Mat Optimointiopin seminaari

Koko: px
Aloita esitys sivulta:

Download "Mat Optimointiopin seminaari"

Transkriptio

1 reference rogramming portfoliopäätösanalyysissa: Robust ortfolio Modeling (RM) -menetelmä Lähteet: Mat Optimointiopin seminaari Liesiö, J., Mild,., Salo, A., reference programming for robust portfolio modeling and proect selection, European Journal of Operational Research 181/3, s Mild,., Monitavoiteoptimointi siltoen korausohelman laatimisessa - RMmenetelmän soveltaminen, Tiehallinnon selvityksiä 2006.

2 Esityksen rakenne Johdanto RM-tehtävän määrittely Epätäydellinen informaatio Dominanssi Ei-dominoituen portfolioiden laskeminen Ydinluku äätössäännöt RM-tehtävissä RM: yhteenveto Sovellus Kotitehtävä

3 Johdanto 1/3 Viime viikolla reference rogramming viitekehys Epätäydellinen scoreinformaatio Epätäydellinen painoinformaatio Lasketaan ei-dominoidut vaihtoehdot Elisitoidaan mahdollisesti lisäinformaatiota Valitaan lopulta yksi eidominoiduista vaihtoehdoista päätössäännöillä (esim. Maximin) C 1 = alkka C 2 = C 3 = Mielenkiintoisuus Lomamäärä Tutkia [0.5, 0.7] [0.6, 0.9] [0.4, 0.6] Konsultti [0.8, 1.0] [0.5, 0.8] [0.2, 0.5] Opettaa [0.4, 0.6] [0.3, 0.7] [0.4, 0.7] S w ={w R 3 w 1 + w 2 + w 3 = 1, w 2 w 1, w 1 w 3, [w 1 w 2 w 3 ] 0}

4 Johdanto 2/3 Tänään RM (Robust ortfolio Modeling) Ulottaa reference rogrammingin periaatteet proektiportfolion valitsemiseen C 1 = Tuotto C 2 = Mielenkiintoisuus C 3 = Maineen kasvu roekti 1 [0.5, 0.7] [0.6, 0.9] [0.4, 0.6] roekti 2 [0.8, 1.0] [0.5, 0.8] [0.2, 0.5] roekti m [0.4, 0.6] [0.3, 0.7] [0.4, 0.7] S w ={w R 3 w1 + w2 + w3 = 1, w 1 w 3, w 3 w 2, [w 1 w 2 w 3 ] 0}

5 RM:n toimintaperiaate Johdanto 3/3

6 RM-tehtävän määrittely 1/2 roektit X={x 1,..., x m } Score-matriisi v ={v i [0, 1], =1,...,m, i=1,...,n} ainot w S ortfolio p X n 0 w w R n wi 0, wi 1 i 1 C 1... C n w 1... w n x 1 v v 1n x m v m1... v mn ortfolion kokonaisarvo V(p, w, v) x p V(x ) x n p i 1 w v i i

7 RM-tehtävän määrittely 2/2 Budettivektori B = [B 1,..., B q ] R q roektin kustannukset C(x ) = [c 1,..., c q ] ortfolion kustannukset Käypät portfoliot F = {p C(p) B} x + C(p) C(x p ) C 1... C n w 1... w n x 1 v v 1n x m v m1... v mn Jos olisi täydellinen paino- a scoreinformaatio, niin paras portfolio löytyisi ratkaisemalla tehtävä max p F x n pi 1 w v i i max z 1,...,z m m 1 z i n 1 w v i i m 1 z C(x ) B, z {0,1}

8 Epätäydellinen informaatio 1/2 ainoinformaatio S w epäyhtälöraoituksin 0 S w Score-informaatio intervallein S v {v R m n v i [v i,v i ]} w Kuva: Salo, A. A., Hämäläinen, R.., reference Assessment by Imprecise Ratio Statements, Operations Research 40/6, s Informaatiooukko S S w S v

9 Epätäydellinen informaatio 2/2 Jokaiselle w S w, v S v pätee V(p, w, v) [min V(p, w), max V(p, w)], w S w w S w C 1... C n w 1... w n x 1 v v 1n missä V(p, w) x n pi 1 w i v i, x m v m1... v mn V(p, w) x n pi 1 w v i i.

10 Määritelmä: Dominanssi 1/3 Olkoon p, p. Tällöin p p oss V(p,w,v) V(p,w,v) (w,v) S a S V(p,w,v) > V(p,w,v) ollakin (w,v) S. ortfolion kokonaisarvoa maksimoiva päätöksentekiä kiinnostunut vain ei-dominoiduista portfolioista

11 Lause 1: Dominanssi 2/3 Olkoon p, p a S = S w S v. Tällöin p S p' min[v(p \ p',w) w Sw max[v(p \ p',w) w S w V(p' \ V(p' \ p, w)] p, w)] 0 0 Lause 1 antaa kaavat, oilla tutkia portfolioiden välistä dominanssia käytännössä

12 Dominanssi 3/3 p S p' min[v(p \ p',w) w Sw max[v(p \ p',w) w S w V(p' \ p, w)] V(p' \ p, w)] 0 0 w Kuva: Salo, A. A., Hämäläinen, R.., reference Assessment by Imprecise Ratio Statements, Operations Research 40/6, s S w konveksi monikulmio => minimointi- a maksimointitehtävien ratkaisut löytyvät S w :n kärkipisteistä

13 Ei-dominoituen portfolioiden Määritelmä: laskeminen 1/3 Ei-dominoituen portfolioiden oukko informaatiooukon S suhteen on (S) {p F p' S p p' F }. eriaatteessa :n voisi laskea seuraavasti: 1. Listaa kaikki mahdolliset portfoliot 2. oista ei-käypät, olloin älelle ää F 3. Muodosta tekemällä F :ssä pareittaisia dominanssi-tarkistuksia Tämä on kuitenkin usein laskennallisesti liian raskas menettely

14 Ei-dominoituen portfolioiden laskeminen 2/3 Rekursiivinen algoritmi For k ~ (a) (b) k k {{ {p },{x 2,..., m do {p {p {p m 1 }} ~ F k k x 1 p' k p p' p' p, (p \{x k ~ p' 1 k s.t. p' s.t. p' m } k } k 1 )} p, C(p' ) p, C(p' ) C(p)} C(p)} Laskennallisesti tehokkaampi tapa

15 Ei-dominoituen portfolioiden laskeminen 3/3 (S):ssä on yleensä useita alkioita Ei-dominoituen portfolioiden lkm:ää voidaan koettaa pienentää elisitoimalla lisäinformaatiota Lause 2: ~ S ~ Lisää painoraotteita Sw S Kapeammat score-intervallit S, int(s) ~ S a/tai ( w ) ~ ( Sv Sv ~ ( S) (S) )

16 Ydinluku 1/3 Määritelmä: roektin x ydinluku informaatiooukon S suhteen on Ydinluvun perusteella voidaan sanoa selkeitä suosituksia yksittäisistä proekteista, vaikka ei-dominoitua portfolioita olisikin monta CI(x,S) {p (S) x (S) p}

17 Ydinluku 2/3 Määritelmä: Ydinproek tit :X Raatapausproektit Ulkoproektit :X C E ( S) :X ( S) B { x ( S) { x X { x X CI ( x X 0 CI ( x, S) 1}, CI ( x, S) 0}., S) 1}, Lauseesta 2 seuraa: ~ S ~ S, int(s) S X C (S) X C ~ ( S), X E (S) X E ~ ( S) Lisäinformaation myötä raatapausproektea saadaan siirrettyä ydin- a ulkoproekteihin äädyttyään ydin- tai ulkoproektiksi, proektin status ei tule enää muuttumaan

18 Ydinluku 3/3 Ei-dominoidut portfoliot poikkeavat toisistaan vain X B (S):n suhteen Lisäinformaation elisitoimisen pitäisi keskittyä raatapausproektien score-intervallien kapeuttamamiseen a/tai painoinformaation keräämiseen Ydin- a ulkoproektien scoreen tarkentaminen ei muuta ei-dominoituen portfolioiden oukkoa

19 äätössäännöt RM-tehtävissä 1/2 Ydinluku kuvaa yksittäisen proektin robustisuutta (herkkyyttä informaation muutoksille) Kokonaisille portfolioille tarvitaan robustisuus-mittaa erityisesti silloin, kun lisäinformaatiota ei ole tarolla, mutta pitäisi silti antaa päätössuosituksia portfolioista Tarvitsee kuitenkin tutkia vain ei-dominoitua portfolioita

20 äätössäännöt RM-tehtävissä 2/2 Absolute robustness ~ Maximin: min arg max min V(p,w) p w S w Robust deviation ~ Minimax-regret: mmr arg min max[ V(p' \ p, w) - V(p \ p',w)] p p' w, S w

21 RM: yhteenveto Interaktiivinen Läpinäkyvä Ei-dominoituen portfolioiden analysoimisessa apuna: ortfolion kriteerikohtaiset scoret ortfolion kokonaisscore-intervalli Ydinluvut proektitasolla Robustisuus-mitat portfoliotasolla

22 RM-sovellus: Siltoen korausohelman laatiminen Lähtökohta: Tarkastelussa 313 siltaa Kaakkois-Suomen tiepiiristä itäisi muodostaa portfolio kunnostettavista silloista Sovelluksessa käytetään vanhaa aineistoa, onka pohalta tiepiiri on o oikeasti tehnyt hankesuunnitelman silloista RM-tuloksia voidaan verrata vanhaan suunnitelmaan

23 Kriteerit C 1 = Vauriopistesumma (VS) C 2 = Koraustarveindeksi (KTI) C 3 = Toiminnalliset puutteet (TM puut.) C 4 = Liikenteellinen merkitys (KVL) C 5 = Suolattavuus (Suola) C 6 = Esteettisyys (Estets)

24 Kriteerikohtaiset scoret 1/2 Kaikissa kriteereissä käytettiin pisteytystä 1-5 Korkeammat pisteet ilmaisevat korkeampaa koraustarvetta Score-informaatio oletettiin tarkaksi (v i = v i )

25 Kriteerikohtaiset scoret 2/2 Esimerkki: VS-, KTI- a KVL kriteerien pisteytys Liikenteellinen luokka isteet Runkoverkko 5 Muut valta- kantatiet 4.2 Muut tiet KVL Muut tiet KVL Muut tiet KVL Muut tiet KVL

26 ainoinformaatio S w = {w R 6 w i =1, w 1 w 3, w 4, w 5, w 6, w 2 w 3, w 4, w 5, w 6, w 3 w 5, w 6, w 4 w 5, w 6, w 0} C 1 = Vauriopistesumma (VS) C 2 = Koraustarveindeksi (KTI) C 3 = Toiminnalliset puutteet (TM puut.) C 4 = Liikenteellinen merkitys (KVL) C 5 = Suolattavuus (Suola) C 6 = Esteettisyys (Estets)

27 Raoitusehdot 1. Budettiraoitus 9,000, ortfolioon saa kuulua korkeintaan 90 hanketta Seuraa käytettävissä olevista resursseista 3. ortfolion todellisen VS:n pitää olla vähintään 15,000 vauriopistettä Seuraa tulostavoitteesta

28 Optimoinnin tulokset Optimoinnissa löytyi 4420 ei-dominoitua portfoliota Kaikkiin sisältyy 90 proektia Budetti käytetty varsin täysimääräisesti kaikissa Todellisen VS:n vaihteluväli [15002, 19415]

29 Ydinlukuanalyysi Ydinproektien lkm X C (S) = 39 Raatapausproektien lkm X B (S) = 112 Ulkoproektien lkm X E (S) = 162 Esimerkinomaisena oukkona mukana myös proektit, oilla ydinluku suurempi kuin 0.5 äitä oli 89 kpl Yhteiskustannus 8,970,000 Myös asetettu VS-alaraa ylittyy

30 Ydinlukuanalyysi

31 Kriteereiden välinen korrelaatio 1/2 roektien kriteerikohtaisista scoreista laskettiin kriteereiden välisiä korrelaatioita VS:llä a KTI:llä = 0.71 KVL:llä a Suolalla = 0.81 Kriteerien tulisi olla preferenssiriippumattomia => kriteerien välisen positiivisen korrelaation kanssa oltava tarkkana, ottei kriteerien taustalla oleva ilmiö tule ylipainotetuksi

32 Kriteereiden välinen korrelaatio 2/2 Huolellisesti rakennetussa mallissa korrelaatiosta kuitenkin peräti hyötyä arantaa ydinlukuun perustuvien proektioukkoen erottuvuutta (enemmän varmoa ydin- a ulkohankkeita) Auttaa seulomaan kaikkien kriteerien suhteen hyviä proektea

33 RM-tulosten vertailu toteutuneeseen hankesuunnitelmaan Toteutuneessa hankesuunnitelmassa on 67 sellaista siltaa, otka mukana myös RMmallin oukossa ydinluku yli /89 75% Tulokset varsin yhdenmukaiset Toteutettu hankesuunnitelma perustui yksinomaan kahteen ensimmäiseen kriteeriin

34 Kotitehtävä 1/2 C 1 = C 2 = C 3 = Tuotto Mielenkiintoisuus Maineenkasvu roekti 1 [0.80, 1.0] [0.13, 0.33] [0.60, 0.80] roekti 2 [0.80, 1.0] [0.80, 1.0] [0.20, 0.40] roekti 3 [0.52, 0.72] [0.45, 0.65] [0.30, 0.50] roekti 4 [0.50, 0.70] [0.80, 1.0] [0.10, 0.30] roekti 5 [0.45, 0.65] [0.40, 0.60] [0.0, 0.20] roekti 6 [0.80, 1.0] [0.72, 0.92] [0.0, 0.20] S w ={w R 3 w 1 + w 2 + w 3 = 1, w 2 w 1, w 1 w 3, [w 1 w 2 w 3 ] 0}

35 Kotitehtävä 2/2 1. Määritä ei-dominoidut proektiportfoliot, kun portfolioon saa kuulua enintään 3 proektia 2. Mikä portfolio tulisi valita, os lopulta käytetään Maximin-päätössääntöä? Ratkaisut voi lähettää sähköpostitse osoitteeseen pekka.laitila@aalto.fi tai antaa ensi viikon haroituksen yhteydessä

Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla

Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla Mat-2.4142 Optimointiopin seminaari kevät 2011 Lähde: Liesiö, J., Mild, P., Salo, A., 2008. Robust portfolio

Lisätiedot

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Mat-2.4142 Optimointiopin seminaari 9.2.2011 Lähteet: Salo, A. & Hämäläinen, R. P., 2010.

Lisätiedot

Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely)

Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely) Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely) Jussi Hirvonen 23.03.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely)

Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely) Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely) Juha Kännö 23..22 Ohjaajat: TkL Antti Punkka, DI Eeva Vilkkumaa Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa

Lisätiedot

Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen

Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen 07.05.2012 Ohjaaja: Raimo Hämäläinen Valvoja: Raimo Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely)

Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely) Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely) Santtu Saijets 16.6.2014 Ohjaaja: Juuso Liesiö Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

Kaksi sovellusta robustien päätössuositusten tuottamisesta

Kaksi sovellusta robustien päätössuositusten tuottamisesta Esitelmä 12 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Kaksi sovellusta robustien päätössuositusten tuottamisesta Antti Toppila 2.3.2011 Esitelmä 12 Antti Toppila sivu 2/19 Optimointiopin

Lisätiedot

Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa

Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa Juha Kännö Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa Perustieteiden korkeakoulu Kandidaatintyö Espoo 23..22 Vastuuopettaja: Prof. Ahti Salo Työn ohjaajat: TkL Antti Punkka DI Eeva Vilkkumaa

Lisätiedot

Preference Programming viitekehys tehokkuusanalyysissä

Preference Programming viitekehys tehokkuusanalyysissä Preference Programming viitekehys tehokkuusanalyysissä Mat-2.4142 Optimointiopin seminaari kevät 2011 Salo, A., Punkka, A., 2011. Ranking Intervals and Dominance Relations for Ratio-Based Efficiency Analysis,

Lisätiedot

monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi Ohjaaja: Prof. Kai Virtanen Valvoja: Prof.

monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi Ohjaaja: Prof. Kai Virtanen Valvoja: Prof. Epätäydellisen preferenssiinformaation hyödyntäminen monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi 15.1.2018 Ohjaaja: Prof. Kai Virtanen Valvoja: Prof. Kai Virtanen Tausta Päätöspuu

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

RPM-menetelmän päätössääntöjen tilastollinen vertailu

RPM-menetelmän päätössääntöjen tilastollinen vertailu Mat-2.4108 Sovelletun matematiikan erikoistyöt RPM-menetelmän päätössääntöjen tilastollinen vertailu Topi Sikanen 55670A Tfy N 30.9.2008 Sisältö 1 Johdanto 2 2 Projektiportfolion valinta epätäydellisellä

Lisätiedot

Luento 6: Monitavoiteoptimointi

Luento 6: Monitavoiteoptimointi Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman

Lisätiedot

Additiivinen arvofunktio

Additiivinen arvofunktio Additiivinen arvofunktio Mat-.44 Optimointiopin seminaari kevät 0 Preferenssi Päätöksentekijällä preferenssi vaihtoehtojen a,b A välillä a parempi kuin b ( a b) b parempi kuin a ( b a) Indifferentti vaihtoehtojen

Lisätiedot

Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely)

Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely) Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely) Markus Losoi 30.9.2013 Ohjaaja: DI Antti Toppila Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

Monitavoiteoptimointi siltojen korjausohjelman laatimisessa

Monitavoiteoptimointi siltojen korjausohjelman laatimisessa OPTIMOINTIMALLIN PISTEET Kohdenumero ja nimi Ydinluku VPS KTI TM puut. KVL Suola Estets Hinta 2109 Lavus joen s ilta 1.00 5.00 1.65 4 2.6 1 2.6 50000 2218 J oroisvirran silta 1.00 5.00 5.00 2 5 5 2.6 180000

Lisätiedot

Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus

Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Mat-2.4142 Optimointiopin seminaari 2.3.2011 Lähteet: Clemen, R. T., & Smith, J. E. (2009). On the Choice of Baselines

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.1.213 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Arvohäviö Rank Inclusion in Criteria Hierarchies menetelmässä. Jari Mustonen, 47046C,

Arvohäviö Rank Inclusion in Criteria Hierarchies menetelmässä. Jari Mustonen, 47046C, Arvohäviö Rank Inclusion in Criteria Hierarchies menetelmässä Jari Mustonen, 47046C, jari.mustonen@iki. 4. huhtikuuta 2005 Sisältö 1 Johdanto 2 2 Aikaisempi tutkimus 3 2.1 Arvopuuanalyysi.........................

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.01.2013 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Additiivinen arvofunktio projektiportfolion valinnassa

Additiivinen arvofunktio projektiportfolion valinnassa Esitelmä 5 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Additiivinen arvofunktio projektiportfolion valinnassa Antti Toppila 2.2.2011 Esitelmä 5 Antti Toppila sivu 2/19 Optimointiopin seminaari

Lisätiedot

Päätösanalyyttisiä huomioita luonnonarvokaupasta

Päätösanalyyttisiä huomioita luonnonarvokaupasta Päätösanalyyttisiä huomioita luonnonarvokaupasta Antti Punkka Systeemianalyysin laboratorio Teknillinen korkeakoulu http://www.sal.tkk.fi/ antti.punkka@tkk.fi 1 Sisältö METSO-ohjelma ja luonnonarvokauppa

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen

Lisätiedot

Sovellus: Portfoliopäätösanalyysi lentoliikenteen parantamisen tukena

Sovellus: Portfoliopäätösanalyysi lentoliikenteen parantamisen tukena Sovellus: Portfoliopäätösanalyysi lentoliikenteen parantamisen tukena Mat-2.4142 Optimointiopin seminaari kevät 2011 Sisällys 1. Ongelma: Lentoliikenteen parannus 2. Ongelma: Projektien valinta 3. Esimerkki

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti

INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti 12.11.1999 INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E Mat-2.142 Optimointiopin seminaari Referaatti Syksy 1999 1. JOHDANTO Thomas M. Stratin artikkeli Decision Analysis Using Belief Functions käsittelee

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Signalointi: autonromujen markkinat

Signalointi: autonromujen markkinat Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot.. Tehtävä Edellinen tehtävä voidaan ratkaista mm. Bellman-Fordin, Floyd-Warshallin tai Dikstran algoritmilla. Kyseessä on syklitön suunnattu verkko, oten algoritmi. (lyhimmät tiet

Lisätiedot

Mat-2.4194 Research Course in Systems Science: Trends and Developments in Decision Analysis. Home Assignment

Mat-2.4194 Research Course in Systems Science: Trends and Developments in Decision Analysis. Home Assignment Mat-2.4194 Research Course in Systems Science: Trends and Developments in Decision Analysis Punkka / Liesiö Home Assignment Malli Tavoitteena on tarkastella siltojenkorjausohjelman laatimista RPM-menetelmällä.

Lisätiedot

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Duaalisuus kokonaislukuoptimoinnissa Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Duaalisuus binäärisissä optimointitehtävissä Lagrangen duaalisuus Lagrangen

Lisätiedot

Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV

Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV Mat-.4 Optimointiopin seminaari, syksy 999 Referaatti 7.0.999 Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV JOHDATO Ross D. Shachter a C. Robert Kenley (989) esittelevät artikkelissaan Gaussian

Lisätiedot

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Mat-2.4142 Optimointiopin seminaari kevät 2011 Esityksen rakenne I osa Tehokkuudesta yleisesti DEA-mallin perusajatus CCR-painotus II osa

Lisätiedot

Optimaalisen tuotekehitysportfolion valinta kasvuyrityksessä

Optimaalisen tuotekehitysportfolion valinta kasvuyrityksessä Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Optimaalisen tuotekehitysportfolion valinta kasvuyrityksessä Kandidaatintyö 21.8.2014 Santtu Saijets Työn

Lisätiedot

U missä U A := {U R n : U avoin ja U A}; intuitiivisesti suurin avoin joukko, joka sisältyy A:han. Määritellään A:n sulkeuma A := F F A

U missä U A := {U R n : U avoin ja U A}; intuitiivisesti suurin avoin joukko, joka sisältyy A:han. Määritellään A:n sulkeuma A := F F A Mitta a integraali Kesä 2 4. tehtävät Malliratkaisut (LS). Olkoon a i R i =, 2,... ono. Sanotaan, että i a i = os kaikille M R on olemassa i, olle kaikille i i pätee a i M. Sanotaan, että i a i = os i

Lisätiedot

Harjoitus 1 (20.3.2014)

Harjoitus 1 (20.3.2014) Harjoitus 1 (20.3.2014) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Hämeenlinna 4 = Imatra 5 = Jyväskylä. 5 2 149(5) 190(4) 113(1)

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio Ellipsoidimenetelmä Kokonaislukuoptimointi Sovelletun matematiikan lisensiaattiseminaari Kevät 2008 / 1 Sisällys Ellipsoidimenetelmän geometrinen perusta ja menetelmän idea Formaali ellipsoidimenetelmä

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 12.3.2018 Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 297 4 2 4 163 3 454 6 179 2 136 2 169 2 390 4 3 436 7 5 Kuva 1: Tehtävän 1

Lisätiedot

Kokonaislukuoptiomointi Leikkaustasomenetelmät

Kokonaislukuoptiomointi Leikkaustasomenetelmät Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Moraalinen uhkapeli: perusmalli ja optimaalinen sopimus

Moraalinen uhkapeli: perusmalli ja optimaalinen sopimus Moraalinen uhkapeli: perusmalli a optimaalinen sopimus Mat-2.4142 Optimointiopin seminaari Mauno Taaamaa 18.02.2008 Esityksen rakenne Johdanto moraalisen uhkapelin käsite) Yksinkertaistettu tapaus a sen

Lisätiedot

Osakesalkun optimointi

Osakesalkun optimointi Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän

Lisätiedot

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100 HARJOITUS, RATKAISUEHDOTUKSET, YLE 07.. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 0x +0xy +5y (b.) f(x,y) = 4x y xy +x+y +00 (a.) Funktion kriittiset pisteet ratkaisevat

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

Matriisilaskenta Luento 8: LU-hajotelma

Matriisilaskenta Luento 8: LU-hajotelma Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun

Lisätiedot

Mat Optimointiopin seminaari

Mat Optimointiopin seminaari Lähde: Preferenssi-informaatio DEA-malleissa: Value Efficiency Analysis (VEA) -menetelmä Mat-2.4142 Optimointiopin seminaari 23.3.2011 Halme, M., Joro, T., Korhonen, P., Wallenius, J., 1999. A Value Efficiency

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Haitallinen valikoituminen: Kahden tyypin malli

Haitallinen valikoituminen: Kahden tyypin malli Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies

Lisätiedot

Harjoitus 1 (17.3.2015)

Harjoitus 1 (17.3.2015) Harjoitus 1 (17.3.2015) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Helsinki 4 = Kuopio 5 = Joensuu. a) Tehtävänä on ratkaista Bellman

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 5 2.2.28 Tehtävä a) Tehtävä voidaan sieventää muotoon max 5x + 9x 2 + x 3 s. t. 2x + x 2 + x 3 x 3 x 2 3 x 3 3 x, x 2, x 3 Tämä on tehtävän kanoninen muoto, n = 3 ja m =. b) Otetaan

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien

Lineaaristen monitavoiteoptimointitehtävien Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

Referenssipiste- ja referenssisuuntamenetelmät

Referenssipiste- ja referenssisuuntamenetelmät Referenssipiste- ja referenssisuuntamenetelmät Optimointiopin seminaari - Kevät 2000 / 1 Esitelmän sisältö Menetelmien ideat Menetelmien soveltaminen Menetelmien ominaisuuksia Optimointiopin seminaari

Lisätiedot

Rationalisoituvuus ja yleinen tieto rationaalisuudesta

Rationalisoituvuus ja yleinen tieto rationaalisuudesta Rationalisoituvuus ja yleinen tieto rationaalisuudesta Keskeiset termit: Rationalizability rationalisoituvuus ratkaisukonsepti peliteoriassa Rationalizable rationalisoituva Rationality rationaalisuus pelaajat

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Portfoliomalli turpeenoton optimointiin

Portfoliomalli turpeenoton optimointiin Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Portfoliomalli turpeenoton optimointiin Kandidaatintyö 7.12.2012 Joonas Ollila Työn saa tallentaa ja julkistaa

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

Innovaatioaihioiden vuorovaikutteinen tarkastelu monikriteerisessä RPM-seulonnassa

Innovaatioaihioiden vuorovaikutteinen tarkastelu monikriteerisessä RPM-seulonnassa Mat-2.108 - Sovelletun matematiikan erikoistyö 4.1.2006 Innovaatioaihioiden vuorovaikutteinen tarkastelu monikriteerisessä RPM-seulonnassa TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Erkka Jalonen

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 4. Eulerin a Fermat'n lauseet à 4.1 Alkuluokka a Eulerin -funktio Yleensä olemme kiinnostuneita vain niistä äännösluokista

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot

Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu

Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu (Valmiin työn esittely) 11.4.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Työn tavoite Tutkia evoluutioalgoritmia (Lee

Lisätiedot

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen 4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus

Lisätiedot

Pelien teoriaa: tasapainokäsitteet

Pelien teoriaa: tasapainokäsitteet Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen

Lisätiedot

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä

Lisätiedot

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0. HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (

Lisätiedot

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine Vaasan yliopiston julkaisuja 97 5 DETERMINANTIT Ch:Determ Sec:DetDef 5.1 Determinantti Tämä kappale jakautuu kolmeen alakappaleeseen. Ensimmäisessä alakappaleessa määrittelemme kaksi- ja kolmiriviset determinantit.

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä

Lisätiedot

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization 7.5.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Tausta Ilmavoimilla tärkeä rooli maanpuolustuksessa Rauhan aikana

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Esteet, hyppyprosessit ja dynaaminen ohjelmointi

Esteet, hyppyprosessit ja dynaaminen ohjelmointi Esteet, hyppyprosessit ja dynaaminen ohjelmointi Juha Martikainen 4.10.2000 Oppikirjan sivut 83-87 ja 93-98 Optimointiopin seminaari - Syksy 2000 / 1 Esteet (määritelmät) Muistellaan menneitä: Ajelehtiva

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0

Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 Optimaalisuusehdot Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 i = 1,..., m j = 1,..., l missä f : R n R, g i : R n R kaikilla i = 1,..., m, ja h j : R n R kaikilla j = 1,..., l

Lisätiedot

Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista

Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Antti-Juhani Kaijanaho 15. maaliskuuta 2012 1 Apumääritelmä Määritelmä 1. Olkoon Σ merkistö, jolla on olemassa täydellinen järjestys ( ) Σ 2.

Lisätiedot

Diskreettiaikainen dynaaminen optimointi

Diskreettiaikainen dynaaminen optimointi Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u

Lisätiedot

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet Mat-2.142 Optimointiopin seminaari kevät 2000 Monitavoiteoptimointi Optimointiopin seminaari - Kevät 2000 / 1 Tavoitteet Monitavoitteisten optimointitehtävien ratkaisukäsitteet ja soveltamismahdollisuudet

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

8. Ensimmäisen käyvän kantaratkaisun haku

8. Ensimmäisen käyvän kantaratkaisun haku 38 8. Ensimmäisen käyvän kantaratkaisun haku Edellä kuvattu simplex-algoritmi tarvitsee alkuratkaisuksi käyvän kantaratkaisun eli käyvän joukon kärkipisteen. Sellaisen voi konstruoida seuraavilla tavoilla:

Lisätiedot

Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu

Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu Vilma Virasjoki 19.11.2012 Ohjaaja: DI Jouni Pousi Valvoja: Professori Raimo P.

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Harjoitus 12: Monikriteerinen arviointi

Harjoitus 12: Monikriteerinen arviointi Harjoitus 12: Monikriteerinen arviointi MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheet Monikriteerinen arviointi Kurssin opetusteemojen

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Monitavoiteoptimointi tienpidon tuotteiden välisessä rahanjaossa

Monitavoiteoptimointi tienpidon tuotteiden välisessä rahanjaossa Monitavoiteoptimointi tienpidon tuotteiden välisessä rahanjaossa Menetelmän testaaminen Kaakkois-Suomen tiepiirin aineistolla Esittäjä, paikka, aika Teknillinen korkeakoulu PL 1100, 0 TKK 1 Taustaa Tienpidon

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3 7.3.07 Tehtävä Olkoon tilamuuttujat Tällöin saadaan rekursioyhtälö f n (x n ) = max yn {0,} ynwn xn f 0 ( ) = 0. x n = vaiheessa n jäljellä oleva paino, n =,...,N, esine n pakataan

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Yhteistyötä sisältämätön peliteoria

Yhteistyötä sisältämätön peliteoria Yhteistyötä sisältämätön peliteoria jarkko.murtoaro@hut.fi Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Käsitteistö Työkalut Nashin tasapaino Täydellinen tasapaino Optimointiopin seminaari

Lisätiedot

Mat Operaatiotutkimuksen projektityöseminaari

Mat Operaatiotutkimuksen projektityöseminaari Mat-2.177 Operaatiotutkimuksen projektityöseminaari Loppuraportti 19.4.2004 Projekti Asiakas Monitavoitteinen portfolio-optimointi tiestön päällystämishankkeiden valinnassa Inframan Oy Yhteyshenkilö Jaakko

Lisätiedot

9 Matriisit. 9.1 Matriisien laskutoimituksia

9 Matriisit. 9.1 Matriisien laskutoimituksia 9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä

Lisätiedot

Ratkaisuehdotukset LH 8 / vko 47

Ratkaisuehdotukset LH 8 / vko 47 Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat

Lisätiedot

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)

Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6) Tehtävä 1 Päättele resoluutiolla seuraavista klausuulijoukoista. a. {{p 0 }, {p 1 }, { p 0, p 2 }, {p 1, p 2, p 3 }, { p 2, p 3 }, {p 3 }}, b. {{ p 0, p 2 }, {p 0, p 1 }, {{ p 1, p 2 }, { p 2 }}, c. {{p

Lisätiedot