman uskottavuuden menetelmä TKK (c) Ilkka Mellin (2007) 1 Suurimman uskottavuuden menetelmä >> Suurimman uskottavuuden estimointimenetelmä Tarkentuvuus Asymptoottinen
Lisätiedot2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet
Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04
Lisätiedot2. Teoriaharjoitukset
2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien
LisätiedotEstimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
LisätiedotAalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,
Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 017 Laskuharjoitus 4, Kotitehtävien palautus Mycourses:iin PDF-tiedostona
LisätiedotSisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...
Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13
Lisätiedoto Ohjeet annetaan kurssin aikana. MAY1 Luvut ja lukujonot, Opintokortti
MAY1 Luvut ja lukujonot, Opintokortti Nimi: Minimivaatimukset kurssin suorittamiseksi: Vihkoon on laskettu laadukkaasti vähintään 50 tehtävää. Opiskelija palauttaa viimeistään kokeeseen o Opintokortin
LisätiedotYksilöllisen oppimisen menetelmä. Ville Aitlahti, @matikkamatskut, www.matikkamatskut.com
Yksilöllisen oppimisen menetelmä Yksilöllisen oppimisen menetelmä Tarve menetelmän takana: http://youtu.be/dep6mcnbh_c Oman oppimisen omistaminen Opettajan tietyt raamit toiminnalle Oman oppimisen omistaminen
Lisätiedot