Varauksensiirto-siirtymä

Koko: px
Aloita esitys sivulta:

Download "Varauksensiirto-siirtymä"

Transkriptio

1 Vaauksensiito-siitymä LMCT vaauksen siito ligandilta metallille MLCT vaauksen siito metallilta ligandille

2 Väähtelyspektoskopia Klassisen mekaniikan mukainen malli kaksiatomiselle molekyylille: Hooken laki: A Hamoniselle liikkeelle: = µ m A m B B f = -kδ = -k- e d x µ dt = -kx x = - e Ratkaisu: => x = x 0 cos πνt-t 0 n = Þ p => Kaksiatomisen molekyylin potentiaalienegia: V = ½kx k µ ~ n = = l pc k µ

3 Molekyylin väähtelyt kvantittuneita: E = hνn½ Epähamooninen väähtely: Hamooninen väähtely: E Mose-potentiaali: V = e -e -ax ν = ν = ν = 0 Molekyyliväähtelyjen havaitseminen IR-absoptio - Atomien väähtelyliike voi johtaa molekyylin vaausjakauman muuttumiseen => oskilloiva dipoli - Oskilloivan dipolin vuoovaikutus sähkömagneettisen säteilyn kanssa ν e = ν => IR-absoptio - IR-absoptio iippuu väähtelyn symmetiasta Raman-sionta - Viittävän säteilyn taajuus ν e suuempi kuin molekyylin väähtelytaajuudet => viittyminen vituaalitilalle - Paluu viitetylle väähtelytilalle - Raman-sionta iippuu myös väähtelyn symmetiasta

4 Vituaalitilat ν ν 0 IR-absoptio Rayleighsionta Stokessionta Anti-Stokessionta Peusväähtelyjen lukumäää Esimekki H O - Molekyylissä N atomia => 3N vapausastetta - Ulkoisesta liikkeestä johtuvat vapausasteet: Tanslaatio 3 vapausastetta Rotaatio - taipunut molekyyli 3 vapausastetta - lineaainen molekyyli vapausastetta => Väähtelyvapausasteet: Taipunut molekyyli 3N-6 Lineaainen molekyyli 3N-5

5 Väähtelyspektoskopia ja aktiivisuus Valintasäännöt: E = hνn½ - sallitut siitymät: Δn = - täkein siitymä: n = 0 IR-aktiivisuus z Raman-aktiivisuus = αe indusoitu dipolimomentti polaisoituvuus ulkoinen sähkökenttä x μ z μ x μ μ y μ = μ x μ y μ z y æ æ x ö a ç ç çy = ça ç ç è z ø èa xx yx zx a a a xy yy zy a ö xz æex ö ç a yz çey a ç zz øè Ez ø Þ æ a ö ç ¹ 0 è ø Esimekki CS -molekyylissä

6 Väähtelyspektien tulkinta Ryhmäväähtelyt - Absoptioemissiohuippu voidaan tulkita johtuvaksi tietyistä funktionaalisista yhmistä Esimekki >C=O ~ - n = 600 cm - ± 50 cm Esimekki CH 3 - ~ n d d CH HCH HCH» cm -» cm» cm symm. ja asymm. - - asymm. symm. Koodinaation vaikutus ligandin väähtelyspektiin Esimekki N,N-dimetyyliasetamidi Esimekki MSO O Me O Me C N C N Me Me Me Me ~ - ~ CO = 66 cm Huom! n = CO n 75 cm - Me Me S - O Me Me S O => Happi-koodinaatio M-O ja O-C kytkeytyminen C-O-sidoksen hybidisaatiomuutokset 3 π-elektonitiheyden luovuttaminen => Happi-koodinaatio [CMSO 6 ] - Koodinaatio hapen välityksellä [PtCl MSO ] ~ n ligandi < ~ SO n SO ~ n ligandi > SO n SO MSO MSO - Koodinaatio ikin välityksellä

7 Ryhmäväähtelynkäsitteen ajoitukset - Monimutkaisissa molekyyleissä ei yhmäväähtelyt ovat samalla alueella - unktionaalisten yhmien väähtelyt eivät ole toisistaan iippumattomia Esimekki HCN - Peusväähtelyjä 4 kpl ν HC ja ν CN kytkeytyvät keskenään Peustelu: HCN: ~ - ~ - n CN = 089 cm n HC = 33 cm CN: ~ cm ~ - n = n = 69 cm CN C Peusväähtelyjen aktiivisuuden luokittelu Esimekki CO 3 - Identiteetti, E X Y Z X Y Z X 3 Y 3 Z 3 X 4 Y 4 Z 4 X Y Z X Y Pisteyhmä: 3h Symmetiaopeaatiot: - E, C 3, 3C, σ h, S 3, 3σ v Z X Y Z X Y Z ΧE =

8 Kietoakseli, C 3 æ ç cos ç 3 ç p - sin è 3 p p ö sin 3 æ X ç p cos è Y 3 ø ö æ X = ç ø è Y ö ø X Y = - = X 3 X - 3 Y - Y X Y Z X Y Z X 3 Y 3 Z 3 X 4 Y 4 Z 4 X ½ - 3/ Y / -½ Z X ½ - 3/ Y / -½ Z X 3 -½ - 3/ Y 3 3/ -½ Z X ½ - 3/ 0 Y / -½ 0 Z ΧC 3 = 0

9 Kietoakseli, C X Y Z X 4 Y 4 Z 4 X 0 0 Y 0-0 Z X Y Z ΧC = - Hoisontaali peilitaso, σ h Vetikaali peilitaso, σ v X i Y i Z i X i 0 0 Y i 0 0 Z i Χσ h = 4 Kietoheijastusakseli, S 3 - iagonaalielementit atomeille -3: 0 - Atomi 4 C: X 4 Y 4 Z 4 X 4 -½ - 3/ 0 Y 4 3/ -½ 0 Z X Y Z X 4 Y 4 Z 4 X 0 0 Y 0-0 Z 0 0 X Y Z Χσ v = => Redusoituva esitys: 3h E C 3 3C σ h S 3 σ v Γ ΧS 3 = -

10 Γ = A A 3E A E - Poistetaan 3 tanslaatiovapausastetta: E ja A - Poistetaan 3 otaatiovapausastetta: A ja E ÞVäähtelyvapausasteet: Þ Γ = A E A Polaisoituneet ja depolaisoituneet Raman-väähtelyt - Sionnan aikana säteilyn polaisaatio voi muuttua - Raman-huipun polaisaatiosuhde: ρ = I / I - Suuin ρ max vittaa polaisoituneeseen huippuun - Polaisoituneiden huippujen depolaisaatiosuhteet ovat eisuuet - Täysin symmetisestä väähtelystä seuaa polaisoitunut - Epäsymmetisestä väähtelystä seuaa depolaisoitunut huippu. Esimekki C 5 H 5 SiH 3

11 Esimekki S 4 C C 3 C v T d C 3v

12 C v T d C 3v Kok. IR 84A, B, B T 63A, 3E 57 Raman 94A, A, B, B 4A, E, T 63A, 3E 58 Pol. 44A A 33A Johtopäätöksiä: - T d akenne ei ole mahdollinen - C v :a ja C 3v :a ei voi selvästi eottaa toisistaan Esimekki [As 6 ] - Koodinoitumaton ioni: Pisteyhmä: O h : Γ vib = A g E g T g T u T u

13 Koodinoitunut [As 6 ] - : Nomaalikoodinaattianalyysi Spektin tulkintaa vaikeuttavia tekijöitä: - väähtelyjen degeneaatio - väähtelyjen aaltolukualue - väähtelyjen matala intensiteetti - yli- ja yhdistelmäväähtelyt - emi-esonanssi Nomaalikoodinaattianalyysi: - klassisen mekaniikan mukainen moniatomiväähtelijä - potentiaalikenttä: esim. valenssivoimakenttä Uey-Badley voimakenttä

14 - Nomaalikoodinaattilaskujen kantana toimii 3N-6 3N-5 sisäistä koodinaattia - Molekyylin peusväähtelyt ovat sisäisten koodinaattien lineaaikombinaatioita - Sekulaaideteminantti: E kin n - G = 0 - G - l - n l n nn - G - G -G - l = 0 G -E l = 0 - n - nn l l λ = 4π ν E pot G G n G G n nn n n nn 0 - l = 0 0 Esimekki H O L L L θ 3N-6 = 3 sisäistä koodinaattia = æ ç ç ç è G -E l L = 0 Sekulaaideteminantin atkaisu: ij ovat ainoita tuntemattomia Peusongelma: - 9 tuntematonta, 3 peusväähtelyä Ratkaisu: - isotooppinen substitutio - yksinketaisempi voimakenttä ö ø A B ψ = NL L N L θ ψ = NL θ N L L ψ 3 = / L -L N >> N

15 Esimekki,,3-Se 3 S 5 Valmistus: [TiCp S 5 ] [TiCp Se 5 ] S Cl Se Cl S 7,-Se S 5,,3,4,5-Se 5 S Se 7 R. Steudel, M. Papavassiliou, E.-M. Stauss, R. Laitinen, 984. [TiCp Cl ] R. Steudel, E.-M. Stauss, 984. [TiRCp Se TiRCp ] S Cl,,5,6-Se 4 S 4 [TiRCp Cl ].M. Giolando, M. Papavassiliou, J. Pickadt, T.B. Rauchfuss, R. Steudel, 988. Me3SiSe SeS5Cl,,3-Se3S5 Me3SiCl Me3SiS SeS5Cl,3-SeS6,-SeS6 Me3SiCl P.Pekonen, J. Taavitsainen, R. Laitinen, 994. Raman-spekti -0 oc: - K-lase

16 ,,3-Se 3 S 5 : - Kideakenne on epäjäjestynyt - Tunnetaan S 8 ja Se 8 SS = 05 pm α S = 08 o τ = 0 o SS = 35 pm α S = 06 o τ = 0 o SS = 05 pm, SeSe = 35 pm, SeS = 0 pm α S = 08 o α Se = 06 o τ = 97 o Uey-Badley voimakenttä: å å å å å å å å å å å å å å å å å å å å = C C P P Y Y H H H H K K K K K K t t a a a a V Yksinketaistus: - i = -0, i ; C = -0,C. - K i, H i ja Y häviävät, kun poistetaan koodinaatit i = i,α,τ Itsenäisiä UB-voimavakioita: K SeSe, K SeS, K 3 SS H α Se, H α S, Yτ P -Se-, P -S-, Se o Se, Se o S, 3 S o S, Co o o o

17 ,,3-Se 3 S 5 :n peusväähtelyt: - Pisteyhmä: C s - Peusväähtelyjen esitys: Γ vib = 0A 8 A - Esitys A : 4 kpl ν ν SeSe, ν SeS, ν SS 5 kpl δ δ SeSeSe, δ SeSeS, δ SeSS, δ SS kpl τ - Esitys A : 4 kpl ν ν SeSe, ν SeS, ν SS 5 kpl δ δ SeSeS, δ SeSS, δ SS kpl τ - Lasketaan peusväähtelyt alustavilla voimavakioilla - Sovitetaan lasketut väähtelyt havaittuihin hienontamalla voimavakioita pienimmäin neliösumman menetelmällä Alustavat UB-voimavakiot: - S 8 : K SS =,89; H S = 0,08, Y = 0,0, P S = 0,9, SS = 0,6, C = 0,07 - Se 8 : K SeSe =,34; H Se = 0,0, Y = 0,0, P Se = 0,3, SeSe = 0,, C = 0,07 =>,,3-Se 3 S 5 : K =,34; K =,6; K 3 =,89; H = 0,0; H = 0,08; Y = 0,07; P = 0,3; P = 0,9; = 0,; = 0,4; 3 = 0,9; C = 0,07

18 Havaittu Laskettu Eo Tulkinta 465 s 46/47 3/-6 A, A νss 45 w 449 A νss 47 w 47 0 A νss 379 vw s 36/36 0/0 A, A νses 63 vs 63 0 A νsese 5 m 4 A δ 35 vw 35 0 A νsese 7 w 9 - A δ 98 vs 0 - A δ 79 w 73 6 A δ 54 m 58-4 A δ 37 m 39 - A δ 4 s 4 0 A δ 06 s 05 A δ 79 sh 4733 hilaväähtelyt 69 m 70/64 -/5 A, A τ 47 s hilaväähtelyt 33 s hilaväähtelyt

19 Tulosten luotettavuus: Valenssivoimavakio,,3-Se 3 S 5 S 8 Se 8 f SeSe,78,70 f SeS,96 f SS,-,7,4 f α Se 0,5-0,7 0,7 f α S 0,-0,4 0,5 f τ 0,03-0,04 0,03 0,03 [Me 3 Si N] E E = S, Se, Te Me3SiNH n-buli EtO S4N4 Se4N4 Me3SiNLi SCl SCl S4N SCl SeCl TeCl4 3 SCl SOCl ECl3 S3NCl SCl ECl4 SeSNCl [Me3SiN]E E = S, Se, Te SeSNCl Se3NCl ECl.5 ECl3 SeSNCl Se3NCl TeSNCl

20 S4N4: [Me3SiN]S SCl SOCl / S4N4 SO 4 Me3SiCl Yield: 95 % 4 N NMR: -57 ppm A. Maaninen et al., 999. Se4N4: [Me3SiN]Se SeCl4 / Se4N4 4 Me3SiCl Yield: 7 % J. Siivai et al., 993. Pepaation of,5-se S N4 Me 3 Si Me 3 Si N Me 3 Si N Me 3 Si S Maaninen, A., Laitinen, R.S., Chives, T., Pakkanen, T.A., Inog. Chem. 999, 38, CS /CH Cl SeCl 4 ½,5-Se S N 4 4 Me 3 SiCl -70 C,5-SeSN4 N4 3. E N N E4 N E N 3. E3 N4

21 Se S N 4 : NMR spectoscopy Se Se Se S N N N N N N N N S S Se S 4 N NMR 77 Se NMR N SeOa SeSN4-38 ppm SeSN4 48 ppm ppm ppm Raman specta of S 4 N 4 and,5-se S N4 S 4 N 4 Se S N 4 d : IR 3b ja 4e Raman 3a, b, 3b, 4e C v : IR 6 a, 4b ja 4b Raman 6a, 4a, 4b, 4b

22

Symmetrialuokat. Esimerkki Pisteryhmä C 3v E C 3 C 3. σ v σ v σ v. C3v E C 3 C E E C 3 C C 3 C 3 C. σ v σ v σ v σ v E C 3 C.

Symmetrialuokat. Esimerkki Pisteryhmä C 3v E C 3 C 3. σ v σ v σ v. C3v E C 3 C E E C 3 C C 3 C 3 C. σ v σ v σ v σ v E C 3 C. Smmetrialuokat Pisterhmän elementit kuuluvat samaan luokkaan, Jos jokin rhmän operaatioista muuttaa ne keskenään toisikseen : P R - Q R missä P, Q, R kuuluvat samaan pisterhmään P, Q kuuluvat samaan luokkaan

Lisätiedot

M Pv + q = 0, M = EIκ = EIv, (EIv ) + Pv = q. v(x) = Asin kx + B cos kx + Cx + D + v p. P kr = π2 EI L n

M Pv + q = 0, M = EIκ = EIv, (EIv ) + Pv = q. v(x) = Asin kx + B cos kx + Cx + D + v p. P kr = π2 EI L n ÄÙ Ù ½ ËØ Ð Ù Ú Ó Ó ÐÑ ½º½ ÈÙÖ Ø ØØÙ Ø ÚÙØ ØØÙ ÙÚ Ì Ô ÒÓ ÓØ Q v + q =, M = Q, ½º½µ ÑÑÓ ÐÐ ÙÚ ÐÐ M v + q =, M = EIκ = EIv, (EIv ) + v = q. ½º¾µ ½º µ ½º µ EI = Ú Ó ÆÙÖ Ù ÚÓ Ñ v (4) + k v = q EI, k = EI,

Lisätiedot

pääkiertoakseli #$%%ä 2C 2 C 2!"

pääkiertoakseli #$%%ä 2C 2 C 2! Tehtävä 1 Määritä seuraavien molekyylien pisteryhmät: (a) H 3 N H 3 N l o l NH 3 + NH 3 urataan lohkokaaviota: lineaari!"!" suuri symmetria 2s v #$%%ä 2v!" pääkiertoakseli #$%%ä 2 2 2!" s h Vastaavasti:

Lisätiedot

Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien

Lisätiedot

Ch9 Sisäiset Spinvuorovaikutukset. Molekyylin sisäisten spinvuorovaikutusten tarkempaa pohdiskelua

Ch9 Sisäiset Spinvuorovaikutukset. Molekyylin sisäisten spinvuorovaikutusten tarkempaa pohdiskelua Ch9 Sisäiset Spinvuorovaikutukset Molekyylin sisäisten spinvuorovaikutusten tarkempaa pohdiskelua Kemiallinen siirtymä Molekyylien elektroniverho aiheuttaa paikallisen modulaation ulkoisiin kenttiin. Modulaatio

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Valon sironta - ilmiöt ja mallinnus. Jouni Mäkitalo Fysiikan seminaari 2014

Valon sironta - ilmiöt ja mallinnus. Jouni Mäkitalo Fysiikan seminaari 2014 Valon sironta - ilmiöt ja mallinnus Jouni Mäkitalo Fysiikan seminaari 2014 Sisältö Johdanto Sironnan sähkömagneettinen mallinnus Analyyttinen sirontateoria Sironta ei-pallomaisista hiukkasista Johdanto

Lisätiedot

MO-teoria ja symmetria

MO-teoria ja symmetria MO-teora ja symmetra () Kaks atomorbtaaa vovat muodostaa kaks moekyyorbtaaa - Stova orbtaa - ajottava orbtaa () Atomorbtaaen energoden otava keskenään samansuurusa () Atomorbtaaen symmetravaatmukset LCAO

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

Teddy 1. harjoituksen malliratkaisu kevät 2011

Teddy 1. harjoituksen malliratkaisu kevät 2011 Teddy 1. harjoituksen malliratkaisu kevät 2011 1. Dipolimomentti voidaan määritellä pistevarauksille seuraavan vektoriyhtälön avulla: µ = q i r i, (1) i missä q i on i:nnen varauksen suuruus ja r i = (x

Lisätiedot

Esimerkki 1 Ratkaise differentiaaliyhtälö

Esimerkki 1 Ratkaise differentiaaliyhtälö Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: S d S Q sis Gaussin laki peustuu siihen, että suljetun pinnan läpi

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

TENTISSÄ KÄYTETTÄVÄ KAAVAKOKOELMA KURSSILLE Tilastollinen laadunvalvonta

TENTISSÄ KÄYTETTÄVÄ KAAVAKOKOELMA KURSSILLE Tilastollinen laadunvalvonta TENTISSÄ KÄYTETTÄVÄ KAAVAKOKOELMA KURSSILLE Tilastollie laauvalvota Shewharti muuttujakartat ARL I = α ARL II = β x-kartta x = x + + x Ex =µ ja Vx = µ ± k Φx = π x e t t α = Φk β =Φk Φ k S-kartta S = x

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

= ωε ε ε o =8,853 pf/m

= ωε ε ε o =8,853 pf/m KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys

Lisätiedot

a) Jos törmäysten määrä sekunnissa on f = s 1 ja jokainen törmäys deaktivoi virityksen, niin viritystilan keskimääräinen elinikä on

a) Jos törmäysten määrä sekunnissa on f = s 1 ja jokainen törmäys deaktivoi virityksen, niin viritystilan keskimääräinen elinikä on KEMA225 syksy 2016 Demo 6 Malliratkaisut 1. Törmäyksistä johtuva viivan levenemä on muotoa δe = h τ, (1) jossa τ on viritystilan keskimääräinen elinaika. Tämä tulos löytyy luentoslaideista ja Atkinsista

Lisätiedot

Infrapunaspektroskopia

Infrapunaspektroskopia ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista

Lisätiedot

MNQT, kl Ryhmäteoria

MNQT, kl Ryhmäteoria MNQT, kl 2010 59 5. Ryhmäteoria Ottamalla huomioon ratkaistavan systeemin symmetriaominaisuudet päästään yleensä tarkasteluissa ja ratkaisemisessa vähemmällä työllä. Erityisesti silloin, jos kvalitatiivinen

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

JULKISEN HALLINNON DIGITAALISEN TURVALLISUUDEN JOHTORYHMÄN SIHTEERISTÖN (VAHTI-sihteeristö) JA ASIANTUNTIJAJAOSTON ASETTAMINEN

JULKISEN HALLINNON DIGITAALISEN TURVALLISUUDEN JOHTORYHMÄN SIHTEERISTÖN (VAHTI-sihteeristö) JA ASIANTUNTIJAJAOSTON ASETTAMINEN Asettamispäätös ÊÓñîïëëñððòðïòððòðïñîðïê Ö«µ ÝÌó± ± ïòíòîðïé Ö«µ ²»² JULKISEN HALLINNON DIGITAALISEN TURVALLISUUDEN JOHTORYHMÄN SIHTEERISTÖN (VAHTI-sihteeristö) JA ASIANTUNTIJAJAOSTON ASETTAMINEN Ê ±ª

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Mateiaalifysiikka (5op), kevät 2016 Pof. Matti Puska Lehtoi Emppu Salonen DI Tomi Ketolainen DI Ville Vieimaa Luento 2, tostai 17.3.2016 1 Mitä on mateiaalifysiikka? paljon (~ 10 25 ) hiukkasia

Lisätiedot

Tilavuusintegroin3. Tilavuusintegroin3

Tilavuusintegroin3. Tilavuusintegroin3 /5/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x,y,z)dxdydz z 2 # y 2 # x 2 & & = % % f(x,y,z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa

Lisätiedot

Hiilen ja vedyn reaktioita (1)

Hiilen ja vedyn reaktioita (1) Hiilen ja vedyn reaktioita (1) Hiilivetyjen tuotanto alkaa joko säteilevällä yhdistymisellä tai protoninvaihtoreaktiolla C + + H 2 CH + 2 + hν C + H + 3 CH+ + H 2 Huom. Reaktio C + + H 2 CH + + H on endoterminen,

Lisätiedot

Infrapunaspektroskopia

Infrapunaspektroskopia ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista

Lisätiedot

Fysikaalinen kemia II kaavakokoelma, osa 1

Fysikaalinen kemia II kaavakokoelma, osa 1 Fysikaalinen kemia II kaavakokoelma, osa 1 Wienin siirtymälaki: T λ max = 0.2898 cm K (1) Stefan Boltzmanin laki: M = σt 4 σ = 5.67 10 8 W m 2 K 4 (2) Planckin jakauma ρ = 8πkT λ 4 ( 1 ) e hc/λkt 1 (3)

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

E d f = 1 ε 0. E d r = t A. E d f

E d f = 1 ε 0. E d r = t A. E d f Ö ÍÒ Ú Ö ØØ ÖÐ Ò Ö È Ý Ë Ñ Ò Ö ¾¼½ ¼ Ë ËË ¾¼¼ ÜÔ Ö Ñ ÒØ ÐÐ Ä Ö Ñ Ò Ö Æ ØÐ Ò Ö ÇÔØ ÙÒ ÍÐØÖ ÙÖÞÞ Ø Ô ØÖÓ ÓÔ ÒÛ Ò ÙÒ Ò ÓÐÓ Ò ËÝ Ø Ñ Ò ÓÞ ÒØ ÈÖÓ º Öº Ã Ö Ø Ò À ÝÒ Ï ÐÛ Ö ÙÒ ÚÓÒ Å Ø Ö Ñ Ø Ð ØÖÓÑ Ò Ø Ò Ð ÖÒ

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

40 LUKU 3. GAUSSIN LAKI

40 LUKU 3. GAUSSIN LAKI Luku 3 Gaussin laki 3.1 Coulombin laista Gaussin lakiin Takastellaan pistemäisen vaauksen q aiheuttamaa sähkökenttää, joka noudattaa yhtälöä (1.1). Tämän sähkökentän vuo etäisyydellä olevan pienen pintaelementin

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

LCAO-menetelmä Tämä on lyhyt johdanto molekyylien laskentaan LCAO-menetelmällä.

LCAO-menetelmä Tämä on lyhyt johdanto molekyylien laskentaan LCAO-menetelmällä. LCAO-menetelmä Tämä on lyhyt johdanto molekyylien laskentaan LCAO-menetelmällä. LCAO-menetelmä on yleisin molekyylien elektoniakenteen laskemiseen kehitetyistä numeeisista menetelmistä. Se on laajalti

Lisätiedot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Valo-oppi. Välineet. Polarisoituneen valon intensiteetti. Kokeessa todennetaan Malusin laki.

Valo-oppi. Välineet. Polarisoituneen valon intensiteetti. Kokeessa todennetaan Malusin laki. Polaisoituneen n intensiteetti Kokeessa todennetaan Malusin laki. Polaisoimaton Polaisoitu x Polaisoitu Koe 1 Polaisoituneen n intensiteetin tutkiminen luksimittailla (39016). Koe 2 Polaisoituneen n intensiteetin

Lisätiedot

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa

Lisätiedot

Luku 15: Magneettinen resonanssi

Luku 15: Magneettinen resonanssi Luku 15: Magneettinen resonanssi Ytimen ja elektronin vuorovaikutus ulkoisen magneettikentän kanssa: magneettinen momentti ja energiatilat Ydinmagneettinen resonanssi, NMR (nuclear magnetic resonance)

Lisätiedot

Koordinaatiston muunnokset. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista)

Koordinaatiston muunnokset. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista) Koodinaatiston muunnokset Kai Tammi, Tommi Lintilä (Janne Ojalan kalvoista) Monikappalesimulointikussi Olisitko kiinnostunut käymään kussin Kon-16.411 Monikappalesimulointi? Kussi jäjestettiin viimeisen

Lisätiedot

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n, S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion

Lisätiedot

Materiaalien mekaniikka

Materiaalien mekaniikka Materiaalien mekaniikka 3. harjoitus jännitys ja tasapainoyhtälöt 1. Onko seuraava jännityskenttä tasapainossa kun tilavuusvoimia ei ole: σ x = σ 0 ( 3x L + 4xy 8y ), σ y = σ 0 ( x L xy + 3y ), τ xy =

Lisätiedot

Tilavuusintegroin3. Tilavuusintegroin3 3/19/13. f(x, y, z)dxdydz. ρ(x,y,z) = x 2 + y 2 + z 2 (kg) Ratkaisu: ρ(x,y,z)dxdydz

Tilavuusintegroin3. Tilavuusintegroin3 3/19/13. f(x, y, z)dxdydz. ρ(x,y,z) = x 2 + y 2 + z 2 (kg) Ratkaisu: ρ(x,y,z)dxdydz /9/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x, y, z)dxdydz z 2 # y 2 # x 2 & & = % % f(x, y, z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt

Lisätiedot

780392A/782631S Fysikaalinen kemia II, 5 op / 4 op

780392A/782631S Fysikaalinen kemia II, 5 op / 4 op 78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto

Lisätiedot

Opiskelijan pikaopas STACK-tehtäviin. Lassi Korhonen, Oulun yliopisto

Opiskelijan pikaopas STACK-tehtäviin. Lassi Korhonen, Oulun yliopisto Opiskelijan pikaopas STACK-tehtäviin Lassi Korhonen, Oulun yliopisto 21.3.2016 SISÄLLYSLUETTELO Oppaan käyttäminen... 2 Vastauksen syöttämisen perusteet... 2 Operaatiot... 2 Luvut ja vakiot... 3 Funktiot...

Lisätiedot

p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2

p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2 º ÅÓÒ ÙÐÓØØ Ø Ö ÒØ Ð Ð ÒØ º½ Â Ø ÙÚÙÙ Ó ØØ Ö Ú Ø Ø Ù Ò ÑÙÙØØÙ Ò ÙÒ Ø Ó Ò Ö ÒØ Ð Ð ÒØ ÐÑÔ Ø Ð ÓÒ Ò Ô Ò ÙÒ Ø Ó T(x, y, z.t) ÄÑÔ Ø Ð Ö ÒØØ ÐÑÓ ØØ Ñ Ò ÙÙÒØ Ò ÐÑÔ Ø Ð Ú ÚÓ Ñ ÑÑ Ò Ù Ò Ð ÐÑÔ Ø Ð Ö ÒØØ ½½ ÃÓÓÖ

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis 763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin.

Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin. GAUIN LAKI IÄLTÖ: Gaussin lain integaalimuoto Gaussin lain diffeentiaalimuoto Menetelmän valinta sähkökentän laskemisessa ähkökentän voivat aiheuttaa vaaukset tai muuttuva magneettikenttä. Tässä kappaleessa

Lisätiedot

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 2 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 2011 3-3 Ydinmagneettinen resonanssi NMR-spektroskopiassa (NMR = Nuclear

Lisätiedot

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016 Tapio Hansson 20. lokakuuta 2016 Milloin säteily on ionisoivaa? Milloin säteily on ionisoivaa? Kun säteilyllä on tarpeeksi energiaa irrottaakseen aineesta elektroneja tai rikkoakseen molekyylejä. Milloin

Lisätiedot

x (t) = f(x(t)) u B δ (p) = ϕ t (v) = p, v B d (p) = lim e t AT e t A dt W =

x (t) = f(x(t)) u B δ (p) = ϕ t (v) = p, v B d (p) = lim e t AT e t A dt W = Á Ê ÆÌÁ ÄÁ ÀÌ Ä Ë ËÌ ÅÁÌ º Ì Ô ÒÓÔ Ø Ø Ø Ð ÙÙ Ì ÐÙÚÙ Ø ÑÑ Ö ÒØ Ð Ý ØÐ Ò Ø Ô ÒÓÖ Ø Ù Ò Ø Ð ÙÙ Ø Ö Ø ÐÙ¹ ÒÝØ ÔÐ Ò Ö ÐÐ Ý Ø Ñ ÐÐ º ÌÐÐ ÓÚ Ø Ñ Ö ÐÙÖ Ý Ø Ñ ÐÐ Ô ÐÐ Ò ÔÝ ØÝ ÙÓÖ Ò Ó Ó Ð Ø ÝÐ Ô Ò ÓÐ Ú ÐÙÖ º ÂÓ

Lisätiedot

KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018

KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018 Vastaukset palautetaan htenä PDF-tiedostona Courses:iin 1.3. klo 1 mennessä. ahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. askuharjoitus 1. Selitä seuraavat käsitteet:

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾. 24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia

Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia 10. Toisen asteen käyrien ja pintojen geometriaa 10.1. Ympyrän ja pallon ominaisuuksia 446. Minkä käyrän muodostavat ne tason E 2 pisteet, joista pisteitä ( a,0) ja (a,0) yhdistävä jana (a > 0) näkyy 45

Lisätiedot

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A = Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 211 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 ja B = 2 1 6 3 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A. 2. Laske seuraavat determinantit

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)

Lisätiedot

Scalar diffraction and vector diffraction using Fourier analysis. Yasuhiro Takaki. Tokyo University of Agriculture & Technology. Faculty of Technology

Scalar diffraction and vector diffraction using Fourier analysis. Yasuhiro Takaki. Tokyo University of Agriculture & Technology. Faculty of Technology Scalar diffraction and vector diffraction using Fourier analysis Yasuhiro Takaki Faculty of Technology Maxwell RCWA : F F I G G ; Maxwell! " # $ % & ' ( ) * +, -. / 0. 1 ' 2 3 $ 4 5 6 7 8 9, : ; < = >

Lisätiedot

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi Luku 14: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien

Lisätiedot

5.7 Uskottavuusfunktioon perustuvia testejä II

5.7 Uskottavuusfunktioon perustuvia testejä II 5.7 Uskottavuusfunktioon perustuvia testejä II Tässä pykälässä pohditaan edellä tarkasteltujen kolmen testisuureen yleistystä malleihin, joiden parametri on useampiulotteinen, ja testausasetelmiin, joissa

Lisätiedot

Word Taulukko-ominaisuus

Word Taulukko-ominaisuus Word Taulukko-ominaisuus Koulutusmateriaalin tiivistelmä 17.3.2014 JAO Seuranen Valtteri Valtteri Seuranen Tehtävä 1[1] Sisällys Taulukon luominen Word-ohjelmalla... 2 Taulukon muokkaaminen... 7 Rakenne

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu

Lisätiedot

! #! %! & #!!!!! ()) +

! #! %! & #!!!!! ()) + ! #! %! & #!!!!! ()) + Tiedekunta/Osasto Fakultet/Sektion Faculty Humanistinen tiedekunta Laitos Institution Department Taiteiden tutkimuksen laitos Tekijä Författare Author Matti Pesonen Työn nimi Arbetets

Lisätiedot

ε y = v ε z = w γ yz = v z + w γ xz = u e = ε x + ε y + ε z. y ε y x 2 = 2 γ xy x y, y 2 = 2 γ yz z ε z y z, z x x ε x z 2 = 2 γ zx

ε y = v ε z = w γ yz = v z + w γ xz = u e = ε x + ε y + ε z. y ε y x 2 = 2 γ xy x y, y 2 = 2 γ yz z ε z y z, z x x ε x z 2 = 2 γ zx ÄÙ Ù ½ Ê ÒØ Ò Ñ Ò Ò Ø Ó ÙÖ Ú Ó Ó ÐÑ ½º½ à ÑÑÓØ ÓÖ Ò Ô ÖÙ Ý ØÐ Ø ÅÙÓ ÓÒÑÙÙØÓ Ø ε = u, ε = v, ε z = w z, ½º½µ γ = u + v, γ z = v z + w, γ z = u z + w, ½º¾µ Ù Ø ÐÐ Ò Ò Ø Ð ÚÙÙ Ò ÑÙÙØÓ e = ε + ε + ε z. ½º

Lisätiedot

Kertausta: Vapausasteet

Kertausta: Vapausasteet Maanantai 8.9.2014 1/19 Kertausta: Vapausasteet Liikkeen kuvailu: massapisteen koordinaatit (x, y, z) ja nopeudet (v x, v y, v z ). Vapaasti liikkuvalla massapisteellä on kolme vapausastetta. N:llä vapaasti

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

J fihu. oitus, :?'! Matemaattinen Analyysi. D:at-btp+ctp', R2 Ti. tç16. dpldt : a(q" - q) + þ(p" - p) (1) pt(t) ' viikko 47.

J fihu. oitus, :?'! Matemaattinen Analyysi. D:at-btp+ctp', R2 Ti. tç16. dpldt : a(q - q) + þ(p - p) (1) pt(t) ' viikko 47. Vsn yps, syksy 207 / ORMS00 Memnen Anyys J fhu.us, vkk 47 R T R2 T 2-4 6 F426 F426 s.2. s.2.. Os, eä fun fn /- OTæ Tyn s kehyskeskuksen n # - u-, _D2 _f"- 3'- * - fø- 5 b Men mn emä summs pää ske, eä sdn

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

KIINTEÄN AINEEN MEKANIIKAN PERUSTEET

KIINTEÄN AINEEN MEKANIIKAN PERUSTEET KIINTÄN AINN MKANIIKAN PRUSTT YHTÄLÖKOKOLMA Kari Santao 3..06 Pitkä versio Opiskelin nimi opiskelinumero Voisitteko ystävällisesti ilmoittaa tässä yhtälökokoelmassa havaitsemistanne virheistä puutteista.

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

a x a y I xi y i I xyi x i I xyi + y i I yi

a x a y I xi y i I xyi x i I xyi + y i I yi Ê ÒØ Ò Ñ Ò Ò ÓÚ ÐÐÙØÙ Ú Ó Ó ÐÑ º ØÓÙ Ó ÙÙØ ¾¼½¾ ÄÙ Ù ½ Ê ÒØ Ò Ñ Ò Ò ÓÚ ÐÐÙØÙ Ú Ó Ó ÐÑ Ó ½ ½º½ à ÖÖÓ Ø ÐÓ ÎÒØ [ Ixi I xi I xi ÂÓ ÐÐ Ô ÖØ ÐÐ ÔØ Ii ][ a x a ] = [ xi I xi i I xi x i I xi + i I i ]. ½º½µ I

Lisätiedot

DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Mekaniikan peruslait (liikelait). Liikemäärän momentin tase. Kappaleen massan vaikutusmitat. Jäykän

Lisätiedot

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta.

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. Pieni silmukka-antenni duaalisuus Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. S amalla saamme my ö s silmukan läh ikentät. Käy tämme h y v äksi sitä, että

Lisätiedot

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1 Aalto-yliopisto HARJOITUSTEHTÄVIEN Sähkötekniikan korkeakoulu RATKAISUT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 8.1.016 vaikutukset ja mittaukset ELEC-E770 Lauri Puranen Säteilyturvakeskus

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli

Lisätiedot

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu

Lisätiedot

J 2 = J 2 x + J 2 y + J 2 z.

J 2 = J 2 x + J 2 y + J 2 z. FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,

Lisätiedot

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot