Mat Lineaarinen ohjelmointi

Koko: px
Aloita esitys sivulta:

Download "Mat Lineaarinen ohjelmointi"

Transkriptio

1 Mat Lineaarinen ohjelmointi Luento 4 Ekstreemipisteiden optimaalisuus ja Simplex (kirja , ) Lineaarinen ohjelmointi - Syksy 2007 / 1

2 Luentorunko Degeneroituvuus Ekstreemipisteiden olemassaolo ja optimaalisuus Yhteenveto tähän asti Simplex Periaate Kantasuunnat Redusoidut kustannukset Optimaalisuusehdot Menetelmä Lineaarinen ohjelmointi - Syksy 2007 / 2

3 Degeneroituvuus (1/3) Edellinen luento: ratkaisun kiinnittää n kpl lineearisesti riippumattomia aktiivisia rajoitteita Kantaratkaisussa aktiivisia rajoitteita saattaa olla enemmän kuin n kpl usea tapa valita näistä n lineaarisesti riippumatonta, eli kannan valinta ei 1- käs! Tällöin sanotaan, että kantaratkaisu on degeneroitunut Standardimuotoisessa tehtävässä = yksi tai useampi kantamuuttuja nollassa Lineaarinen ohjelmointi - Syksy 2007 / 3

4 Degeneroituvuus (2/3) Esimerkki kakkutehtävästä Kylän leipomusvirasto päättää, ettei päivittäin leivottavien kinuskikakkujen lukumäärä saa ylittää suklaakakkujen määrää enemmällä kuin kolmella kakulla. Leipomo lisää siis rajoitteen x1 + x2+ x6 = 3 LP-tehtäväänsä: x 6 x 4 x 5 x 1 x 3 x 2 Nyt kantaratkaisussa D aktiivisina kolme rajoitetta x1 = x4 = x6, eli D on degeneroitunut (3>2) Kolme eri kantaa johtavat samaan ratkaisuun! Mitkä? Lineaarinen ohjelmointi - Syksy 2007 / 4

5 Degeneroituvuus (3/3) Degeneroituvuus on Simplexin kannalta kiusallinen ongelma Joakin degeneroituvuutta aiheuttavaa rajoitetta hieman poikkeuttamalla voidaan ongelmasta päästä eroon Esim. kinuskikakkujen määrä saa ylittää suklaakakkujen määrän enintään 2,9:llä ,9 Lineaarinen ohjelmointi - Syksy 2007 / 5

6 Ekstreemipisteiden olemassaolo (1/2) Teoreema 2.6: { i=1,...,m} n Ol. P= x R a i' x bi, seuraavat ovat ekvivalentteja: a) P:llä on ainakin yksi ekstreemipiste b) P ei sisällä suoraa a 1,...,a m c) Joukosta löytyy n kpl lineaarisesti riippumattomia vektoreita. Tällöin Lineaarinen ohjelmointi - Syksy 2007 / 6

7 Ekstreemipisteiden olemassaolo (2/2) Rajoitettu monitahokas ei sisällä suoraa Positiivisten akselien rajaama alue ei sisällä suoraa Siispä rajoitetulle monitahokkaalle ja monitahokkaalle standardimuodossa löytyy ainakin yksi käypä kantaratkaisu eli ekstreemipiste! Lineaarinen ohjelmointi - Syksy 2007 / 7

8 Ekstreemipisteiden optimaalisuus Seurauslause 2.3 Olkoon tehtävänä minimoida kustannusta c x monitahokkaassa P. Tällöin joko optimikustannus on - tai P:llä on olemassa ekstreemipiste, joka on optimaalinen Lineaarinen ohjelmointi - Syksy 2007 / 8

9 Yhteenveto tähän asti (1/2) LP-tehtävän ratkaisusta: Jos käypä joukko on epätyhjä ja rajoitettu, optimaalinen ratkaisu on olemassa ja löytyy ekstreemipisteestä Jos käypä joukko on rajoittamaton i) Optimi on olemassa ja löytyy ekstreempisteestä ii) Optimi on olemassa, mutta ei ekstreemipistettä (ei voi käydä standarimuodossa) iii) Optimaalinen kustannus on Lineaarinen ohjelmointi - Syksy 2007 / 9

10 Yhteenveto tähän asti (2/2) Kantaratkaisu saatiin kiinnittämällä kaksi lineaarisesti riippumatonta rajoitetta aktiivisiksi Rajoitteita vastaavat muuttujat nollassa loput muuttujat kannassa Kantamatriisi = kantamuuttujia vastavaavat sarakkeet matriisista A x 2 x 4 x 5 x 1 x 3 x 2 x x 1 3 = x5 x1,x2, x Aktiiviset rajoitteet Kannassa loput muuttujat 4 Lineaarinen ohjelmointi - Syksy 2007 / 10

11 Simplex: periaate (1/3) Standardimuotoisen tehtävän ratkaisu löytyy siis aina ekstreemipisteestä käydään ne kaikki läpi ja valitaan paras? Ekstreemipisteiden lkm on äärellinen, mutta voi kuitenkin kasvaa eksponentiaalisesti rajoitteiden lkm:n kanssa Tarvitaan menetelmä, joka siirtyy ekstreemipisteestä toiseen vain ratkaisun parantuessa Lineaarinen ohjelmointi - Syksy 2007 / 11

12 Simplex: periaate (2/3) Konveksin funktion lokaali minimi on konveksissa joukossa myös globaali Monitahokas on konveksi joukko, ja kustannusfunktio lineaarisena myös konveksi Riittää siis tutkia ratkaisun lähiympäristöä jos kustannus ei parane, ollaan lokaalissa eli globaalissa optimissa. Tehtävän ratkaisu löytyy aina kulmapisteestä - rajoitutaan tutkimaan liikkumista alueen reunoja pitkin kulmasta toiseen Lineaarinen ohjelmointi - Syksy 2007 / 12

13 Simplex: periaate (3/3) Simplex: 1) Etsitään mikä tahansa käypä kantaratkaisu 2) Siirrytään sellaiseen vierekkäiseen käypään kantaratkaisuun, joka antaa paremman arvon kustannukselle. Jatketaan tätä, kunnes parannusta ei enää tapahdu, ja ollaan optimissa. x 2 (0,0), kustannus 0 (2,0), kustannus -30 c ' x= 15x1+ 10x (2,2), kustannus -50, optimi (1,3), kustannus -45 x 1 Lineaarinen ohjelmointi - Syksy 2007 / 13 2

14 Simplex: kantasuunnat (1/4) Simplexissä liikutaan käyvän alueen reunoja pitkin Kulmapisteessä aktiivisia rajoitteita vastaavat muuttujat (siis ei-kantamuuttujat) nollassa poistuttaessa jokin x j näistä kasvaa (astuu kantaan) muiden pysyessä nollassa Kulmapisteestä lähdetään siis suuntaan d, jossa d j =1 ja d i kaikille muille eikantamuuttujien indekseille i x 2 x 1 x 4 x 2 x 5 x 3 Aktiivisina rajoitteet x 2. Lähdetään kasvattamaan x1 :ä, joten d1=1 ja d 2. x 1 x 1 Lineaarinen ohjelmointi - Syksy 2007 / 14

15 Simplex: kantasuunnat (2/4) Kantamuuttujia vastaa suunta = d,..., d. Jotta pysyttäisiin käyvässä alueessa, kun suuntaan d on liikuttu θ :n verran, tulee toteutua A ( x+θd) = b. Koska x on käypä (Ax=b), tarkoittaa edellinen Ad=0 Siis: 0 kääntyvä, eli j:s kantasuunta ( ) x d ( 1) ( m) n m = Ad = A d = A d + A = d + i i i= 1 i= 1 d = 1 A j A ( i) ( i) j j Lineaarinen ohjelmointi - Syksy 2007 / 15

16 Simplex: kantasuunnat (3/4) Jos lähtöpiste x ei ole degeneroitunut, toteutuvat suunnassa d myös muuttujien ei-negatiivisuusehdot : x 0 Ei-kantamuuttujien kohdalla selvästi, sillä j:s muuttuja kasvaa ja muut pysyvät nollassa Kantamuuttujien kohdalla riittävän pienellä θ x > 0, joten x θd 0 + Lineaarinen ohjelmointi - Syksy 2007 / 16

17 Simplex: kantasuunnat (4/4) Degeneroituneessa tilanteessa jokin kantamuuttuja on nollassa, eli saatetaan joutua pois käyvästä alueesta x ( ) Jos i, siirtyminen negatiiviseen suuntaan johtaa välittömästi ei-käyvään alueeseen x, Olkoot 1 x 6 eikantamuuttujia. Tuodaan x 1 kantaan, jolloin sitä kasvatetaan pitämällä x 6 nollassa. Tämä suunta vie välittömästi ulos käyvästä alueesta x 4 < 0 ( ) x 6 x 4 x 5 x 1 x 3 d ( i) Lineaarinen ohjelmointi - Syksy 2007 / 17

18 Simplex: redusoidut kustannukset (1/2) Siirryttäessä yksikön verran suuntaan d, kustannus muuttuu c ' d = c ' d + c Sijoitetaan tähän d :n yhtälö, jolloin saadaan muuttujaa x j vastaava redusoitu kustannus : c j j c j = c j c ' 1 A j Mudostavat vektorin c' = c' c ' 1 A Lineaarinen ohjelmointi - Syksy 2007 / 18

19 Simplex: redusoidut kustannukset (2/2) Ei-kantamuuttujan tapauksessa kertoo, miten muuttujan x j kantaan tuominen vaikuttaa kustannukseen Kantamuuttujan tapauksessa : c ( i ) = sillä c ( i ) c ' 1 A ( i ) c c Ts. ei hyödytä tuoda kantaan muuttujaa, joka siellä jo on = [ A,..., A ] = ( 1 ) ( m ) c ( i ) c j ' c j e i = c ( i ) ( i ) = 0 Lineaarinen ohjelmointi - Syksy 2007 / 19

20 Simplex: optimaalisuusehdot x j Muuttuja kannattaa tuoda kantaan, jos se aiheuttaa kustannuksen pienenemisen Optimiratkaisussa tällaista muuttujaa ei löydy Määritelmä 3.3: Kanta on optimaalinen, jos: 1 x = b 0 1 c' = c' c ' A 0 a) (käypyys) b) (ei kustannusta vähentäviä suuntia) Lineaarinen ohjelmointi - Syksy 2007 / 20

21 Simplex: menetelmä (1/6) Siirtyminen vierekkäiseen ratkaisuun: 1) Kasvatetaan kantaan astuvan, kustannusta pienentävän eikantamuuttujan arvoa 2) Suunta vähentää kustannusta, eli kannattaa siirtyä sitä pitkin niin pitkälle kuin mahdollista, t.s. alueen reunalle 3) Reunalla uusi rajoite aktiiviseksi = vastaava kantamuuttuja nollaksi eli pois kannasta: vierekkäinen ratkaisu! x 2 x 1 x 4 x 5 x 3 x x1 2 Aktiivisina rajoitteet x1 = x2 Tuodaan x 1 kantaan eli kasvatetaan sen arvoa kunnes törmätään alueen reunaan, jossa, siis pois kannasta x3 x3 Lineaarinen ohjelmointi - Syksy 2007 / 21

22 Simplex: menetelmä (2/6) Etsitään siis sellaista askelpituutta θ *, jolla juuri ja juuri pysytään alueessa: { θ 0 A( x+ θd) = b, x+ 0} θ* = max θd Koska Ad=0, on huolehdittava vain muuttujien einegatiivisuusehdoista Jos d 0, voidaan suuntaan d liikkua mielivaltaisen pitkälle, eli θ* =. Lineaarinen ohjelmointi - Syksy 2007 / 22

23 Simplex: menetelmä (3/6) Jos < 0 jollakin i, d i x i + θd 0 θ i x d i i Edellisen täytyy toteutua kaikilla i, θ :n arvo on: x { } = i θ* min i d i< 0 di { } < 0, joten suurin Koska ei-kantamuuttujille d i 0, 1, voidaan edellinen mininmointi rajoittaa kantamuuttujia vastaaviin indekseihin 1,..., m. ( ) ( ) d i Lineaarinen ohjelmointi - Syksy 2007 / 23

24 Simplex: menetelmä (4/6) Muuttujien päivitys: x j : = θ * x ( ) : = x ( ) + θ * d ( ), i=,..., m i i i 1 x ( l) menee nollaksi, eli poistuu kannasta; taas poikkeaa nollasta, eli astuu kantaan Uusi kantamatriisi saadaan korvaamalla :n muuttujaa x ( l) vastaava sarake A ( l ) kantaan otettua muuttujaa vastaavalla sarakkeella. x j x j A j Lineaarinen ohjelmointi - Syksy 2007 / 24

25 Simplex: menetelmä (5/6) Merkitään selkeyden vuoksi u= d Menetelmä: 1) Aloitetaan jostain käyvästä kantaratkaisusta x ja kantamatriisista 2) Lasketaa redusoidut kustannukset j j j jos kaikki positiivisia, ollaan optimissa. Jos ei, valitaan jokin neg. kustannusta vastaava kantaan astuvaksi u = 1 A j c 3) Lasketaan. Jos kaikki u:n komponentit einegatiivisia, on optimikustannus. x j c = c ' 1 A Lineaarinen ohjelmointi - Syksy 2007 / 25

26 Simplex: menetelmä (6/6) 4) Jos u:lla pos. komponentteja, lasketaan θ* 5) Edellisen minimoivaa indeksiä ( l ) vastaava muuttuja x ( poistuu kannasta. Uusi kantamatriisi saadaan l ) korvaamalla :n sarake A ( l ) sarakkeella A j. Uudet kantamuuttujien arvot ovat x j : = θ * ja : = x θ * u, i l. Ei-kantamuuttujat nollassa. x ( i ) ( i ) ( i ) x { } ( i ) = min i= 1,...,m u > ( i ) 0 u( i ) Lineaarinen ohjelmointi - Syksy 2007 / 26

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lineaarinen ohjelmointi..7 Luento 7 Duaalisimple ja herkkyysanalyysi (kirja 4.5, 5., 5.5-5.6) Lineaarinen ohjelmointi - Syksy 7 / Duaalisimple Herkkyysanalyysi Luentorunko Parametrinen ohjelmointi

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 5..7 Luento Kertausta Lineaarinen ohjelmointi - Syksy 7 / LP ja Simplex Kurssin rakenne Duaalisuus ja herkkyysanalyysi Verkkotehtävät Kokonaislukutehtävät Lineaarinen ohjelmointi

Lisätiedot

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen 4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus

Lisätiedot

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min! Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x

Lisätiedot

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi.

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. 5..0 Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (c) (d) Arvostelu Kanta on degeneroitunut jos ja vain jos sitä vastaava kantamatriisi on singulaarinen. Optimissa muuttujan

Lisätiedot

Johdatus verkkoteoriaan luento Netspace

Johdatus verkkoteoriaan luento Netspace Johdatus verkkoteoriaan luento 3.4.18 Netspace Matriisioperaatio suunnatuissa verkoissa Taustoitusta verkkoteorian ulkopuolelta ennen kuljetusalgoritmia LP-ongelma yleisesti LP = linear programming =

Lisätiedot

Luento 3: Simplex-menetelmä

Luento 3: Simplex-menetelmä Luento 3: Simplex-menetelmä Kuten graafinen tarkastelu osoittaa, LP-tehtävän ratkaisu on aina käyvän alueen kulmapisteessä, eli ekstreemipisteessä (extreme point). Simplex-menetelmässä ekstreemipisteitä,

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän

Lisätiedot

Piiri K 1 K 2 K 3 K 4 R R

Piiri K 1 K 2 K 3 K 4 R R Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä

Lisätiedot

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala Simplex-algoritmi T-6.5 Informaatiotekniikan seminaari..8, Susanna Moisala Sisältö Simplex-algoritmi Lähtökohdat Miten ongelmasta muodostetaan ns. Simplextaulukko Miten haetaan käypä aloitusratkaisu Mitä

Lisätiedot

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä

Lisätiedot

3 Simplex-menetelmä. c T x = min! Ax = b (x R n ) (3.1) x 0. Tarvittaessa sarakkeiden järjestystä voidaan vaihtaa, joten voidaan oletetaan, että

3 Simplex-menetelmä. c T x = min! Ax = b (x R n ) (3.1) x 0. Tarvittaessa sarakkeiden järjestystä voidaan vaihtaa, joten voidaan oletetaan, että 3 Simplex-menetelmä Lähdetään jostakin annettuun LP-tehtävään liittyvästä käyvästä perusratkaisusta x (0) ja pyritään muodostamaan jono x (1), x (2),... käypiä perusratkaisuja siten, että eräässä vaiheessa

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 5 2.2.28 Tehtävä a) Tehtävä voidaan sieventää muotoon max 5x + 9x 2 + x 3 s. t. 2x + x 2 + x 3 x 3 x 2 3 x 3 3 x, x 2, x 3 Tämä on tehtävän kanoninen muoto, n = 3 ja m =. b) Otetaan

Lisätiedot

Lineaarisen ohjelman määritelmä. Joonas Vanninen

Lineaarisen ohjelman määritelmä. Joonas Vanninen Lineaarisen ohjelman määritelmä Joonas Vanninen Sisältö Yleinen optimointitehtävä Kombinatorinen tehtävä Optimointiongelman tapaus Naapurusto Paikallinen ja globaali optimi Konveksi optimointitehtävä Lineaarinen

Lisätiedot

Malliratkaisut Demot 6,

Malliratkaisut Demot 6, Malliratkaisut Demot 6, 19.2.21 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lineaarinen ohjelmointi 8..7 Luento 8 Verkkotehtävät, simlex ja duaalisuus (kirja 7.-7., 7.6) Lineaarinen ohjelmointi - Syksy 7 / Motivointi Käsitteitä Verkkotehtävä Verkkosimlex Duaalitehtävä Yhteenveto

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

2 Konveksisuus ja ratkaisun olemassaolo

2 Konveksisuus ja ratkaisun olemassaolo 2 Konveksisuus ja ratkaisun olemassaolo Ratkaisun olemassaolon tutkimiseen tarvitaan perustietoja konvekseista joukoista ja lineaarialgebrasta. Niitä tarvitaan myös ratkaisualgoritmin ymmärtämiseen. Tutkitaan

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot

Kokonaislukuoptiomointi Leikkaustasomenetelmät

Kokonaislukuoptiomointi Leikkaustasomenetelmät Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 2.2.217 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös muotoon

Lisätiedot

Malliratkaisut Demot 5,

Malliratkaisut Demot 5, Malliratkaisut Demot 5, 2.2.25 Tehtävä : a) Tehtävä voidaan sieventää muotoon max 5x + 9x 2 + x 3 s. t. 2x +x 2 x 3 x 3 x 2 3 x 3 3 x,x 2,x 3 Tämä on tehtävän kanoninen muoto,n = 3 jam =. b) Otetaan käyttöön

Lisätiedot

Demo 1: Simplex-menetelmä

Demo 1: Simplex-menetelmä MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x

Lisätiedot

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä

Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Vesa Husgafvel Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä

Lisätiedot

8. Ensimmäisen käyvän kantaratkaisun haku

8. Ensimmäisen käyvän kantaratkaisun haku 38 8. Ensimmäisen käyvän kantaratkaisun haku Edellä kuvattu simplex-algoritmi tarvitsee alkuratkaisuksi käyvän kantaratkaisun eli käyvän joukon kärkipisteen. Sellaisen voi konstruoida seuraavilla tavoilla:

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2. a m1 x 1 + a m2 x 2 + + a mn x n b m x 1, x 2,..., x n 0 1

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n. TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

73125 MATEMAATTINEN OPTIMOINTITEORIA 2

73125 MATEMAATTINEN OPTIMOINTITEORIA 2 73125 MATEMAATTINEN OPTIMOINTITEORIA 2 Risto Silvennoinen Tampereen teknillinen yliopisto, kevät 2004 1. Peruskäsitteet Optimointiteoria on sovelletun matematiikan osa-alue, jossa tutkitaan funktioiden

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0

Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 Optimaalisuusehdot Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 i = 1,..., m j = 1,..., l missä f : R n R, g i : R n R kaikilla i = 1,..., m, ja h j : R n R kaikilla j = 1,..., l

Lisätiedot

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Duaalisuus kokonaislukuoptimoinnissa Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Duaalisuus binäärisissä optimointitehtävissä Lagrangen duaalisuus Lagrangen

Lisätiedot

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio Ellipsoidimenetelmä Kokonaislukuoptimointi Sovelletun matematiikan lisensiaattiseminaari Kevät 2008 / 1 Sisällys Ellipsoidimenetelmän geometrinen perusta ja menetelmän idea Formaali ellipsoidimenetelmä

Lisätiedot

Harjoitus 7: vastausvihjeet

Harjoitus 7: vastausvihjeet Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Taustatietoja ja perusteita

Taustatietoja ja perusteita Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1). HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen

Lisätiedot

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3. Lineaariset koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 22 3.1 Lineaarisen koodin määrittely Olkoon F äärellinen kunta.

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

1 Rajoitettu optimointi III - epäyhtälörajoitteet, teoriaa

1 Rajoitettu optimointi III - epäyhtälörajoitteet, teoriaa Taloustieteen mat.menetelmät syksy27 materiaali II-3 Rajoitettu optimointi III - epäyhtälörajoitteet, teoriaa. Perustehtävä Maksimoi f(x) ehdoilla g i (x), i = ; : : : ; k tässä f; g i : R n 7! R, i =

Lisätiedot

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 17.5.2017 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Martina Aaltonen, martina.aaltonen@helsinki.fi, 1/18 Siirry istumaan jonkun viereen. Kaikilla on

Lisätiedot

Talousmatematiikan perusteet

Talousmatematiikan perusteet kevät 19 / orms.30 Talousmatematiikan perusteet 8. harjoitus, viikko 11 (11.03..03.19) L Ma 12 A2 R0 Ti 14 16 F43 R01 Ma 12 14 F43 L To 08 A2 R02 Ma 16 18 F43 R06 To 12 14 F140 R03 Ti 08 F42 R07 Pe 08

Lisätiedot

Operatioanalyysi 2011, Harjoitus 3, viikko 39

Operatioanalyysi 2011, Harjoitus 3, viikko 39 Operatioanalyysi 2011, Harjoitus 3, viikko 39 H3t1, Exercise 3.1. H3t2, Exercise 3.2. H3t3, Exercise 3.3. H3t4, Exercise 3.4. H3t5 (Exercise 3.1.) 1 3.1. Find the (a) standard form, (b) slack form of the

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS 1. Suorakaiteen muotoisen lämmönvaraajan korkeus on K, leveys L ja syvyys S yksikköä. Konvektiosta ja säteilystä johtuvat lämpöhäviöt ovat verrannollisia lämmönvaraajan lämpötilan T ja ympäristön lämpötilan

Lisätiedot

1 Rajoitettu optimointi I

1 Rajoitettu optimointi I Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit

Lisätiedot

Luetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Luetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Luetteloivat ja heuristiset menetelmät Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Branch and Bound sekä sen variaatiot (Branch and Cut, Lemken menetelmä) Optimointiin

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Luento 4: Lineaarisen tehtävän duaali

Luento 4: Lineaarisen tehtävän duaali Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A = Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 211 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 ja B = 2 1 6 3 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A. 2. Laske seuraavat determinantit

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset 30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset Mitä on lineaarinen optimointi (LP)? LP= lineaarinen optimointiongelma (Linear Programming) Menetelmä, jolla etsitään

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Kandidaatintyö 22. marraskuuta 2012 Jerri Nummenpalo

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Talousmatematiikan perusteet: Luento 15 Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Viime luennolla Tarkastelimme usean muuttujan funktioiden rajoittamatonta optimointia:

Lisätiedot

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1 Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0

Lisätiedot

Kimppu-suodatus-menetelmä

Kimppu-suodatus-menetelmä Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia

Lisätiedot

Kanta ja Kannan-vaihto

Kanta ja Kannan-vaihto ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun

Lisätiedot

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat

Lisätiedot

4. Kokonaislukutehtävän ja LP:n yhteyksiä

4. Kokonaislukutehtävän ja LP:n yhteyksiä 8 4. Kokonaislukutehtävän ja LP:n yhteyksiä Minkowskin esityslauseen avulla voidaan osoittaa, että jos P on rationaalinen monitahokas ja S sen sisällä olevien kokonaislukupisteiden joukko, niin co(s) on

Lisätiedot

Keskeiset tulokset heikko duaalisuus (duaaliaukko, 6.2.1) vahva duaalisuus (6.2.4) satulapisteominaisuus (6.2.5) yhteys KKT ehtoihin (6.2.

Keskeiset tulokset heikko duaalisuus (duaaliaukko, 6.2.1) vahva duaalisuus (6.2.4) satulapisteominaisuus (6.2.5) yhteys KKT ehtoihin (6.2. Duaalisuus Lagrangen duaalifunktio ja duaalitehtävä määrittely ja geometria max θ(u,v), missä θ(u,v)=inf x X ϕ(x,u,v) s.e u 0 Lagr. funktio ϕ(x,u,v)=f(x)+u T g(x)+v T h(x) Keskeiset tulokset heikko duaalisuus

Lisätiedot