Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Koko: px
Aloita esitys sivulta:

Download "Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly"

Transkriptio

1 Toistetut pelit MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Elmeri Lähevirta The document can be stored and made available to the public on the open internet pages of Aalto University. All other rights are reserved.

2 Toistetut pelit Staattiset eli yhden kerran pelattavat pelit kuvaavat tosielämän tapahtumia huonosti Harvat tilanteet tosielämässä tapahtuvat vain kerran Käytännön kannalta staattisia pelejä mielenkiintoisempia ovat toistetut pelit Staattisen pelin muuntaminen toistetuksi ei tarkoita sitä, että toistetun pelin tasapaino olisi aina sama kuin staattisen pelin Pelin luonne usein muuttuu paljonkin toistetuissa peleissä Tärkeä tekijä toistetuissa peleissä on se, että pelaajat voivat tehdä pelin aikana valintansa vastustajan aikaisempiin valintoihin perustuen

3 Toistetut pelit Toistetussa pelissä jotakin peliä pelataan useita kertoja samojen pelaajien toimesta. Peliä, jota toistetaan kutsutaan vaihepeliksi (engl. stage game) Vaihepeli on yleensä normaalimuotoinen Tyypillisessä toistetussa pelissä: 1. Pelaajat pelaavat normaalimuotoista peliä (vaihepeliä) 2. Pelin jälkeen he näkevät, mitä tapahtui (ja saavat sen pelin tuotot) 3. Tämän jälkeen peliä pelataan uudestaan 4. Jne.

4 Toistetut pelit Toistettua peliä voidaan pelata: 1. Rajallinen ja tunnettu määrä kertoja 2. Rajallinen, mutta tuntematon määrä kertoja 3. Rajaton määrä kertoja Seuraavaksi katsotaan esimerkkejä kaksi kertaa toistetusta vangin dilemmasta

5 Esimerkki Kahdesti pelattu vangin dilemma normaalimuodossa

6 Esimerkki Kahdesti pelattu vangin dilemma normaalimuodossa Normaalimuoto on intuitiivinen esitysmuoto, mutta jättää monta asiaa epäselväksi Näkevätkö agentit, mitä toinen pelaaja on pelannut aikaisemmin? Muistavatko agentit, mitä he tiesivät aikaisemmin? Mikä on koko toistetun pelin tuotto? Täydellisempi esitystapa on esittää rajallinen toistettu peli epätäydellisen informaation pelinä laajennetussa muodossa

7 Esimerkki 2 Kahdesti pelattu vangin dilemma laajennetussa muodossa

8 Esimerkki 2 Kahdesti pelattu vangin dilemma laajennetussa muodossa Huomioitavia seikkoja: 1. Jokaisen vaihepelin aikana pelaajat eivät tiedä toisen pelaajan toimintoa, mutta jälkikäteen tietävät 2. Agenttien tuottofunktio on additiivinen Toistetun pelin tuotto on yksittäisten vaihepelien tuottojen summa

9 Esimerkki 2 Kahdesti pelattu vangin dilemma laajennetussa muodossa Huomataan myös, että toistetun pelin strategia-avaruus on vaihepelin strategia-avaruutta paljon suurempi Selvästi yksi strategia olisi pelata samalla strategialla jokaisessa yksittäisessä vaihepelissä Tällaista muistitonta strategiaa kutsutaan stationaariseksi strategiaksi (engl. stationary strategy)

10 Esimerkki 2 Kahdesti pelattu vangin dilemma laajennetussa muodossa Induktiolla takaperin voidaan todistaa, että rajallisesti toistetun vangin dilemman osapelitäydellinen Nashin tasapaino on aina vasikoida Vasikointi on myös vaihepelin Nashin tasapaino Toistetun pelin yksi osapelitäydellinen tasapaino on aina pelata jotakin vaihepelin Nashin tasapainoa Rajallisesti toistetun pelin tapauksessa nämä ovat myös ainoat tasapainot (induktion perusteella) Rajattomasti toistetuissa peleissä on myös muita tasapainoja (katsotaan niitä myöhemmin)

11 Rajattomasti toistetut pelit Rajattomasti toistetuissa peleissä vaihepeliä pelataan äärettömän monta kertaa Rajattomasti toistetun pelin esittäminen laajennetussa muodossa johtaa äärettömään puuhun Toistetun pelin tuottoja ei voida kiinnittää mihinkään päätössolmuun Eikä niitä voida laskea vaihepelien tuottojen summana (olisi yleensä ääretön) On olemassa kaksi yleisesti tunnettua tapaa esittää pelaajan tuotto äärettömästi toistetussa pelissä: 1. Keskiarvotuotto (engl. average reward) 2. Diskontattu tuotto (engl. discounted reward)

12 Keskiarvotuotto (engl. average reward) Olkoon r i (1), ri (2), ääretön jono pelaajan i vaihepelien tuottoja Pelaajan i keskiarvotuotto on tällöin: k (j) σ j=1 r i lim k k Keskiarvotuotto olettaa, että pelaaja pitää kaikkia tulevaisuuden tuottoja yhtä arvokkaina verrattuna lähitulevaisuuden tuottoihin Aina ei ole järkevää tehdä tällaista oletusta Eikä keskiarvotuottoa aina välttämättä pystytä laskemaan

13 Diskontattu tuotto (engl. discounted reward) Olkoon r i (1), ri (2), ääretön jono pelaajan i vaihepelien tuottoja ja β on diskonttauskerroin, 0 β 1 Pelaajan i diskontattu tuotto on tällöin σ j=1 β j r i (j) Pelaajan i tulevaisuuden diskontattu tuotto (engl. future discounted reward) jossakin pelin vaiheessa on pelaajan i saama välitön tuotto sen hetkisestä vaihepelistä summattuna tulevaisuuden kierroksien diskontatulla tuotolla

14 Diskontattu tuotto (engl. discounted reward) Diskonttauskerroin voidaan tulkita kahdella eri tavalla: 1. Pelaajat välittävät hyvinvoinnistaan enemmän lähitulevaisuudessa kuin kauempana tulevaisuudessa 2. Pelaajat arvostavat yhtä paljon tulevaisuutta kuin nykyhetkeä, mutta jollakin todennäköisyydellä peli loppuu millä tahansa kierroksella 1 β kuvaa tuota todennäköisyyttä Pelin analyysi on sama molemmilla tulkinnoilla

15 Kansanteoreemat (engl. folk theorems) Kansanteoreemat auttavat ymmärtämään toistettujen pelien Nashin tasapainojen avaruutta Kansanteoreemat eivät luokittele tasapainojen strategiaprofiileja vaan niillä saavutettuja tuottoja Miten äärettömästi toistetun pelin Nashin tasapainoille voidaan antaa mitään vaadittavia ominaisuuksia? Vaaditaanko osapelitäydellisyys? Käytetäänkö keskiarvo- vai diskontattua tuottoa? Helpoin tapaus: Ei osapelitäydellisyyttä, keskiarvotuotolla Käydään tämä seuraavaksi läpitte

16 Kansanteoreema(t) (engl. folk theorem(s)) Määritetään, mitä keskiarvotuottoja (r 1, r 2,, r n ) pelaajat voivat saada Nashin tasapainossa: Keskiarvotuottojen (r 1, r 2,, r n ) täytyy olla käypiä (engl. feasible) Keskiarvotuottojen on oltava sellaisia, että ne on saavutettavissa jollakin sekastrategialla (keskiarvoisesti) vaihepelin tuotoista Yleisesti, vaihepelin tuottojen konveksit kombinaatiot ovat käypiä Keskiarvotuottojen (r 1, r 2,, r n ) pitää olla rangaistavissa olevia (engl. enforceable) Keskiarvotuotoille r i pitää päteä: r i v i i = 1 n, missä v i on pelaajan i minmax-arvo Pelaajan i minmax-arvo = Pelaajan i saama hyöty, kun muut pelaajat pelaavat minmax-strategiaa häntä vastaan ja hän pelaa parhaimman vasteen. Rangaistavissa olevuus takaa sen, että poikkeamiset tasapainostrategiasta voidaan muiden pelaajien toimesta rankaisemalla tehdä kannattamattomiksi

17 Esimerkki - Käypyys Tutkitaan oikealla olevaa äärettömästi toistettua vangin dilemman peliä Esimerkiksi keskiarvotuotto (-1,-1) on käypä, koska se saavutettaisiin sillä, että molemmat pelaisivat aina (C,C) (-2, -2) on käypä, koska se saavutettaisiin sillä, että vuoroteltaisiin strategioita (C,C) ja (D,D) (= pelattaisiin kumpaakin 50% kerroista) (-4, -1) ei ole käypä, koska pelaajan 1 keskiarvotuotto -4 voitaisiin saavuttaa vain pelaamalla aina strategiaa (C,D), mutta tässä tapauksessa pelaajan 2 keskiarvotuotto olisi 0

18 Esimerkki Rangaistavissa olevuus Tutkitaan taas samaa äärettömästi toistettua vangin dilemman peliä Esimerkiksi keskiarvotuotto -4 pelaajalle 1 ei ole rangaistavissa oleva, koska pelaaja 1 voi taata itselleen vähintään hyödyn -3 vasikoimalla -2 pelaajalle 1 on rangaistavissa oleva, koska pelaaja 2 voi taata pelaajalle 1 korkeintaan hyödyn -3 vasikoimalla

19 Kansanteoreema(t) (engl. folk theorem(s)) Kansanteoreema: Keskiarvotuotot (r 1, r 2,, r n ) voidaan saavuttaa jollakin Nashin tasapainostrategialla, jos ja vain jos ne ovat sekä käypiä että rangaistavissa olevia Tämä on siis vain yksi kansanteoreema kokonaisesta joukosta kansanteoreemia Pätee Nashin tasapanoille äärettömästi toistetuissa täydellisen informaation peleissä, joissa käytetään keskiarvotuottoa Kansanteoreemia on olemassa myös rajattomasti toistetuille peleille, joissa käytetään diskontattua tuottoa, osapelitäydellisille tasapainoille sekä epätäydellisen informaation toistetuille peleille Kaikissa kuitenkin pohjimmiltaan rajoittavana tekijänä tuottojen käypyys ja rangaistavissa olevuus

20 Tit-for-tat strategia (suom. silmä silmästä -strategia) Tit-for-tat strategia yksinkertaisesti: Pelaa ensimmäisellä kierroksella yhteistyötä Ensimmäisen kierroksen jälkeen pelaa sitä, mitä toinen pelaaja pelasi viime kierroksella Tit-for-that strategiat perustuvat välittömään Rangaistukseen huonosta käyttäytymisestä Anteeksiantoon hyvästä käyttäytymisestä Kannustavat tämän takia pelaamaan yhteistyötä Tutkitaan seuraavaksi äärettömästi toistettua vangin dilemman peliä, jossa vastustaja pelaa TfT-strategiaa

21 Tit-for-tat strategia kahden pelaajan äärettömästi toistetussa vangin dilemman pelissä Tiedetään, että vastustaja pelaa TfT-strategiaa Verrataan kolmea vaihtoehtoa: 1. Petetään vastustaja kerran ja jatketaan sen jälkeen yhteistyötä koko loppupelin ajan 2. Petetään vastustajaa koko loppupelin ajan 3. Jatketaan yhteistyötä koko loppupelin ajan Meidän saamat hyödyt eri tapauksissa: AR(-1) (AR = average reward) AR(-3) AR(-1) Meille paras vaihtoehto on jatkaa yhteistyötä (3.)

22 Tit-for-tat strategia kahden pelaajan äärettömästi toistetussa vangin dilemmassa Edellinen esimerkki oletti, että arvostamme tulevaisuuden tuottoja yhtä paljon kuin nykyisiä (diskonttauskerroin β = 1) Tapauksessa, jossa 0 β < 1 voidaan kuitenkin laskea, että diskonttauskertoimen β pitäisi vähintään olla 1/3, että pelaajan kannattaa jatkaa yhteistyötä, jos hän tietää, että toinen pelaaja pelaa TfT-strategiaa

23 Muita strategioita Trigger strategy, grim trigger (suom. (armoton) kostostrategia) Aluksi aloitetaan yhteistyöllä Jos vastustaja pettää kerrankin yhteistyön, yhteistyötä ei pelata sen jälkeen enää koskaan Tit-for-two-tats (suom. silmä kahdesta silmästä) Aloitetaan yhteistyöllä ja yhteistyötä oletusarvoisesti jatketaan Jos vastustaja on pettänyt kaksi edellistä kertaa peräkkäin, petetään. Muuten pelataan yhteistyötä Ei ole niin tehokas kuin TfT-strategia, mutta sillä voidaan yrittää välttää kahden TfTstrategiaa pelaavan pelaajan kuoleman kierre

24 Terminologia Vaihepeli (stage game) peli, jota toistetuissa peleissä pelataan toistetusti. Stationaarinen strategia (stationary strategy) Strategia, jossa jokaisessa toistetun pelin yksittäisessä vaihepelissä pelataan samalla strategialla. On täysin muistiton strategia ja ei ota huomioon mitenkään pelin sen hetkistä historiaa. Keskiarvotuotto (average reward) Pelaajan saama keskiarvoinen tuotto yhdestä vaihepelistä äärettömästi toistetussa pelissä. Diskontattu tuotto (discounted reward) Summa pelaajan tulevaisuuden kierroksien tuotoista diskontattuna jollakin vakiolla β, 0 β 1 Kansanteoreemat (folk theorems) Ovat joukko teoreemia mahdollisista Nashin tasapainojen tuotoista toistetuissa peleissä

25 Kotitehtävä Tit-for-tat-strategian esimerkissä laskettiin, että pelaajan kannattaa jatkaa yhteistyötä koko loppupelin ajan, jos hän tietää, että vastustaja pelaa TfTstrategiaa. Esimerkin tehtävässä kuitenkin oletettiin, että diskonttauskerroin β = 1 Näytä laskemalla, jos käytetään keskiarvotuoton sijaan diskontattua tuottoa ja β < 1, että samassa äärettömästi toistetussa pelissä diskonttauskertoimen pitää olla vähintään 1/3, että sinun on kannattavaa jatkaa peliä muiden vaihtoehtojen sijaan. Eli vertaa millä β:n arvolla vaihtoehdon 3. hyöty on suurin. Vihje: Muodosta jokaiselle vaihtoehdolle tulevaisuuden diskontattu tuotto (samalla tavalla kuin esimerkissä, mutta käyttäen diskontattua tuottoa keskiarvotuoton sijaan) Vihje 2: Ensimmäisen vaihtoehdon odotettu tuotto on muotoa (perustele miksi): β + σ j=2 1β j (Petetään kerran ja jatketaan yhteistyötä loppupelin ajan)

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Opettaminen ja oppiminen

Opettaminen ja oppiminen Opettaminen ja oppiminen MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 19.10.2016 Nina Gunell The document can be stored and made available to the public on the open internet pages of Aalto

Lisätiedot

Kommunikaatio Visa Linkiö. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Kommunikaatio Visa Linkiö. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Kommunikaatio MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 2.11.2016 Visa Linkiö The document can be stored and made available to the public on the open internet pages of Aalto University.

Lisätiedot

Pohdiskeleva ajattelu ja tasapainotarkennukset

Pohdiskeleva ajattelu ja tasapainotarkennukset Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen

Lisätiedot

Johdanto peliteoriaan Kirja kpl. 2

Johdanto peliteoriaan Kirja kpl. 2 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 1 Johdanto peliteoriaan Kirja kpl. 2 Ilkka Leppänen 20.1.2010 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 2 Aiheet Laajennettu

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

LAAJENNETUN MUODON RATIONALISOITUVUUS. S ysteemianalyysin. Arno Solin Laboratorio. Aalto-yliopiston Teknillinen korkeakoulu

LAAJENNETUN MUODON RATIONALISOITUVUUS. S ysteemianalyysin. Arno Solin Laboratorio. Aalto-yliopiston Teknillinen korkeakoulu LAAJENNETUN MUODON RATIONALISOITUVUUS 3.3.2010 Pähkinänkuoressa: Laajennetun muodon rationalisoituvuus Laajennetun muodon peli (Extensive Form Game) Laajennetun muodon pelin tasapainokäsitteitä. Tosimaailman

Lisätiedot

Dynaaminen hintakilpailu ja sanattomat sopimukset

Dynaaminen hintakilpailu ja sanattomat sopimukset Dynaaminen hintakilpailu ja sanattomat sopimukset Pasi Virtanen 12.3.2003 Johdanto Hintakilpailu jossa pelaajat kohtaavat toisensa toistuvasti Pelaajien on otettava hintaa valittaessa huomioon hintasodan

Lisätiedot

Yhteistyötä sisältämätön peliteoria

Yhteistyötä sisältämätön peliteoria Yhteistyötä sisältämätön peliteoria jarkko.murtoaro@hut.fi Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Käsitteistö Työkalut Nashin tasapaino Täydellinen tasapaino Optimointiopin seminaari

Lisätiedot

Luento 8. June 3, 2014

Luento 8. June 3, 2014 June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa

Lisätiedot

Sekastrategiat ja intensiiviyhteensopivuus

Sekastrategiat ja intensiiviyhteensopivuus Sekastrategiat ja intensiiviyhteensopivuus Petteri Räty 2010-03-14 God does not play dice with the universe Albert Einstein Agenda Intensiiviyhteensopivuuden käsite Yrittää vastata kysymykseen, mitä sekastrategiat

Lisätiedot

Tasapaino epätäydellisen tiedon peleissä

Tasapaino epätäydellisen tiedon peleissä hyväksymispäivä arvosana arvostelija Tasapaino epätäydellisen tiedon peleissä Marja Hassinen Helsinki 9..2006 Peliteoria-seminaarin esitelmä HESINGIN YIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto

Lisätiedot

Pelien teoriaa: tasapainokäsitteet

Pelien teoriaa: tasapainokäsitteet Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

SEKASTRATEGIAT PELITEORIASSA

SEKASTRATEGIAT PELITEORIASSA SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

Rationalisoituvuus ja yleinen tieto rationaalisuudesta

Rationalisoituvuus ja yleinen tieto rationaalisuudesta Rationalisoituvuus ja yleinen tieto rationaalisuudesta Keskeiset termit: Rationalizability rationalisoituvuus ratkaisukonsepti peliteoriassa Rationalizable rationalisoituva Rationality rationaalisuus pelaajat

Lisätiedot

PELITEORIAN PERUSTEITA

PELITEORIAN PERUSTEITA PELITEORIAN PERUSTEITA Matti Estola 29. marraskuuta 2013 Sisältö 1 Johdanto 2 2 Peliteoreettisen analyysin vaiheet 2 3 Staattiset pelit täydellisen informaation vallitessa 3 4 Pelin ratkaiseminen 4 4.1

Lisätiedot

Sekastrategia ja Nash-tasapainon määrääminen

Sekastrategia ja Nash-tasapainon määrääminen May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat

Lisätiedot

Evolutiivisesti stabiilin strategian oppiminen

Evolutiivisesti stabiilin strategian oppiminen Evolutiivisesti stabiilin strategian oppiminen Janne Laitonen 8.10.2008 Maynard Smith: s. 54-60 Johdanto Käytös voi usein olla opittua perityn sijasta Tyypillistä käytöksen muuttuminen ja riippuvuus aikaisemmista

Lisätiedot

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Peliteoria Strategiapelit ja Nashin tasapaino Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Helsinki 11.09.2006 Peliteoria Tomi Pasanen HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö

Lisätiedot

Epätäydellisen tiedon jatkuvat pelit. Mika Viljanen Peliteorian seminaari

Epätäydellisen tiedon jatkuvat pelit. Mika Viljanen Peliteorian seminaari Epätäydellisen tiedon jatkuvat pelit Mika Viljanen Peliteorian seminaari Erityispiirteitä Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista

Lisätiedot

Luento 7. June 3, 2014

Luento 7. June 3, 2014 June 3, 2014 Peli, jossa on kaksi Nash-tasapainoa. Yksi tasapaino on (1; 2) ja toinen (2; 1); P1:n valinta on ilmoitettu ensin. Ensimmäinen tasapaino ei vaikuta hyvältä; se perustuu epäuskottavaan uhkaukseen.

Lisätiedot

Y56 laskuharjoitukset 6

Y56 laskuharjoitukset 6 Y56 Kevät 00 Y56 laskuharjoitukset 6 Palautus joko luennolle/mappiin tai Katjan lokerolle (Koetilantie 5, 3. krs) to.4. klo 6 mennessä (purku luennolla ti 7.4.) Ole hyvä ja vastaa suoraan tähän paperiin.

Lisätiedot

Vangin dilemma häiriöisessä ympäristössä Markov-prosessina (valmiin työn esittely) Lasse Lindqvist

Vangin dilemma häiriöisessä ympäristössä Markov-prosessina (valmiin työn esittely) Lasse Lindqvist Vangin dilemma häiriöisessä ympäristössä Markov-prosessina (valmiin työn esittely) Lasse Lindqvist 21.01.2013 Ohjaaja: Kimmo Berg Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Pelit matematiikan opetuksessa

Pelit matematiikan opetuksessa Pelit matematiikan opetuksessa Vadim Kulikov Helsingin Yliopisto Matematiikan ja tilastotieteen laitos Epsilonit kirjaa tutkimassa, 28.01.2012 Millaisia pelejä? pärjääminen edellyttää ongelmanratkaisukykyä,

Lisätiedot

Hintakilpailu lyhyellä aikavälillä

Hintakilpailu lyhyellä aikavälillä Hintakilpailu lyhyellä aikavälillä Virpi Turkulainen 5.3.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Johdanto Bertrandin ristiriita ja sen lähestyminen Bertrandin ristiriita Lähestymistavat:

Lisätiedot

Luento 5: Peliteoria

Luento 5: Peliteoria Luento 5: Peliteoria Portfolion optimointi Sijoittajan tehtävä Nashin tasapaino Vangin ongelma Nashin neuvotteluratkaisu 1 Portfolion optimointi Varallisuus A sijoitetaan n:ään sijoituskohteeseen (osake,

Lisätiedot

Signalointi: autonromujen markkinat

Signalointi: autonromujen markkinat Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli

Lisätiedot

Luku 29 Peliteoria. Käsittelemme aluksi peliteorian peruskäsitteitä ja sanastoa, sitten katsomme itse pelejä.

Luku 29 Peliteoria. Käsittelemme aluksi peliteorian peruskäsitteitä ja sanastoa, sitten katsomme itse pelejä. Y56 Kevät 2010 1 Luku 29 Peliteoria Tässä luvussa tarkastellaan peliteorian perusteita. Tavoitteena on, että opit muodostamaan itsenäisesti kutakin peliä kuvaavat osat, ratkaisemaan erilaisten pelien tasapainon

Lisätiedot

Luento 9. June 2, Luento 9

Luento 9. June 2, Luento 9 June 2, 2016 Otetaan lähtökohdaksi, että sopimuksilla ei voida kattaa kaikkia kontingensseja/maailmantiloja. Yksi kiinnostava tapaus on sellainen, että jotkut kontingenssit ovat havaittavissa sopimusosapuolille,

Lisätiedot

V ar(m n ) = V ar(x i ).

V ar(m n ) = V ar(x i ). Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia

Lisätiedot

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) 11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan

Lisätiedot

Strateginen kanssakäyminen. Taloustieteen perusteet Matti Sarvimäki

Strateginen kanssakäyminen. Taloustieteen perusteet Matti Sarvimäki Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki Johdanto Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen

Lisätiedot

Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki

Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki 6/9/8 Johdanto Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen

Lisätiedot

Peliteoria luento 3. May 27, Peliteoria luento 3

Peliteoria luento 3. May 27, Peliteoria luento 3 May 27, 2015 Dominanssi Mitkä ovat uskottavia tulemia? Ja miksi? Yksi päätösteoreettinen periaate on dominanssi. Kuten lähes kaikkia taloustieteessä kiinnostavia käsitteitä niitä on kahta lajia. Aito ja

Lisätiedot

Peliteoria ja kalatalous YE4

Peliteoria ja kalatalous YE4 Peliteoria ja kalatalous YE4 Kansainväliset kalastussopimukset Tarve kansainväliselle yhteistyölle: Vain kestävillä kansainvälisillä sopimuksilla voidaan taata biologinen ja taloudellinen tehokkuus. Neuvottelujen

Lisätiedot

Informaatio ja Strateginen käyttäytyminen

Informaatio ja Strateginen käyttäytyminen Informaatio ja Strateginen käyttäytyminen Nuutti Kuosa 2.4.2003 Sisältö Johdanto Duopoli ja epätietoisuutta kilpailijan kustannuksista Kilpailijan tietämyksen manipulointi Duopoli ja epätietoisuutta kysynnästä

Lisätiedot

Hex-pelin matematiikkaa

Hex-pelin matematiikkaa Solmu 3/2013 1 Hex-pelin matematiikkaa Tuomas Korppi Johdanto Hex on kahden pelaajan strategiapeli, jonka ovat keksineet toisistaan riippumatta matemaatikot Piet Hein ja taloustieteen Nobelinkin saanut

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva

Lisätiedot

x+3 = n(y 3) y +n = 3(x n). Kun ylemmästä yhtälöstä ratkaistaan x = n(y 3) 3 ja sijoitetaan alempaan, saadaan

x+3 = n(y 3) y +n = 3(x n). Kun ylemmästä yhtälöstä ratkaistaan x = n(y 3) 3 ja sijoitetaan alempaan, saadaan 19.1. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ ÐÓÔÔÙ ÐÔ ÐÙÒ Ö Ø ÙØ 2018 1. Eevalla ja Martilla on kokonaislukumäärä euroja. Martti sanoi Eevalle: Jos annat minulle kolme euroa, niin minulla on n-kertainen määrä rahaa sinuun

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon

Lisätiedot

Strategiset valinnat Taloustieteen perusteet Matti Sarvimäki. A. Peliteorian alkeet. Johdanto. Johdanto 15/09/19

Strategiset valinnat Taloustieteen perusteet Matti Sarvimäki. A. Peliteorian alkeet. Johdanto. Johdanto 15/09/19 Johdanto Strategiset valinnat Taloustieteen perusteet Matti Sarvimäki Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen peliteorian

Lisätiedot

Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely)

Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Riku Hyytiäinen 23.02.2015 Ohjaaja: Harri Ehtamo Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa

Lisätiedot

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1 May 25, 2015 Tavoitteet Valmius muotoilla strategisesti ja yhteiskunnallisesti kiinnostavia tilanteita peleinä. Kyky ratkaista yksinkertaisia pelejä. Luentojen rakenne 1 Joitain pelejä ajanvietematematiikasta.

Lisätiedot

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,... Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

JOHDATUSTA PELITEORIAAN

JOHDATUSTA PELITEORIAAN JOHDATUSTA PELITEORIAAN Satu Adel Pro gradu -tutkielma Heinäkuu 2019 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO Turun yliopiston laatujärjestelmän mukaisesti tämän julkaisun alkuperäisyys on

Lisätiedot

PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA

PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA Matti Estola 29 marraskuuta 2013 Sisältö 1 Cournot'in duopolimalli 2 2 Pelin Nash -tasapainon tulkinta 3 3 Cournot'in mallin graanen ratkaisu 4 4 Bertrandin duopolimalli

Lisätiedot

Martingaalit ja informaatioprosessit

Martingaalit ja informaatioprosessit 4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu

Lisätiedot

Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta

Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta Johdantoa peliteoriaan - ka ytetyt termit Peliteoria tutkii pelaajien toimintaa peleissa. Mika on peli? Mika on pelaaja? Peli tarkasti

Lisätiedot

Epätäydellisen tiedon jatkuvat pelit

Epätäydellisen tiedon jatkuvat pelit Epätäydellisen tiedon jatkuvat pelit Mika Viljanen Helsinki 4..2006 Peliteorian seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto 2 Epätäydellisen tiedon jatkuva peli 2. Jatkuvan

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

Strategiset valinnat. Taloustieteen perusteet Matti Sarvimäki

Strategiset valinnat. Taloustieteen perusteet Matti Sarvimäki Strategiset valinnat Taloustieteen perusteet Matti Sarvimäki Johdanto Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen peliteorian

Lisätiedot

INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti

INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti 12.11.1999 INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E Mat-2.142 Optimointiopin seminaari Referaatti Syksy 1999 1. JOHDANTO Thomas M. Stratin artikkeli Decision Analysis Using Belief Functions käsittelee

Lisätiedot

Evolutiivinen stabiilisuus populaation

Evolutiivinen stabiilisuus populaation Antti Toppila sivu 1/20 Optimointiopin seminaari Syksy 2008 Evolutiivinen stabiilisuus populaation määrittämisessä Antti Toppila 24.9.2008 Antti Toppila sivu 2/20 Optimointiopin seminaari Syksy 2008 Sisältö

Lisätiedot

Johdatus logiikkaan I Harjoitus 4 Vihjeet

Johdatus logiikkaan I Harjoitus 4 Vihjeet Johdatus logiikkaan I Harjoitus 4 Vihjeet 1. Etsi lauseen ((p 0 p 1 ) (p 0 p 1 )) kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa normaalimuodossa, (b) konjunktiivisessa normaalimuodossa.

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 4 ratkaisut Tehtävä 1. Määritä suurin aste k, johon saakka kuvan verkot G ja G ovat osittaisesti isomorfisia: Ratkaisu 1. Huomataan aluksi, että G =4 G : Ehrenfeucht-Fraïssé

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Mallivastaukset 9. 2. (a) Dominoiva strategia on tarjota oman arvostuksensa verran, eli tässä e 10 miljoonaa. Tarjoamalla yli oman arvostuksen tekisi vain mahdolliseksi sen, että joutuu maksamaan yli oman

Lisätiedot

Yleinen tietämys ja Nashin tasapaino

Yleinen tietämys ja Nashin tasapaino Yleinen tietämys ja Nashin tasapaino 24.3.2010 Nashin tasapaino Ratkaisumalli kahden tai useamman pelaajan pelille. Yleisesti: Jos jokainen pelaaja on valinnut strategiansa eikä yksikään pelaaja voi hyötyä

Lisätiedot

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2 May 26, 2014 Pelien luokittelua Peliteoriassa pelit voidaan luokitella yhteistoiminnallisiin ja ei-yhteistoiminnallisiin. Edellisissä kiinnostuksen kohde on eri koalitioiden eli pelaajien liittoumien kyky

Lisätiedot

Lyhyen aikavälin hintakilpailu 2/2

Lyhyen aikavälin hintakilpailu 2/2 Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta

Lisätiedot

D1 YA-joukkue Palaute pelaajilta ja vanhemmilta

D1 YA-joukkue Palaute pelaajilta ja vanhemmilta D1 YA-joukkue Palaute pelaajilta ja vanhemmilta Tässä esityksessä on kaudella 2011-2012 Kiva HT D1 nimellä pelanneen seurayhteistyöjoukkueen palauteyhteenveto Joukkue pelasi kaudella 2011-2012 aluekarsinnan

Lisätiedot

Toistetun haukka-kyyhky -pelin numeerinen analysointi

Toistetun haukka-kyyhky -pelin numeerinen analysointi AALTO YLIOPISTON PERUSTIETEIDEN KORKEAKOULU Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Toistetun haukka-kyyhky -pelin numeerinen analysointi Kandidaatintyö 28.11.2012 Joonas Tarpila Työn saa

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

Determinoiruvuuden aksiooma

Determinoiruvuuden aksiooma Determinoiruvuuden aksiooma Vadim Kulikov Esitelma 12 Maaliskuuta 2008 Tiivistelma. Valinta-aksioomasta seuraa, etta Leb(R) ( P(R), eli on olemassa epamitallisia joukkoja. Tassa esitelmassa nahdaan, etta

Lisätiedot

Geneettiset algoritmit

Geneettiset algoritmit Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin

Lisätiedot

Valintahetket ja pysäytetyt martingaalit

Valintahetket ja pysäytetyt martingaalit 4B Valintahetket ja pysäytetyt martingaalit Tämän harjoituksen tavoitteena on oppia tunnistamaan, mitkä satunnaishetket ovat valintahetkiä ja oppia laskemaan lukuarvoja ja estimaatteja satunnaisprosessien

Lisätiedot

Martingaalit ja informaatioprosessit

Martingaalit ja informaatioprosessit 6A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on oppia tunnistamaan, milloin satunnaisprosessi on martingaali annetun informaatioprosessin suhteen ja milloin satunnaishetki on

Lisätiedot

Laskelmointia mielen evoluutiosta

Laskelmointia mielen evoluutiosta VIRPI KAUKO Laskelmointia mielen evoluutiosta ihmisen ja muiden eläinten yhteistyö- ja kilpailustrategioiden, sukulaisaltruismin yms. vuorovaikutusten tarkastelua luonnonvalinnan kannalta [SKEPSIS RY:N

Lisätiedot

Dynaaminen hintakilpailu ja sanattomat (epäsuorat) sopimukset osa II

Dynaaminen hintakilpailu ja sanattomat (epäsuorat) sopimukset osa II Dynaaminen hintakilpailu ja sanattomat (epäsuorat) sopimukset osa II Olavi Toivainen 12.3.2003 Sanattomien sopimusten mallintaminen ja kontrollointi, miksi? EU Artikla 81 yritysten välisistä kilpailua

Lisätiedot

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen.

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen. Joukko-oppia Matematiikan mestariluokka, syksy 2010 Harjoitus 1, vastaukset 20.2.2010 1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi asettele

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Fuusio vai konkurssi? Hintakilpailun satoa

Fuusio vai konkurssi? Hintakilpailun satoa Fuusio vai konkurssi? Hintakilpailun satoa Pia Kemppainen-Kajola 02.04.2003 Optimointiopin seminaari - Syksy 2000 / 1 Johdanto Yrityskaupat ilmoitetaan kaupparekisteriin. Kauppa kiinnostaa kilpailuviranomaisia,

Lisätiedot

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä

Lisätiedot

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus

Lisätiedot

Informaation arvo. Ohjelmistotekniikan laitos OHJ-2550 Tekoäly, kevät

Informaation arvo. Ohjelmistotekniikan laitos OHJ-2550 Tekoäly, kevät 259 Informaation arvo Öljykenttään myydään porausoikeuksia, palstoja on n kappaletta, mutta vain yhdessä niistä on C euron edestä öljyä Yhden palstan hinta on C/n euroa Seismologi tarjoaa yritykselle tutkimustietoa

Lisätiedot

Haitallinen valikoituminen: Kahden tyypin malli

Haitallinen valikoituminen: Kahden tyypin malli Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies

Lisätiedot

1 Reaaliset lukujonot

1 Reaaliset lukujonot Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot

Lisätiedot

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C1 Assist. Jan Jääskeläinen Syksy 17 Mallivastaukset 7. 1. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 5 asukasta. Taidemuseoilla on

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Tehtävä 1 on klassikko. 1. Tässä tehtävässä tapahtumat A ja B eivät välttämättä

Lisätiedot

Projektin arvon aleneminen

Projektin arvon aleneminen Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

Paljonko maksat eurosta -peli

Paljonko maksat eurosta -peli Paljonko maksat eurosta -peli - Ajattele todellinen tilanne ja toimi oman näkemyksesi mukaisesti - Tee tarjous eurosta: * Korkein tarjous voittaa euron. * Huonoimman tarjouksen esittäjä joutuu maksamaan

Lisätiedot

Luento 6. June 1, 2015. Luento 6

Luento 6. June 1, 2015. Luento 6 June 1, 2015 Normaalimuodon pelissä on luontevaa ajatella, että pelaajat tekevät valintansa samanaikaisesti. Ekstensiivisen muodon peleissä pelin jonottaisella rakenteella on keskeinen merkitys. Aluksi

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

Trafficars - Ruuhkaara

Trafficars - Ruuhkaara 760104 Trafficars - Ruuhkaara 2 5 pelaajaa Ikäsuositus 5+, 8+ Peliaika 10 15 minuuttia Pelipaketin sisältö 50 autokorttia 12 erikoiskorttia ohjevihko Pelissä: Opitaan liikkumaan lukualueella 0 50. Harjoitellaan

Lisätiedot

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon

Lisätiedot

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = = JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 5 ratkaisut (Hannu Niemistö) Tehtävä 1 OlkootGjaG neljän solmun verkkoja Määritä, milloing = 2 G eli verkot ovat osittaisesti isomorfisia kahden muuttujan suhteen

Lisätiedot

Backgammonmatkailua Georgiassa

Backgammonmatkailua Georgiassa Backgammonmatkailua Georgiassa Yksi tärkeimmistä syistä viime aikojen backgammonbuumiin ja pelin arvostuksen nousuun on Georgia ja ennen kaikkea Nino Tevzadzen vetämä Georgian Backgammon Club. Nino Tevzadze

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

Haitallinen valikoituminen

Haitallinen valikoituminen Haitallinen valikoituminen Regulointi Verotus Vakuuttajamonopoli Kertausta Hyötyfunktiot Päämies: W(q,t) Agentti: U(q,t,ө) - q hyödykkeen määrä - t hinta (kassavirta, tms) - ө agentin tyyppi Päämies ei

Lisätiedot

Käytetään SEUL overwatch sääntöjen ingame asetuksia. Kotijoukkueen kapteeni on vastuussa lobbyn tekemisestä.

Käytetään SEUL overwatch sääntöjen ingame asetuksia. Kotijoukkueen kapteeni on vastuussa lobbyn tekemisestä. Turnauksessa sovelletaan yleisesti SEUL:in OW sääntöjä (http://seul.fi/wpcontent/uploads/2014/01/seul_ow_v1.pdf), poislukien eettinen osuus sekä kohdat jotka eroavat alla jäljempänä mainituista (joukkue

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot