Harjoitus 1 ( )

Koko: px
Aloita esitys sivulta:

Download "Harjoitus 1 (20.3.2014)"

Transkriptio

1 Harjoitus 1 ( ) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Hämeenlinna 4 = Imatra 5 = Jyväskylä (5) 190(4) 113(1) 1 157(2) 75(1) 142(4) (2) Kuva 1: Tehtävän 1 graafi. a) Tehtävänä on ratkaista Bellman Ford-algoritmilla lyhimmät reitit Turusta muihin kaupunkeihin sekä lyhin reitti Turusta Jyväskylään. Bellman Ford-algoritmi määritellään kaavoilla 0, k = s v 0 [k] =, muulloin v t [k] = min {v t 1 [i] + c ik (i, k) E} = v t 1 [l] + c lk, d[k] l, missä k = 1, 2, 3, 4, 5. Algoritmin perusteella saadaan taulukot t v t [1] v t [2] v t [3] v t [4] v t [5] t d[1] d[2] d[3] d[4] [d5] Vasemmassa taulukossa ei enää tapahdu muutosta sarakkeessa v t [5], kun verrataan kahta alinta riviä. Lyhin reitti Turusta Jyväskylään on d[5] = 2, d[2] = 1 eli Turku Tampere Jyväskylä. Reitin pituus on 306 km. 1

2 b) Tehtävänä on ratkaista Dijkstran algoritmilla nopeimmat reitit Turusta muihin kaupunkeihin sekä nopein reitti Turusta Jyväskylään. Dijkstran algoritmi määritellään kaavoilla 0, i = s v[i] =, muuten v[i] = min {v[i], v[p] + c pi }, d[i] p. Algoritmin perusteella saadaan taulukot p v[1] v[2] v[3] v[4] v[5] p d[1] d[2] d[3] d[4] d[5] Nopein reitti Turusta Jyväskylään on d[5] = 4, d[4] = 3, d[3] = 2, d[2] = 1 eli Turku Tampere Hämeenlinna Imatra Jyväskylä. Tämän reitin kesto on 6 h. Tehtävä 2 Muotoillaan edellisen tehtävän nopeimman reitin ongelma Turusta (solmu 1) Jyväskylään (solmu 5) lineaariseksi optimointitehtäväksi, joka on muotoa min c ij x ij s.t. (i,j) E (i,l) E x il (l,j) E x ij 0, (i, j) E. 1, kun l = k x lj = 1, kun l = s 0, muulloin Ajosuunnat määräytyvät taulukon yläkolmion mukaan. Toisin sanoen Turusta ajetaan Tampereelle ja Hämeenlinnaan, Tampereelta Hämeenlinnaan ja Jyväskylään, Hämeenlinnasta Imatralle ja Jyväskylään sekä Imatralta Jyväskylään. Näin valitsemalla sijoittaen graafin nuolijoukko E, painot c ij sekä aloitussolmu s = 1 ja lopetussolmu k = 5 (1) 2

3 optimointitehtävään (1), saadaan optimointitehtävä min 2x x 13 + x x x x 35 + x 45 s. t. x 12 x 13 = 1 x 12 x 23 x 25 = 0 x 13 + x 23 x 34 x 35 = 0 (2) x 34 x 45 = 0 x 25 + x 35 + x 45 = 1 x 12, x 13, x 23, x 25, x 34, x 35, x Tehtävän (1) duaali on max v k v s s.t. v j v i c ij, (i, j) E, joka sijoittamalla s, k ja E saadaan muotoon max v 5 v 1 s. t. v 2 v 1 2 v 3 v 1 4 v 3 v 2 1 v 5 v 2 5 v 4 v 3 2 v 5 v 3 4 v 5 v 4 1. Duaalissa voidaan valita v 1 = 0, jolloin saadaan max v 5 s. t. v 2 2 v 3 4 v 3 v 2 1 v 5 v 2 5 v 4 v 3 2 v 5 v 3 4 v 5 v 4 1. (3) Ratkaistaan duaalitehtävä (3) CPLEXillä, jolloin vastaukseksi tulee v 1 = 0, v 2 = 2, v 3 = 3, v 4 = 5 ja v 5 = 6. CPLEX antaa myös duaalitehtävän duaalin, eli primaalitehtävän (2) ratkaisun. Primaalitehtävän ratkaisuksi saamme x 12 = x 23 = x 34 = x 45 = 1, ja kohdefunktion arvoksi 6 joka on myös duaalitehtävän optimaalinen kohdefunktion arvo. Kyseessä on reitti Turku Tampere Hämeenlinna Imatra Jyväskylä ja sen pituus on 6 h. 3

4 Tehtävä 3 Lasketaan Floyd Warshall-algoritmilla Tehtävän 1 aineistoa käyttäen nopeimmat reitit kaupunkien välille ja selvitetään jälleen nopein reitti Turusta Jyväskylään. Jos kaupunkien välillä on yhteys, niin v 0 [k, l] c kl d[k, l] k. Jos taas kaupunkien välillä ei ole yhteyttä, niin 0, k = l v 0 [k, l], muulloin. Floyd Warshall-algoritmi määritellään kaavoilla v t [k, l] = min {v t 1 [k, l], v t 1 [k, t] + v t 1 [t, l]} d[k, l] d[t, l]. Seuraavissa taulukoissa on listattu lyhyimpien reittien pituudet v t [k, l] kunkin kierroksen t jälkeen. Edellisestä kierroksesta muuttuneet arvot on rengastettu. Vaiheessa t = 0 saadaan v 0 [k, l] l = 1 l = 2 l = 3 l = 4 l = 5 d[k, l] l = 1 l = 2 l = 3 l = 4 l = 5 k = k = k = k = k = k = k = k = k = k = Vaiheessa t = 1 saadaan v 1 [k, l] l = 1 l = 2 l = 3 l = 4 l = 5 d[k, l] l = 1 l = 2 l = 3 l = 4 l = 5 k = k = k = k = k = k = k = k = k = k = Vaiheessa t = 2 saadaan v 2 [k, l] l = 1 l = 2 l = 3 l = 4 l = 5 d[k, l] l = 1 l = 2 l = 3 l = 4 l = 5 k = k = k = k = k = k = k = k = k = k =

5 Vaiheessa t = 3 saadaan v 3 [k, l] l = 1 l = 2 l = 3 l = 4 l = 5 d[k, l] l = 1 l = 2 l = 3 l = 4 l = 5 k = k = k = k = k = k = k = k = k = k = Vaiheessa t = 4 saadaan v 4 [k, l] l = 1 l = 2 l = 3 l = 4 l = 5 d[k, l] l = 1 l = 2 l = 3 l = 4 l = 5 k = k = k = k = k = k = k = k = k = k = Vaiheessa t = 5 saadaan v 5 [k, l] l = 1 l = 2 l = 3 l = 4 l = 5 d[k, l] l = 1 l = 2 l = 3 l = 4 l = 5 k = k = k = k = k = k = k = k = k = k = Nopein reitti Turusta Jyväskylään on nytkin d[1, 5] = 4, d[1, 4] = 3, d[1, 3] = 2, d[1, 2] = 1. Reittiä voidaan merkitä myös Kyseinen reitti on Turku Tampere Hämeenlinna Imatra Jyväskylä, ja sen kesto on 6 h. Tehtävä 4 Tulostimen ostohinta on 200 euroa. Käyttökustannukset vuosina 1 5 ovat 100, 150, 200, ja 350 euroa. Olkoon solmu i päätöstilanne vuoden i alussa. Piirretään graafi, jossa on solmut 1, 2, 3, 4, 5 ja 6. Nuolten painoiksi asetetaan c i,i+1 = = c i,i+2 = = c i,i+3 = = 650 c i,i+4 = = 950 c i,i+5 = = 1. Tehtävänä on etsiä lyhin reitti solmusta 1 solmuun 6. 5

6 Kuva 2: Tehtävän 4 graafi. Tehtävä 5 Edellinen tehtävä voidaan ratkaista mm. Bellman-Fordin, Floyd-Warshallin tai Dijkstran algoritmilla. Kyseessä on syklitön suunnattu verkko, joten algoritmi 1.17 (lyhimmät tiet syklittömässä verkossa) on myös mahdollinen ja vaihtoehdoista myös tehokkain. Vertailun vuoksi alla on listattu niiden taulukoiden koot joiden laskemisen kunkin luentomonisteen algoritmin suoritus vaatii. 1.8 (Bellman Ford) Yksi kokoa 6 6 oleva taulukko ja edeltäjätaulukko (Floyd Warshall) 7 kappaletta kokoa 6 6 olevia taulukoita ja edeltäjätaulukot (Dijkstra) Yksi kokoa 7 6 oleva taulukko ja edeltäjätaulukko (Lyhimmät tiet syklittömässä verkossa) Yksi kokoa 2 6 oleva taulukko sisältäen edeltäjätaulukon. Algoritmi 1.17 määritellään kaavoilla v[s] 0 v[p] = min i d[p] l. Algoritmia käyttäen saadaan {v[i] + c ip (i, p) E} = v[l] + c ip v[i] d[i] v[1] = 0 v[2] = d[2] = 1 v[3] = min {, + } = d[3] = 1 v[4] = min {650, +, + } = 650 d[4] = 1 v[5] = min {950, + 650, +, } = 900 d[5] = 3 v[6] = min {1, + 950, + 650, 650 +, } = 1100 d[6] = 3 tai d[6] = 4 Ossi Opiskelijan kannattaa ostaa uusi tulostin kolmannen tai neljännen opiskeluvuoden alussa. 6

Harjoitus 1 (17.3.2015)

Harjoitus 1 (17.3.2015) Harjoitus 1 (17.3.2015) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Helsinki 4 = Kuopio 5 = Joensuu. a) Tehtävänä on ratkaista Bellman

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 12.3.2018 Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 297 4 2 4 163 3 454 6 179 2 136 2 169 2 390 4 3 436 7 5 Kuva 1: Tehtävän 1

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot.. Tehtävä Edellinen tehtävä voidaan ratkaista mm. Bellman-Fordin, Floyd-Warshallin tai Dikstran algoritmilla. Kyseessä on syklitön suunnattu verkko, oten algoritmi. (lyhimmät tiet

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 4 3.4.017 Tehtävä 1 Tarkastellaan harjoituksen 1 nopeimman reitin ongelmaa ja etsitään sille lyhin virittävä puu käyttämällä kahta eri algoritmia. a) (Primin algoritmi) Lähtemällä

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3 7.3.07 Tehtävä Olkoon tilamuuttujat Tällöin saadaan rekursioyhtälö f n (x n ) = max yn {0,} ynwn xn f 0 ( ) = 0. x n = vaiheessa n jäljellä oleva paino, n =,...,N, esine n pakataan

Lisätiedot

Harjoitus 2 ( )

Harjoitus 2 ( ) Harjoitus 2 (24.3.2015) Tehtävä 1 Figure 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[0] = 0 v[p] max 0 i p 1 {v[i]+a i (i,p) E} = v[l]+a l d[p] l. Muodostetaan taulukko, jossa

Lisätiedot

Harjoitus 2 ( )

Harjoitus 2 ( ) Harjoitus 2 (27.3.214) Tehtävä 1 7 4 8 1 1 3 1 2 3 3 2 4 1 1 6 9 1 Kuva 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[] = v[p] d[p] l. max i p 1 {v[i] + a i (i, p) E} = v[l] +

Lisätiedot

Harjoitus 4 (7.4.2014)

Harjoitus 4 (7.4.2014) Harjoitus 4 (7.4.2014) Tehtävä 1 Tarkastellaan Harjoituksen 1 nopeimman reitin ongelmaa ja etsitään sille lyhin virittävä puu käyttämällä kahta eri algoritmia. a) (Primin algoritmi) Lähtemällä solmusta

Lisätiedot

Harjoitus 5 ( )

Harjoitus 5 ( ) Harjoitus 5 (24.4.2014) Tehtävä 1 Kuva 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 5 10.4.2017 Tehtävä 1 x 2 7 0,7 9,8 6 5 4 x 1 x 2 7 x 1 x 2 1 3 2 x 1 0 4,3 x 1 9 1 0,0 x 2 0 9,0 1 2 3 4 5 6 7 8 9 x 1 Kuva 1: Tehtävän 1 sallittu joukko S Optimointitehtävän sallittu

Lisätiedot

Harjoitus 5 ( )

Harjoitus 5 ( ) Harjoitus 5 (14.4.2015) Tehtävä 1 Figure 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.

Lisätiedot

Matemaattinen optimointi II

Matemaattinen optimointi II Matemaattinen optimointi II Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos Kevät 21 Sisältö Esipuhe 1 1 Lyhimmät tiet ja diskreetti dynaaminen optimointi 2 1.1 Lyhimmän tien ongelmia............................

Lisätiedot

13 Lyhimmät painotetut polut

13 Lyhimmät painotetut polut TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien

Lisätiedot

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi.

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. 5..0 Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (c) (d) Arvostelu Kanta on degeneroitunut jos ja vain jos sitä vastaava kantamatriisi on singulaarinen. Optimissa muuttujan

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 6 24.4.2017 Tehtävä 1 Määritelmän (ks. luentomonisteen s. 107) mukaan yleisen muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on min θ(u,v)

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Malliratkaisut Demot 6,

Malliratkaisut Demot 6, Malliratkaisut Demot 6, 19.2.21 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 2.2.217 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös muotoon

Lisätiedot

http://www.angelniemenankkuri.com/index.php?page=ilu/nuoret/ajankohtaista&select=3&head=nuori%20...

http://www.angelniemenankkuri.com/index.php?page=ilu/nuoret/ajankohtaista&select=3&head=nuori%20... Sivu 1/28 " #%% ((%% ( * +, " -. / " - ("*0 "# % "# (( # # ( ( * # +,,-. /0,-,,2 3 #4 3 % % 5 5 * 4 % 3 6 4 4 44( ( % #"" #"#"# + 7. 4 %%2%%3 % 4 9#:200; 1 5242%% 1,1200/,/,/ (43%% 1 ("*01,01200/,202200/

Lisätiedot

Johdatus verkkoteoriaan 4. luento

Johdatus verkkoteoriaan 4. luento Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

FORD FOCUS 1 2 3 4 5 6 7 8 9 10 11 12 13 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 15 17 18 19 9 3 1 1 6 4 2 5 7 8 10 21 23 24 25

Lisätiedot

T : Max-flow / min-cut -ongelmat

T : Max-flow / min-cut -ongelmat T-61.152: -ongelmat 4.3.2008 Sisältö 1 Määritelmät Esimerkki 2 Max-flow Graafin leikkaus Min-cut Max-flow:n ja min-cut:n yhteys 3 Perusajatus Pseudokoodi Tarkastelu 4 T-61.152: -ongelmat Virtausverkko

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto) 811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo

Lisätiedot

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut JYVÄSKYLÄN YLIOPISTO 14. Luennon sisältö Kuljetustehtävä esimerkki Verkkoteoria ja optimointi verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut kevät 2012 TIEA382 Lineaarinen ja diskreetti

Lisätiedot

Kokonaislukuoptimointi hissiryhmän ohjauksessa

Kokonaislukuoptimointi hissiryhmän ohjauksessa Kokonaislukuoptimointi hissiryhmän ohjauksessa Systeemianalyysin laboratorio Teknillinen Korkeakoulu, TKK 3 Maaliskuuta 2008 Sisällys 1 Johdanto Taustaa Ongelman kuvaus 2 PACE-graafi Graafin muodostaminen

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 5..7 Luento Kertausta Lineaarinen ohjelmointi - Syksy 7 / LP ja Simplex Kurssin rakenne Duaalisuus ja herkkyysanalyysi Verkkotehtävät Kokonaislukutehtävät Lineaarinen ohjelmointi

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten

Lisätiedot

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n. TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot

Lisätiedot

Luento 4: Lineaarisen tehtävän duaali

Luento 4: Lineaarisen tehtävän duaali Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta

Liite 2: Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Verkot TKK (c) Ilkka Mellin (2007) 1 Verkko eli graafi: Määritelmä 1/2 Verkko eli graafi muodostuu pisteiden joukosta V, särmien

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento

Lisätiedot

Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun

Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun Jälki- ja herkkyysanalyysi Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun 1 Hinnat ja varjohinnat Objektifunktio c T x = Kerroin c j ilmoittaa, paljonko

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

Joonas Haapala Ohjaaja: DI Heikki Puustinen Valvoja: Prof. Kai Virtanen

Joonas Haapala Ohjaaja: DI Heikki Puustinen Valvoja: Prof. Kai Virtanen Hävittäjälentokoneen reitin suunnittelussa käytettävän dynaamisen ja monitavoitteisen verkko-optimointitehtävän ratkaiseminen A*-algoritmilla (valmiin työn esittely) Joonas Haapala 8.6.2015 Ohjaaja: DI

Lisätiedot

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26

Lisätiedot

Algoritmit 1. Luento 13 Ma Timo Männikkö

Algoritmit 1. Luento 13 Ma Timo Männikkö Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

Algoritmit 2. Luento 12 Ke Timo Männikkö

Algoritmit 2. Luento 12 Ke Timo Männikkö Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit

Lisätiedot

Käyttöopas yksityisautolle Android, ios ABAX MOBIILI

Käyttöopas yksityisautolle Android, ios ABAX MOBIILI Käyttöopas yksityisautolle Android, ios ABAX MOBIILI 2 The difference is ABAX The difference is ABAX 3 SISÄÄNKIRJAUTUMINEN Avaa ABAX-sovellus, ja klikkaa «Kirjaudu». Syötä käyttäjätunnuksesi ja salasanasi

Lisätiedot

Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä

Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Vesa Husgafvel 19.11.2012 Ohjaaja: DI Mirko Ruokokoski Valvoja: Prof. Harri Ehtamo Työn

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.40 Lineaarinen ohjelmointi 5..007 Luento 9 Verkkotehtävän erikoistapauksia (kirja 7., 7.5, 7.9, 7.0) Lineaarinen ohjelmointi - Syksy 007 / Luentorunko (/) Verkkotehtävän ominaisuuksia Kuljetustehtävä

Lisätiedot

PARITUS KAKSIJAKOISESSA

PARITUS KAKSIJAKOISESSA PARITUS KAKSIJAKOISESSA GRAAFISSA Informaatiotekniikan t iik seminaari i Pekka Rossi 4.3.2008 SISÄLTÖ Johdanto Kaksijakoinen graafi Sovituksen peruskäsitteet Sovitusongelma Lisäyspolku Bipartite matching-algoritmi

Lisätiedot

Lyhin kahden solmun välinen polku

Lyhin kahden solmun välinen polku Lyhin kahden solmun välinen polku Haluamme etsiä lyhimmän polun alla olevan ruudukon kohdasta a kohtaan b vierekkäisten (toistensa sivuilla, ylä- ja alapuolella olevien) valkoisten ruutujen välinen etäisyys

Lisätiedot

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja 811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT VERKOT ELI GRAAFIT Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Graafiteoria (math.tut.fi/~ruohonen/gt.pdf) HISTORIAA Verkko- eli graafiteorian historia on saanut

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lineaarinen ohjelmointi..7 Luento 7 Duaalisimple ja herkkyysanalyysi (kirja 4.5, 5., 5.5-5.6) Lineaarinen ohjelmointi - Syksy 7 / Duaalisimple Herkkyysanalyysi Luentorunko Parametrinen ohjelmointi

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019

Lisätiedot

Kiinalaisen postimiehen ongelma

Kiinalaisen postimiehen ongelma Kiinalaisen postimiehen ongelma Kimmo Kontio 1.12.2015 Ohjaaja/Valvoja: Harri Ehtamo [5] Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta 811312A Tietorakenteet ja algoritmit 2018-2019 Kertausta jälkiosasta V Hashtaulukot ja binääriset etsintäpuut Hashtaulukot Perusajatus tunnettava Tiedettävä mikä on tiivistefunktio Törmäysongelman hallinta:

Lisätiedot

Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot

Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot Trigonometrian kaavat 1/6 Sisältö Ulkoa muistettavat peruskaavat Trigonometrisia funktioita koskevia kaavoja on paljon. Seuraavassa esitetään tärkeimmät ja lyhyet ohjeet niiden muistamiseen. Varsinaisesti

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min! Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Yleinen paikallinen vakautuva synkronointialgoritmi

Yleinen paikallinen vakautuva synkronointialgoritmi Yleinen paikallinen vakautuva synkronointialgoritmi Panu Luosto 23. marraskuuta 2007 3 4 putki 1 2 α α+1 α+2 α+3 0 K 1 kehä K 2 K 3 K 4 Lähdeartikkeli Boulinier, C., Petit, F. ja Villain, V., When graph

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I. Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Algoritmit 2. Demot Timo Männikkö

Algoritmit 2. Demot Timo Männikkö Algoritmit 2 Demot 4 24.-25.4.2019 Timo Männikkö Tehtävä 1 (a) int laske(n) { if (n

Lisätiedot

6.4. Järjestyssuhteet

6.4. Järjestyssuhteet 6.4. Järjestyssuhteet Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä). Suhde R joukossa

Lisätiedot

Iteratiiviset ratkaisumenetelmät

Iteratiiviset ratkaisumenetelmät Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n

Lisätiedot

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( ) Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,

Lisätiedot

Johdatus verkkoteoriaan luento Netspace

Johdatus verkkoteoriaan luento Netspace Johdatus verkkoteoriaan luento 10.4.18 Netspace Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot, verkon duaali, verkon upottaminen, verkon genus, verkon komplementti,

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta jälkiosasta IV Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden aikakompleksisuus

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT GRAAFITEHTÄVIÄ JA -ALGORITMEJA Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Graafiteoria (math.tut.fi/~ruohonen/gt.pdf) GRAAFIN LÄPIKÄYMINEN Perusta useimmille

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

1 Komparatiivinen statiikka ja implisiittifunktiolause

1 Komparatiivinen statiikka ja implisiittifunktiolause Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Rinnakkaistietokoneet luento S

Rinnakkaistietokoneet luento S Rinnakkaistietokoneet luento 4 521475S Rinnakkaiset ei-numeeriset algoritmit: transitiivisulkeuma (transitive closure) Oletetaan suunnattu graafi G = (V,E) ja halutaan tietää onko olemassa kahta pistettä

Lisätiedot

Pakkauksen sisältö: Sire e ni

Pakkauksen sisältö: Sire e ni S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el

Lisätiedot

8. Ensimmäisen käyvän kantaratkaisun haku

8. Ensimmäisen käyvän kantaratkaisun haku 38 8. Ensimmäisen käyvän kantaratkaisun haku Edellä kuvattu simplex-algoritmi tarvitsee alkuratkaisuksi käyvän kantaratkaisun eli käyvän joukon kärkipisteen. Sellaisen voi konstruoida seuraavilla tavoilla:

Lisätiedot

7.4. Eulerin graafit 1 / 22

7.4. Eulerin graafit 1 / 22 7.4. Eulerin graafit 1 / 22 Viivojen läpikäynti Graafin pisteiden/viivojen läpikäyminen esiintyy usein sovelluksissa: Etsintäalgoritmit, reititykset Läpikäyminen tehdään nopeimmin, kun yhtäkään viivaa/pistettä

Lisätiedot