Mat Lineaarinen ohjelmointi
|
|
- Kai Aro
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mat-.34 Lineaarinen ohjelmointi 5..7 Luento Kertausta Lineaarinen ohjelmointi - Syksy 7 /
2 LP ja Simplex Kurssin rakenne Duaalisuus ja herkkyysanalyysi Verkkotehtävät Kokonaislukutehtävät Lineaarinen ohjelmointi - Syksy 7 /
3 LP-tehtävä Jokainen LP-tehtävä voidaan muuttaa standardimuotoon: min c x s.e. Ax=b x LP:n käypä alue on aina monitahokas LP:n optimiratkaisu löytyy aina käyvän alueen kulmapisteestä Lineaarinen ohjelmointi - Syksy 7 / 3
4 Simplex Kulmapistettä vastaa käypä kantaratkaisu x Kantamuuttujia x B vastaa kantamatriisi B = A:n kantamuuttujia vastaavat sarakkeet Ei-kantamuuttujat x N = Huomaa: Ax=Bx B +A N x N =Bx B =b => x B =B - b c x = c B x B +c N x N =c B x B = c B B - b Lineaarinen ohjelmointi - Syksy 7 / 4
5 Simplex Simplex-taulukko: Red. kustannukset -Kustannus - c B ' B - b c' c B 'B - A Kantamuuttujien arvot B - b B - A -Kantasuunnat Red. kustannukset: miten muuttujan tuominen kantaan vaikuttaa kustannukseen? Kantamuuttujilla nollia. j. kantasuunta -B - A j : mitä kantamuuttujille tapahtuu, kun x j tuodaan kantaan? Lineaarinen ohjelmointi - Syksy 7 / 5
6 Simplex Jos c j <, pienentää x j :n kasvattaminen kustannusta => kantaan! Kasvatetaan, kunnes ensimmäinen kantamuuttuja menee nollaksi eli poistuu kannasta Kannasta poistuva muuttuja x B(l) se, jonka indeksi B(l) minimoi lausekkeen: xb( l), ub( l) > u B( l), jossa u B(l) = Simplex-taulukon j. sarakkeen ja l. rivin alkio eli muuttujaa x B(l) vastaava j. kantasuunta Lineaarinen ohjelmointi - Syksy 7 / 6
7 Kannan vaihto: Simplex Muutetaan kantaan tulevaa muuttujaa vastaava sarake yksikkövektoriksi, jossa kannasta poistuvan rivin alkio ykkönen ja muut nollia Jos nyt red. kustannukset ei-negatiivisia, ollaan optimissa Jos ei, toistetaan edellinen Lineaarinen ohjelmointi - Syksy 7 / 7
8 Simplexin implementaatiot Kirjan esimerkki 3.5: min s.e. x x x x + x + x 3 x + x + x 3 x + x + x 3 x x, x, 3 3 s.e. min x x x x + x + x + x 3 4 = x + x + x + x 3 5 = x + x + x + x 3 6 = x,..., x 6 3 Aloitusratkaisuksi x=(,,,,,) eli c = c ' x = ja c c = B B B x B = ( x, x, x ) Lineaarinen ohjelmointi - Syksy 7 / 8
9 Simplex x 3 A=(,,) B=(,,) / = / = x 4 = x 5 = x 6 = x x x x 4 x 5 x 6 *- *-.5 *5 / D=(,,) E=(4,4,4) C=(,,) / = x x x Lineaarinen ohjelmointi - Syksy 7 / 9
10 Simplex x 3 A=(,,) B=(,,) x 4 = x = x 6 = x x x x 4 x x 6 D=(,,) E=(4,4,4) C=(,,) x x Lineaarinen ohjelmointi - Syksy 7 /
11 Simplex x 3 A=(,,) B=(,,) x 3 = x = x 6 = x x x 3 x 4 - x x 6 D=(,,) E=(4,4,4) C=(,,) x x Lineaarinen ohjelmointi - Syksy 7 /
12 Simplex x 3 A=(,,) B=(,,) x 3 = x = x = x x x 3 x x x D=(,,) E=(4,4,4) C=(,,) x x Lineaarinen ohjelmointi - Syksy 7 /
13 Duaalitehtävä LP:lle voidaan muodostaa duaalitehtävä Idea: relaksoidaan rajoite Ax=b, mutta sakotetaan sen rikkomisesta hinnalla p (duaalimuuttuja) P: D: min c x max p b s.e. Ax=b s.e. p A c x p vapaa Jos primaalille ja duaalille löytyy optimiratkaisut, ovat vastaavat optimikustannukset samat, eli c x*=p* b Lineaarinen ohjelmointi - Syksy 7 / 3
14 Duaalitehtävä Duaaalin ja primaalin optimiratkaisuja yhdistävät täydentyvyysehdot (complementary slackness): p i *(a i x*-b i ) = x j *(p* A j -c j ) = Duaalimuuttuja vastaa primaalin rajoitetta ja toisinpäin Ei-degeneroituneessa tapauksessa em. ehdoista saadaan laskettua x* kun p* tunnetaan tai toisinpäin Lineaarinen ohjelmointi - Syksy 7 / 4
15 Duaalitehtävä Duaalimuuttujan tulkinnat: Sakko rajoitteen rikkomisesta (tehtävän määritelmästä) Marginaalikustannus (b i b i +, p i b i p i b i +p i ) Oikea hinta Peliteoreettinen näkökulma Lineaarinen ohjelmointi - Syksy 7 / 5
16 Duaalitehtävä Duaalimuuttuja p =c B B - Sijoitetaan duaalitehtävän rajoitusehtoon: p A c c - c B B - A => duaalikäypyys = primaalin optimaalisuus! Ratkaisu primaalikäypä ja duaalikäypä optimaalinen! Simplex etenee primaalikäypyydestä kohti duaalikäypyyttä duaalisimplex etenee duaalikäypyydestä kohti primaalikäypyyttä Lineaarinen ohjelmointi - Syksy 7 / 6
17 Duaalisimplex Lähtötilanne: duaalikäypä, muttei primaalikäypä ratkaisu Ts. redusoidut kustannukset ei-negatiivisia, mutta jokin kantamuuttuja negatiivinen Poistetaan neg. muuttuja x B(l) kannasta Kantaan muuttuja x j, jonka indeksi j minimoi lausekkeen: c j, vlj < v lj, jossa v lj on taulukon l. rivin ja j. sarakkeen alkio Lineaarinen ohjelmointi - Syksy 7 / 7
18 Duaalisimplex Esimerkki: P: min x + x D: s.e x + x x = 3 x x 4 = x,,3,4 max s.e p + p p + p p p, Primaali voidaan esittää kahdessa dimensiossa, kun ja kohdellaan surplus-muuttujina x x3 4 Lineaarinen ohjelmointi - Syksy 7 / 8
19 Duaalisimplex Aloitetaan duaalikäyvästä ratkaisusta x =(,,-,-), jolla c'= (,,,) Tällöin p' = c ' B = (,) B x c x x 3 x 4 = = -* - x x x x / /(-) p / b p Lineaarinen ohjelmointi - Syksy 7 / 9
20 Duaalisimplex x x =(,,,-), p =(/,) c x x x x 3 4 x x x 4 = = - -* / / - / -/ * *(-) p b / p Lineaarinen ohjelmointi - Syksy 7 /
21 Duaalisimplex x=(,/,,), p=(/,/) x B optimi! x c x x = = -3/ / x x x x 3 4 / -/ / / - p b x / p Lineaarinen ohjelmointi - Syksy 7 /
22 Herkkyysanalyysia Optimiratkaisu tehtävälle olemassa Tehtävää poikkeutetaan muuttamalla A:ta, b:tä tai c:tä, tai lisäämällä tehtävään uusi muuttuja tai rajoite Uusi optimiratkaisu voidaan saada johdettua alkuperäisestä ratkaisusta ei tarvetta aloittaa alusta (ks. luento 7) Sama kanta poikkeutuksen jälkeen optimaalinen => tehtävä robusti Kanta vaihtuu => datan suhteen on herkkyyttä Lineaarinen ohjelmointi - Syksy 7 /
23 Herkkyysanalyysia Data voidaan esittää myös parametrisessa muodossa, jos siitä ei ole täyttä varmuutta min x +(4+ θ) x min x +x s.e. x +x = s.e. x +x = + θ x,x x,x Optimiratkaisu θ:n funktio: Esiintyy c:ssä red. kustannukset & Simplex Esiintyy b:ssä käypyys & duaalisimplex Lineaarinen ohjelmointi - Syksy 7 / 3
24 Verkkotehtävät Verkon määrittävät solmut N ja kaaret A Solmuille on määrätty divergenssit b i = verkon ulkopuolelta solmuun tuleva/siitä lähtevä virtaus Kaarille on määrätty kustannukset ja virtauskapasiteetit Yleinen tehtävä: etsi virtausvektori, joka täyttää divergenssiehdot minimikustannuksella 3,[,] Lineaarinen ohjelmointi - Syksy 7 / 4
25 Verkkotehtävät Verkkotehtävä voidaan esittää standardimuotoisena LP:nä min c f s.e. Af = b f, missä päätösmuuttujat ovat kaarten virtaukset, b divergenssivektori ja A matriisi, joka kuvaa solmujen ja kaarten yhteyksiä Tehtävä voidaan täten ratkaista Simplexillä Tehtävällä erikoisrakenne => verkkosimplex Lineaarinen ohjelmointi - Syksy 7 / 5
26 Verkkosimplex Verkkotehtävässä käypä kantaratkaisu = käypä puuratkaisu Puuratkaisu: Muodostetaan puu (yhtenäinen verkko, jossa ei syklejä) Asetetaan puuhun kuulumattomien kaarten virtaus nollaksi Lasketaan puun kaarten virtaus divergenssiehdoista Lineaarinen ohjelmointi - Syksy 7 / 6
27 Verkkosimplex Idea: Voidaanko puuhun lisätä kaari siten, että muodostuvaa sykliä pitkin virtausta työntämällä saadaan kustannusta pienennettyä? Jos, työnnetään virtausta, kunnes jonkin kaaren virtaus nollaksi => kanta vaihtuu 3 3 Lineaarinen ohjelmointi - Syksy 7 / 7
28 Verkkosimplex Kaaren red. kustannus negatiivinen => kaaren tuottama sykli vähentää kustannusta Verkkotehtävissä red. kustannus lasketaan duaalimuuttujien eli solmuhintojen avulla Puun T kaarille pätee: p p i p j n = = c ( i, j) T Käytetään edellä laskettuja solmuhintoja, jolloin red. kustannus: c = c ( p p ) ( i, j) T. ij ij i ij, j Lineaarinen ohjelmointi - Syksy 7 / 8
29 Solmuhintojen tulkinta: Verkkosimplex p i -p j pienin kustannus solmusta i solmuun j ratkaisupuun kaaria käyttämällä Puun kaarille siis pätee p i -p j =c ij Jos p i -p j > c ij jollekin ( i, j) T (red. kustannus negatiivinen), kannattaisi käyttää mielummin ko. kaarta kuin puuta => kaari kantaan Virtausta työnnetään muodostuvaan sykliin, kunnes jonkin takaperin suunnatun kaaren virtaus menee nollaan => poistuu kannasta Lineaarinen ohjelmointi - Syksy 7 / 9
30 Verkkosimplex Esimerkki: Kapasiteettirajoitukseton tehtävä; kuvassa tarjonnat, kysynnät ja kaarten kustannukset Alla lähtöratkaisu, jolle: p p c Siis kaari (,) kantaan! 5 = p = = p c 5 + c 5 ( p = p 5 = p c 5 = ) = < Lineaarinen ohjelmointi - Syksy 7 /
31 Verkkosimplex Syklin kaaret (5,) ja (,5) takaperin suunnattuja θ* = Siis kaari (5,) pois kannasta! Nyt c ij p i = = f min ( k, l) B =, f kl f 5 = min{,3} = = ( i, j) T i, f 5 = c3= c3=, c5 = c5 = 3 3 Lineaarinen ohjelmointi - Syksy 7 / 3 5 Kuvan kanta optimaalinen, kustannus! 4
32 Verkkotehtävä Verkkotehtävän erikoistapauksilla räätälöityjä algoritmeja Lyhyimmän polun tehtävä: Bellman-Ford nimikettä korjaava Dijkstra nimikkeen asettava Maksimivirtaustehtävä: Ford-Fulkerson tutkitaan, löytyykö polkua, jota pitkin virtausta voidaan lisätä Jos löytyy, lisätään kapasiteettien rajoissa; jos ei, ollaan optimissa Lineaarinen ohjelmointi - Syksy 7 / 3
33 Kokonaislukutehtävä LP:tä hankalampi ratkaista Ei tunnettuja tehokkaita algoritmeja Kurssilla käsiteltiin Gomoryn leikkaava taso perustuu Simplextaulukkoon Branch & Bound edellistä tehokkaampi; jaetaan tehtävää osatehtäviin, joille lasketaan kustannuksen alarajoja tai kokonaislukuratkaisun löytyessä ylärajoja Branch & Cut tehostaa edellistä syvemmillä leikkauksilla; leikkauksen löytyminen hankalaa Lineaarinen ohjelmointi - Syksy 7 / 33
34 Esimerkki: min s. e. x 4x x x + 6x + x x, x x, x 4 Ζ Branch & Bound 9 F : x 3 F : x Relaksaation ratkaisu x*=(.5,.5); jaetaan alue x :n suhteen ko. murtoluvun poissulkeviin alueisiin F ja F aktiivisten osatehtävien lista {F, F } x* LP-relaksaation kustannus = -3.5, joten koko alueen alarajaksi b(f)=-3.5 Ei löydettyjä kok.lukuratkaisuja, joten U= Lineaarinen ohjelmointi - Syksy 7 / 34
35 Branch & Bound Osatehtävä F ei ole käypä poistetaan listasta Ratkaistaan osatehtävän F relaksaatio, josta saadaan alarajaksi b(f )=-3.5 (tiukempi) F 4 : x F : x x * F 3 : x F :n relaksaation optimi x *=(.75, ), joten jaetaan edelleen x :n suhteen osatehtäviksi F 3 ja F 4 aktiivisten osatehtävien lista {F 3, F 4 } Lineaarinen ohjelmointi - Syksy 7 / 35
36 Branch & Bound Osatehtävän F 3 relaksaation ratkaisu x*=(,), eli kokonaislukuratkaisu! Kustannus -3, joten U:=-3. F 3 tutkittu eli pois aktiivisten listasta Osatehtävän F 4 relaksaation ratkaisu (,3/) ja optimikustannus -3, eli b(f 4 ) U => poistetaan F 4 listasta Lista on tyhjä, eli alkup. tehtävän optimiratkaisu löydetty! x*=(,), c x*=-3. x 4 * x 3 * Lineaarinen ohjelmointi - Syksy 7 / 36
37 Tentti To.. klo 9-, sali M Uusinta ma 4.. klo 9-, salit D,E,L Viisi tehtävää Kotitehtävä- ja harjoitustyöpisteet voimassa vuoden 9 tammikuun uusintatenttiin asti Lineaarinen ohjelmointi - Syksy 7 / 37
Mat Lineaarinen ohjelmointi
Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä
Mat Lineaarinen ohjelmointi
Mat-.4 Lineaarinen ohjelmointi..7 Luento 7 Duaalisimple ja herkkyysanalyysi (kirja 4.5, 5., 5.5-5.6) Lineaarinen ohjelmointi - Syksy 7 / Duaalisimple Herkkyysanalyysi Luentorunko Parametrinen ohjelmointi
Mat Lineaarinen ohjelmointi
Mat-.4 Lineaarinen ohjelmointi 8..7 Luento 8 Verkkotehtävät, simlex ja duaalisuus (kirja 7.-7., 7.6) Lineaarinen ohjelmointi - Syksy 7 / Motivointi Käsitteitä Verkkotehtävä Verkkosimlex Duaalitehtävä Yhteenveto
Mat Lineaarinen ohjelmointi
Mat-2.3140 Lineaarinen ohjelmointi 4.10.2007 Luento 4 Ekstreemipisteiden optimaalisuus ja Simplex (kirja 2.4-2.6, 3.1-3.2) Lineaarinen ohjelmointi - Syksy 2007 / 1 Luentorunko Degeneroituvuus Ekstreemipisteiden
Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi.
5..0 Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (c) (d) Arvostelu Kanta on degeneroitunut jos ja vain jos sitä vastaava kantamatriisi on singulaarinen. Optimissa muuttujan
Mat Lineaarinen ohjelmointi
Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys
Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.
Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).
4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen
4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus
Mat Lineaarinen ohjelmointi
Mat-.40 Lineaarinen ohjelmointi 5..007 Luento 9 Verkkotehtävän erikoistapauksia (kirja 7., 7.5, 7.9, 7.0) Lineaarinen ohjelmointi - Syksy 007 / Luentorunko (/) Verkkotehtävän ominaisuuksia Kuljetustehtävä
T : Max-flow / min-cut -ongelmat
T-61.152: -ongelmat 4.3.2008 Sisältö 1 Määritelmät Esimerkki 2 Max-flow Graafin leikkaus Min-cut Max-flow:n ja min-cut:n yhteys 3 Perusajatus Pseudokoodi Tarkastelu 4 T-61.152: -ongelmat Virtausverkko
8. Ensimmäisen käyvän kantaratkaisun haku
38 8. Ensimmäisen käyvän kantaratkaisun haku Edellä kuvattu simplex-algoritmi tarvitsee alkuratkaisuksi käyvän kantaratkaisun eli käyvän joukon kärkipisteen. Sellaisen voi konstruoida seuraavilla tavoilla:
Luento 4: Lineaarisen tehtävän duaali
Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea
Harjoitus 6 ( )
Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,
Demo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
Kokonaislukuoptiomointi Leikkaustasomenetelmät
Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat
Malliratkaisut Demot 6,
Malliratkaisut Demot 6, 19.2.21 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös
Harjoitus 6 ( )
Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.
Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!
Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x
Malliratkaisut Demot
Malliratkaisut Demot 2.2.217 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös muotoon
Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun
Jälki- ja herkkyysanalyysi Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun 1 Hinnat ja varjohinnat Objektifunktio c T x = Kerroin c j ilmoittaa, paljonko
Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala
Simplex-algoritmi T-6.5 Informaatiotekniikan seminaari..8, Susanna Moisala Sisältö Simplex-algoritmi Lähtökohdat Miten ongelmasta muodostetaan ns. Simplextaulukko Miten haetaan käypä aloitusratkaisu Mitä
Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij
Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0
Malliratkaisut Demot
Malliratkaisut Demot 6 24.4.2017 Tehtävä 1 Määritelmän (ks. luentomonisteen s. 107) mukaan yleisen muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on min θ(u,v)
Luento 3: Simplex-menetelmä
Luento 3: Simplex-menetelmä Kuten graafinen tarkastelu osoittaa, LP-tehtävän ratkaisu on aina käyvän alueen kulmapisteessä, eli ekstreemipisteessä (extreme point). Simplex-menetelmässä ekstreemipisteitä,
Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
Johdatus verkkoteoriaan luento Netspace
Johdatus verkkoteoriaan luento 3.4.18 Netspace Matriisioperaatio suunnatuissa verkoissa Taustoitusta verkkoteorian ulkopuolelta ennen kuljetusalgoritmia LP-ongelma yleisesti LP = linear programming =
Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki
Duaalisuus kokonaislukuoptimoinnissa Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Duaalisuus binäärisissä optimointitehtävissä Lagrangen duaalisuus Lagrangen
Luetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki
Luetteloivat ja heuristiset menetelmät Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Branch and Bound sekä sen variaatiot (Branch and Cut, Lemken menetelmä) Optimointiin
Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria
Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:
Lineaarinen optimointitehtävä
Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä
4. Kokonaislukutehtävän ja LP:n yhteyksiä
8 4. Kokonaislukutehtävän ja LP:n yhteyksiä Minkowskin esityslauseen avulla voidaan osoittaa, että jos P on rationaalinen monitahokas ja S sen sisällä olevien kokonaislukupisteiden joukko, niin co(s) on
Harjoitus 3 (3.4.2014)
Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen
V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan
Johdatus verkkoteoriaan 4. luento
Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,
Demo 1: Branch & Bound
MS-C05 Optimoinnin perusteet Malliratkaisut 7 Ehtamo Demo : Branch & Bound Ratkaise lineaarinen kokonaislukuoptimointitehtävä käyttämällä Branch & Boundalgoritmia. max x + x s.e. x + 4x 9 5x + x 9 x Z
Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen
Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista
Piiri K 1 K 2 K 3 K 4 R R
Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä
Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa
JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat
Algoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
Harjoitus 3 (31.3.2015)
Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
Algoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento
Malliratkaisut Demot
Malliratkaisut Demot 1 12.3.2018 Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 297 4 2 4 163 3 454 6 179 2 136 2 169 2 390 4 3 436 7 5 Kuva 1: Tehtävän 1
Algoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
Malliratkaisut Demot
Malliratkaisut Demot 3 7.3.07 Tehtävä Olkoon tilamuuttujat Tällöin saadaan rekursioyhtälö f n (x n ) = max yn {0,} ynwn xn f 0 ( ) = 0. x n = vaiheessa n jäljellä oleva paino, n =,...,N, esine n pakataan
Luento 7: Kokonaislukuoptimointi
Luento 7: Kokonaislukuoptimointi Lineaarisessa optimointitehtävässä (LP) kaikki muuttujat ovat jatkuvia. Kokonaislukuoptimoinnin (ILP = Integer LP) tehtävässä kaikilla muuttujilla on kokonaislukurajoitus
3 Simplex-menetelmä. c T x = min! Ax = b (x R n ) (3.1) x 0. Tarvittaessa sarakkeiden järjestystä voidaan vaihtaa, joten voidaan oletetaan, että
3 Simplex-menetelmä Lähdetään jostakin annettuun LP-tehtävään liittyvästä käyvästä perusratkaisusta x (0) ja pyritään muodostamaan jono x (1), x (2),... käypiä perusratkaisuja siten, että eräässä vaiheessa
Luento 7: Kokonaislukuoptimointi
Luento 7: Kokonaislukuoptimointi Lineaarisessa optimointitehtävässä (LP) kaikki muuttujat ovat jatkuvia. Kokonaislukuoptimoinnin (ILP = Integer LP) tehtävässä kaikilla muuttujilla on kokonaislukurajoitus
4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä
JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä
Harjoitus 1 (17.3.2015)
Harjoitus 1 (17.3.2015) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Helsinki 4 = Kuopio 5 = Joensuu. a) Tehtävänä on ratkaista Bellman
Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio
Ellipsoidimenetelmä Kokonaislukuoptimointi Sovelletun matematiikan lisensiaattiseminaari Kevät 2008 / 1 Sisällys Ellipsoidimenetelmän geometrinen perusta ja menetelmän idea Formaali ellipsoidimenetelmä
Harjoitus 1 (20.3.2014)
Harjoitus 1 (20.3.2014) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Hämeenlinna 4 = Imatra 5 = Jyväskylä. 5 2 149(5) 190(4) 113(1)
min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
Kokonaislukuoptimointi hissiryhmän ohjauksessa
Kokonaislukuoptimointi hissiryhmän ohjauksessa Systeemianalyysin laboratorio Teknillinen Korkeakoulu, TKK 3 Maaliskuuta 2008 Sisällys 1 Johdanto Taustaa Ongelman kuvaus 2 PACE-graafi Graafin muodostaminen
Malliratkaisut Demot
Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x
KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot
Keskeiset tulokset heikko duaalisuus (duaaliaukko, 6.2.1) vahva duaalisuus (6.2.4) satulapisteominaisuus (6.2.5) yhteys KKT ehtoihin (6.2.
Duaalisuus Lagrangen duaalifunktio ja duaalitehtävä määrittely ja geometria max θ(u,v), missä θ(u,v)=inf x X ϕ(x,u,v) s.e u 0 Lagr. funktio ϕ(x,u,v)=f(x)+u T g(x)+v T h(x) Keskeiset tulokset heikko duaalisuus
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen
Datatähti 2019 loppu
Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2
Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä
Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Vesa Husgafvel 19.11.2012 Ohjaaja: DI Mirko Ruokokoski Valvoja: Prof. Harri Ehtamo Työn
Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.
Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman
13 Lyhimmät painotetut polut
TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien
Kirjallisuuskatsaus sisäpistemenetelmiin ja niiden soveltamiseen eri optimointiluokille (valmiin työn esittely)
Kirjallisuuskatsaus sisäpistemenetelmiin ja niiden soveltamiseen eri optimointiluokille (valmiin työn esittely) Ilari Vähä-Pietilä 28.04.2014 Ohjaaja: TkT Kimmo Berg Valvoja: Prof. Harri Ehtamo Työn saa
Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.
Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin
TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)
TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa
58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe ratkaisuja (Jyrki Kivinen)
58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe 12.9.2018 ratkaisuja (Jyrki Kivinen) 1. [10 pistettä] Iso-O-merkintä. (a) Pitääkö paikkansa, että n 3 + 5 = O(n 3 )? Ratkaisu: Pitää paikkansa.
1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta
Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista
Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä
Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko
14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut
JYVÄSKYLÄN YLIOPISTO 14. Luennon sisältö Kuljetustehtävä esimerkki Verkkoteoria ja optimointi verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut kevät 2012 TIEA382 Lineaarinen ja diskreetti
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
Harjoitus 8: Excel - Optimointi
Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin
Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.
Luento : Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli simerkki: Maalifirma Sateenkaari valmistaa ulko- ja sisämaalia raaka-aineista M ja M. Sisämaalin maksimikysyntä on tonnia/päivä.
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
Mat Lineaarinen ohjelmointi
Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot
Malliratkaisut Demot
Malliratkaisut Demot 5 2.2.28 Tehtävä a) Tehtävä voidaan sieventää muotoon max 5x + 9x 2 + x 3 s. t. 2x + x 2 + x 3 x 3 x 2 3 x 3 3 x, x 2, x 3 Tämä on tehtävän kanoninen muoto, n = 3 ja m =. b) Otetaan
Malliratkaisut Demo 1
Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,
Totaalisesti unimodulaariset matriisit voidaan osoittaa olevan rakennettavissa oleellisesti verkkomalleihin liittyvistä matriiseista
8. Verkkomallit Totaalisesti unimodulaariset matriisit voidaan osoittaa olevan rakennettavissa oleellisesti verkkomalleihin liittyvistä matriiseista (P. D. Seymour, Journal of Combinatorial Theory (B),
Johdatus verkkoteoriaan luento Netspace
Johdatus verkkoteoriaan luento 10.4.18 Netspace Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot, verkon duaali, verkon upottaminen, verkon genus, verkon komplementti,
j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)
MS-A0401 Diskreetin matematiikan perusteet Tentti ja välikokeiden uusinta 10.11.015 Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskimia tai taulukoita ei saa käyttää tässä kokeessa!
MS-C2105 Optimoinnin perusteet Malliratkaisut 4
MS-C2105 Optimoinnin perusteet Malliratkaisut 4 Ehtamo Duaalin muodostamisen muistisäännöt Duaalin muodostamisessa voidaan käyttää muistisääntötaulukkoa, jota voidaan lukea vasemmalta oikealle tai oikealta
Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä
Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Vesa Husgafvel Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä
Kokonaislukuoptimointi
Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun
Algoritmit 2. Luento 12 Ke Timo Männikkö
Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit
Algoritmi on periaatteellisella tasolla seuraava:
Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S
v 8 v 9 v 5 C v 3 v 4
Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi
10. Painotetut graafit
10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä
Suomen rautatieverkoston robustisuus
Suomen rautatieverkoston robustisuus Samu Kilpinen 28.09.2016 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Rautatieverkosto Rautatie on erinomainen tapa kuljettaa suuria ihmis- ja hyödykemääriä Käyttöä etenkin
58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)
811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo
b 1. b m ) + ( 2b Ax) + (b b)
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}
Matematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
Kytkentäkentät, luento 2 - Kolmiportaiset kentät
Kytkentäkentät, luento - Kolmiportaiset kentät Kolmiportaiset kytkentäkentät - esitystapoja ja esimerkkejä Kytkentäkenttien vertailuperusteet ƒ Estottomuus, looginen syvyys, ajokyky Closin -verkko Paull
PARITUS KAKSIJAKOISESSA
PARITUS KAKSIJAKOISESSA GRAAFISSA Informaatiotekniikan t iik seminaari i Pekka Rossi 4.3.2008 SISÄLTÖ Johdanto Kaksijakoinen graafi Sovituksen peruskäsitteet Sovitusongelma Lisäyspolku Bipartite matching-algoritmi
Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
Kytkentäkentät, luento 2 - Kolmiportaiset kentät
Kytkentäkentät, luento - Kolmiportaiset kentät Kolmiportaiset kytkentäkentät - esitystapoja ja esimerkkejä Kytkentäkenttien vertailuperusteet Estottomuus, looginen syvyys, ajokyky Closin -verkko Paull