Johdanto peliteoriaan Kirja kpl. 2
|
|
- Teuvo Uotila
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 1 Johdanto peliteoriaan Kirja kpl. 2 Ilkka Leppänen
2 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 2 Aiheet Laajennettu muoto Normaalimuoto Sekastrategiat Nashin tasapaino Sovellusesimerkki:duopoli
3 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 3 Game theory is a bag of analytical tools designed to help us understand the phenomena that we observe when decision-makers interact. The basic assumptions that underlie the theory are that decision-makers pursue well-defined exogenous objectives (they are rational) and take into account their knowledge or expectations of other decision-makers behavior (they reason strategically). Osborne, M. & Rubinstein, A AQ Course in Game Theory, MIT Press.
4 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 4 Laajennettu muoto Esitys: pelipuu Pelien muodot Normaalimuoto (strateginen muoto) Esitys: bi-matriisi Usein peli järkevä kuvata numeroituna listana tapahtumia, esim: 1. Pelaaja 1 valitsee 1 [U,D] 2. Pelaaja 2 ei havaitse pelaajan 1 valintaa, ja valitsee 2 [L,R] 3. Tuotot ovat π 1 ( 1, 2 ) ja π 2 ( 1, 2 )
5 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 5 Laajennettu muoto Laajennetun muodon pelissä on kolme elementtiä: Pelaajien joukko {1,2,...,N} Pelipuu joka koostuu solmuista ja päätössolmuista t T Tuottojen joukko eli hyötyfunktiot π (t) Pelipuulla on puuominaisuus: kukin polku p t aloitussolmusta päätössolmuun t on yksikäsitteinen Äärellisyys: sekä pelaajien määrä että päätössolmujen määrä oletetaan äärelliseksi Satunnainen tapahtuma voidaan esittää luonto-pelaajan valintana
6 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 6 Laajennettu muoto Informaatiojoukko on joukko solmuja joissa pelaaja tietää olevansa; kaikissa solmuissa on samat valintamahdollisuudet Jos informaatiojoukko on yksikköjoukko, pelaajalla on täydellinen informaatio siitä mitä tapahtui edellä Jos infomaatiojoukossa on kaksi tai useampi solmua, pelaaja ei tiedä yksikäsitteisesti mitä on tapahtunut
7 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 7 Laajennettu muoto Strategia s määrittää pelaajalle valinnan jokaisessa :n informaatiojoukossa Pelin strategiaprofiili s=(s 1,...,s n ), eli kaikkien pelaajien strategiat, määrittää kunkin pelaajan tuoton π (s) Täydellisen informaation peleissä π (s)=π (t) Epätäydellisen informaation peleissä π (s)= t T p(s,t)π (t), jossa p(s,t) on niiden todennäköisyyksien tulo jotka liittyvät polkuun p t joissa luonto liikkuu; jos luonto ei liiku polulla p t, on p(s,t)=1
8 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 8 Laajennettu muoto Alicen strategiat ovat {LL,LR,RL,RR}, Bobin {, d,d,dd}; luonto valitsee B tai S Jos valinnat ovat esim. A =LL, B =, ovat tuotot π A (LL, )=p(b)π A (LL, B)+p(S)π A (LL, S)= =4.8 π B (LL, )=p(b)π B (LL, B)+p(S)π B (LL, S)= =4.0
9 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 9 Normaalimuoto Normaalimuodon peleissä on kolme elementtiä: Pelaajien joukko {1,2,...,N} Strategioiden joukko S pelaajalle : strategiaprofiili s=(s 1,s 2,...,s N ), jossa s S on pelaajan strategia Tuottojen joukko eli hyötyfunktiot π (s)
10 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 10 Sekastrategiat Pelaaja arpoo eri puhtaiden strategioiden s 1,...,s k väliltä σ=p 1 s 1 + +p k s k, jossa p j [0,1] ja p j =1 Normaalimuodon pelissä sekastrategiaprofiili σ=(σ 1,...,σ N ) kertoo kunkin pelaajan valitseman sekastrategian Tuotot voidaan määrittää sekastrategiaprofiilin avulla: π (σ)= s 1 S 1 s N S N p s1 p s2 p sn π (s 1,...,s N )
11 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 11 Nashin tasapaino (Notaatio: tarkoittaa puheena olevaa pelaajaa ja jotakin toista pelaajaa) Strategiaprofiili σ =(σ 1,...,σ N ) on Nashin tasapaino jos kaikille ja σ ΔS pätee π (σ ) π (σ,σ ), jossa ΔS pelaajan sekastrategioiden joukko Nashin tasapainossa kunkin valitsema strategia on paras vaste muiden valitsemille strategioille
12 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 12 Miten löytää Nashin tasapaino? Puhtailla strategioilla: eliminoi dominoidut strategiat Helppo tapa löytää matriisista: Käsittele ensin rivipelaajaa Alleviivaa kukin rivipelaajan tuotto joka on paras vaste sarakepelaajan valinnalle Käsittele sitten sarakepelaaja samaan tapaan Puhdasstrategia-Nash on sellainen ruutu jossa molemmat alkiot alleviivattu
13 Miten löytää Nashin tasapaino? Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 13
14 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 14 Peliteorian perusteoreema John F. Nash 1950: Equilibrium Points in n-person Games, Proc Nat Acad Sci 36 Jos kullakin pelaajalla N-pelaajan pelissä on äärellinen määrä puhtaita strategioita, niin silloin pelissä on (ei välttämättä yksikäsitteinen) Nashin tasapaino sekastrategioilla Sekastrategia-käsite siis takaa Nashin tasapainon olemassaolon! Nashin tasapaino on olemassa ainakin sekastrategioilla; on mahdollista että se on olemassa myös puhtailla strategioilla, muttei aina
15 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 15 Sekastrategioiden ratkaiseminen Sarakepelaajalla strategia σ=αl+(1 α)r Tällöin rivipelaajan molempien valintojen U ja D tuottojen on oltava yhtäsuuret σ:aa vasten Saadaan ehto α 1 +(1 α)b 1 =αc 1 +(1 α)d 1 josta ratkaistaan α: α= d 1 b 1 d 1 b c 1
16 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 16 Sekastrategioiden ratkaiseminen Rivipelaajalla strategia τ=βu+(1 β)d Saadaan ehto β 2 +(1 β)c 2 =βb 2 +(1 β)d 2 josta voidaan taas ratkaista β
17 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 17 Sovellusesimerkki: duopoli Epätäydellinen kahden yrityksen kilpailu Pelaajat: yritys A ja yritys B Strategiat: tuotantomäärävalinnat q A,q B [3,4,...,15] Tuotot: π =q (30 q A q B ) 6q Jos valinnat ovat vaiheittaisia ja A valitsee ennen B:tä s.e. B havaitsee A:n valinnan, on kyseessä von Stackelbergin duopoli Jos valinnat samanaikaisia, on kyseessä Cournotin duopoli Strategiat voivat olla myös hintoja, jolloin tuottofunktiot muuttuvat
18 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 18 Cournot Duopoli Molemmat valitsevat samanaikaisesti, eli optimoivat vasten arveluitaan toisen optimaalisesta valinnasta Von Stackelberg A valitsee ensin eli reagoi vasten arveluaan B:n optimaalisesta valinnasta B valitsee A:n jälkeen eli optimoi A:n valintaa vasten reaktiofunktiollaan
19 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 19 Kotitehtävä 1.1 (2 pistettä) a) Etsi puhdasstrategia-nashin tasapaino(t) oheiselle pelille b) Oleta että peli on vaiheittainen, ja sarakepelaaja päättää vasta nähtyään mitä rivipelaaja päätti. Esitä tämä peli laajennetussa puumuodossa
20 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 20 Kotitehtävä 1.2 (2 pistettä) Katso pelimatriisia kalvolla 15 Oleta numeroarvot 1 =2, 2 =1, b 1 =0,b 2 =2, c 1 =1,c 2 =2, ja d 1 =3,d 2 =0. Onko tällä pelillä puhdasstrategia-nashin tasapainoja? Etsi sen sekastrategia-nashin tasapainot.
21 Aalto-yliopiston TKK Mat K2010 Esitelmä 1 Ilkka Leppänen 21 Kotitehtävä 1.3 (2 pistettä) Etsi sekastrategia-nashin tasapainot kotitehtävän 1.1 pelille TAI Etsi netistä/kirjallisuudesta tietoa sukupuolten taistelu -pelistä (battle of the sexes) ja kirjoita siitä puolen sivun miniessee. Pohdi miksi peliteoriassa usein puhutaan juuri tästä pelistä, ja mikä tekee siitä sopivan tiettyihin vuorovaikutustilanteisiin.
SEKASTRATEGIAT PELITEORIASSA
SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer
Epätäydellisen tiedon jatkuvat pelit. Mika Viljanen Peliteorian seminaari
Epätäydellisen tiedon jatkuvat pelit Mika Viljanen Peliteorian seminaari Erityispiirteitä Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista
Pelien teoriaa: tasapainokäsitteet
Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen
MS-C2105 Optimoinnin perusteet Malliratkaisut 5
MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien
Sekastrategia ja Nash-tasapainon määrääminen
May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat
Pohdiskeleva ajattelu ja tasapainotarkennukset
Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen
Luento 5: Peliteoriaa
Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena
Luento 8. June 3, 2014
June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa
Yhteistyötä sisältämätön peliteoria jatkuu
Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen
Nollasummapelit ja bayesilaiset pelit
Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1
Tasapaino epätäydellisen tiedon peleissä
hyväksymispäivä arvosana arvostelija Tasapaino epätäydellisen tiedon peleissä Marja Hassinen Helsinki 9..2006 Peliteoria-seminaarin esitelmä HESINGIN YIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto
PELITEORIAN PERUSTEITA
PELITEORIAN PERUSTEITA Matti Estola 29. marraskuuta 2013 Sisältö 1 Johdanto 2 2 Peliteoreettisen analyysin vaiheet 2 3 Staattiset pelit täydellisen informaation vallitessa 3 4 Pelin ratkaiseminen 4 4.1
Epätäydellisen tiedon jatkuvat pelit
Epätäydellisen tiedon jatkuvat pelit Mika Viljanen Helsinki 4..2006 Peliteorian seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto 2 Epätäydellisen tiedon jatkuva peli 2. Jatkuvan
Rationalisoituvuus ja yleinen tieto rationaalisuudesta
Rationalisoituvuus ja yleinen tieto rationaalisuudesta Keskeiset termit: Rationalizability rationalisoituvuus ratkaisukonsepti peliteoriassa Rationalizable rationalisoituva Rationality rationaalisuus pelaajat
Peliteoria luento 3. May 27, Peliteoria luento 3
May 27, 2015 Dominanssi Mitkä ovat uskottavia tulemia? Ja miksi? Yksi päätösteoreettinen periaate on dominanssi. Kuten lähes kaikkia taloustieteessä kiinnostavia käsitteitä niitä on kahta lajia. Aito ja
Yhteistyötä sisältämätön peliteoria
Yhteistyötä sisältämätön peliteoria jarkko.murtoaro@hut.fi Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Käsitteistö Työkalut Nashin tasapaino Täydellinen tasapaino Optimointiopin seminaari
Luento 5: Peliteoriaa
Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n
LAAJENNETUN MUODON RATIONALISOITUVUUS. S ysteemianalyysin. Arno Solin Laboratorio. Aalto-yliopiston Teknillinen korkeakoulu
LAAJENNETUN MUODON RATIONALISOITUVUUS 3.3.2010 Pähkinänkuoressa: Laajennetun muodon rationalisoituvuus Laajennetun muodon peli (Extensive Form Game) Laajennetun muodon pelin tasapainokäsitteitä. Tosimaailman
PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA
PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA Matti Estola 29 marraskuuta 2013 Sisältö 1 Cournot'in duopolimalli 2 2 Pelin Nash -tasapainon tulkinta 3 3 Cournot'in mallin graanen ratkaisu 4 4 Bertrandin duopolimalli
Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Toistetut pelit MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Elmeri Lähevirta The document can be stored and made available to the public on the open internet pages of Aalto University.
11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)
11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan
Lyhyen aikavälin hintakilpailu 2/2
Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta
Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely)
Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Riku Hyytiäinen 23.02.2015 Ohjaaja: Harri Ehtamo Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa
Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä
Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17)
Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen
Sekastrategiat ja intensiiviyhteensopivuus
Sekastrategiat ja intensiiviyhteensopivuus Petteri Räty 2010-03-14 God does not play dice with the universe Albert Einstein Agenda Intensiiviyhteensopivuuden käsite Yrittää vastata kysymykseen, mitä sekastrategiat
Y56 laskuharjoitukset 6
Y56 Kevät 00 Y56 laskuharjoitukset 6 Palautus joko luennolle/mappiin tai Katjan lokerolle (Koetilantie 5, 3. krs) to.4. klo 6 mennessä (purku luennolla ti 7.4.) Ole hyvä ja vastaa suoraan tähän paperiin.
12 Oligopoli ja monopolistinen kilpailu
12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä
Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi
Peliteoria Strategiapelit ja Nashin tasapaino Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Helsinki 11.09.2006 Peliteoria Tomi Pasanen HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö
Hintakilpailu lyhyellä aikavälillä
Hintakilpailu lyhyellä aikavälillä Virpi Turkulainen 5.3.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Johdanto Bertrandin ristiriita ja sen lähestyminen Bertrandin ristiriita Lähestymistavat:
JOHDATUSTA PELITEORIAAN
JOHDATUSTA PELITEORIAAN Satu Adel Pro gradu -tutkielma Heinäkuu 2019 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO Turun yliopiston laatujärjestelmän mukaisesti tämän julkaisun alkuperäisyys on
Luento 7. June 3, 2014
June 3, 2014 Peli, jossa on kaksi Nash-tasapainoa. Yksi tasapaino on (1; 2) ja toinen (2; 1); P1:n valinta on ilmoitettu ensin. Ensimmäinen tasapaino ei vaikuta hyvältä; se perustuu epäuskottavaan uhkaukseen.
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C1 Assist. Jan Jääskeläinen Syksy 17 Mallivastaukset 7. 1. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 5 asukasta. Taidemuseoilla on
Peliteoria luento 1. May 25, 2015. Peliteoria luento 1
May 25, 2015 Tavoitteet Valmius muotoilla strategisesti ja yhteiskunnallisesti kiinnostavia tilanteita peleinä. Kyky ratkaista yksinkertaisia pelejä. Luentojen rakenne 1 Joitain pelejä ajanvietematematiikasta.
Johdatus peliteoriaan
Johdatus peliteoriaan Kahden pelaajan nollasummapelien ratkaiseminen ja Nashin tasapainojen olemassaolo usean pelaajan yleisessä summapelissä Henri Nousiainen Matematiikan pro gradu Jyväskylän yliopisto
Kommunikaatio Visa Linkiö. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Kommunikaatio MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 2.11.2016 Visa Linkiö The document can be stored and made available to the public on the open internet pages of Aalto University.
Luento 5: Peliteoria
Luento 5: Peliteoria Portfolion optimointi Sijoittajan tehtävä Nashin tasapaino Vangin ongelma Nashin neuvotteluratkaisu 1 Portfolion optimointi Varallisuus A sijoitetaan n:ään sijoituskohteeseen (osake,
Nollasummapelit ja muut yleisemmät summapelit
Nollasummapelit ja muut yleisemmät summapelit Teemu Orjatsalo Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Teemu Orjatsalo, Nollasummapelit
Peliteoria ja huutokauppamekanismit
Peliteoria ja huutokauppamekanismit Satu Ruotsalainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2015 Tiivistelmä: Satu Ruotsalainen, Peliteoria ja huutokauppamekanismit
Taloustieteen Nobel peliteorian kehittäjille
Kansantaloudellinen aikakauskirja - 90. vsk. - 4/1994 Katsauksiaja keskustelua Taloustieteen Nobel peliteorian kehittäjille KLAUS KULTTI Vuoden 1994 taloustieteen Nobelin palkinnon saivat professori John
Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016
Laskuharjoitus 1 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kahdeksan tehtävää, yksi per luento (5 Saaran, 3 Benin). Katso
TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tero Sirkka. Peliteoriaa
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Tero Sirkka Peliteoriaa Informaatiotieteiden yksikkö Matematiikka Toukokuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö Sirkka, Tero: Peliteoriaa Pro gradu
Dynaaminen hintakilpailu ja sanattomat sopimukset
Dynaaminen hintakilpailu ja sanattomat sopimukset Pasi Virtanen 12.3.2003 Johdanto Hintakilpailu jossa pelaajat kohtaavat toisensa toistuvasti Pelaajien on otettava hintaa valittaessa huomioon hintasodan
Luento 9. June 2, Luento 9
June 2, 2016 Otetaan lähtökohdaksi, että sopimuksilla ei voida kattaa kaikkia kontingensseja/maailmantiloja. Yksi kiinnostava tapaus on sellainen, että jotkut kontingenssit ovat havaittavissa sopimusosapuolille,
Signalointi: autonromujen markkinat
Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli
Luku 29 Peliteoria. Käsittelemme aluksi peliteorian peruskäsitteitä ja sanastoa, sitten katsomme itse pelejä.
Y56 Kevät 2010 1 Luku 29 Peliteoria Tässä luvussa tarkastellaan peliteorian perusteita. Tavoitteena on, että opit muodostamaan itsenäisesti kutakin peliä kuvaavat osat, ratkaisemaan erilaisten pelien tasapainon
Luento 6. June 1, 2015. Luento 6
June 1, 2015 Normaalimuodon pelissä on luontevaa ajatella, että pelaajat tekevät valintansa samanaikaisesti. Ekstensiivisen muodon peleissä pelin jonottaisella rakenteella on keskeinen merkitys. Aluksi
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 017 Mallivastaukset 7. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 500 000 asukasta. Taidemuseoilla
Evolutiivinen stabiilisuus populaation
Antti Toppila sivu 1/20 Optimointiopin seminaari Syksy 2008 Evolutiivinen stabiilisuus populaation määrittämisessä Antti Toppila 24.9.2008 Antti Toppila sivu 2/20 Optimointiopin seminaari Syksy 2008 Sisältö
Experiment on psychophysiological responses in an economic game (valmiin työn esittely) Juulia Happonen
Experiment on psychophysiological responses in an economic game (valmiin työn esittely) Juulia Happonen 13.01.2014 Ohjaaja: DI Ilkka Leppänen Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa
Strateginen kanssakäyminen. Taloustieteen perusteet Matti Sarvimäki
Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki Johdanto Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mallivastaukset 8. 1. Esimerkki 1: Peli on symmetrinen, joten riittää, että tarkastelemme, mikä on tasapaino
Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016
Laskuharjoitus 1 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kymmenen tehtävää (10 pistettä ), yksi per luento (6 Saaran, 4
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Opettaminen ja oppiminen
Opettaminen ja oppiminen MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 19.10.2016 Nina Gunell The document can be stored and made available to the public on the open internet pages of Aalto
Laskuharjoitus 2. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016
Laskuharjoitus 2 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kymmenen tehtävää (10 pistettä ), yksi per luento (6 Saaran, 4
Peliteoria luento 2. May 26, 2014. Peliteoria luento 2
May 26, 2014 Pelien luokittelua Peliteoriassa pelit voidaan luokitella yhteistoiminnallisiin ja ei-yhteistoiminnallisiin. Edellisissä kiinnostuksen kohde on eri koalitioiden eli pelaajien liittoumien kyky
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä
Pääasiallisena lähteenä: Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge: Cambridge University Press, 1997,
T-106.5800 Satunnaisalgoritmit-seminaari, kevät 2008, TKK Esitys pelitekniikoista 19.3.2008 (kirjoitus valmistunut 7.4.2008) Lauri Lahti Pääasiallisena lähteenä: Motwani, R., Raghavan, P.: Randomized algorithms.
Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki
6/9/8 Johdanto Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen
Yleinen tietämys ja Nashin tasapaino
Yleinen tietämys ja Nashin tasapaino 24.3.2010 Nashin tasapaino Ratkaisumalli kahden tai useamman pelaajan pelille. Yleisesti: Jos jokainen pelaaja on valinnut strategiansa eikä yksikään pelaaja voi hyötyä
Toistetun haukka-kyyhky -pelin numeerinen analysointi
AALTO YLIOPISTON PERUSTIETEIDEN KORKEAKOULU Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Toistetun haukka-kyyhky -pelin numeerinen analysointi Kandidaatintyö 28.11.2012 Joonas Tarpila Työn saa
Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta
Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta Johdantoa peliteoriaan - ka ytetyt termit Peliteoria tutkii pelaajien toimintaa peleissa. Mika on peli? Mika on pelaaja? Peli tarkasti
Informaatio ja Strateginen käyttäytyminen
Informaatio ja Strateginen käyttäytyminen Nuutti Kuosa 2.4.2003 Sisältö Johdanto Duopoli ja epätietoisuutta kilpailijan kustannuksista Kilpailijan tietämyksen manipulointi Duopoli ja epätietoisuutta kysynnästä
Determinoiruvuuden aksiooma
Determinoiruvuuden aksiooma Vadim Kulikov Esitelma 12 Maaliskuuta 2008 Tiivistelma. Valinta-aksioomasta seuraa, etta Leb(R) ( P(R), eli on olemassa epamitallisia joukkoja. Tassa esitelmassa nahdaan, etta
Fuusio vai konkurssi? Hintakilpailun satoa
Fuusio vai konkurssi? Hintakilpailun satoa Pia Kemppainen-Kajola 02.04.2003 Optimointiopin seminaari - Syksy 2000 / 1 Johdanto Yrityskaupat ilmoitetaan kaupparekisteriin. Kauppa kiinnostaa kilpailuviranomaisia,
Datatähti 2019 loppu
Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio
Mikrotalousteoria 2, 2008, osa IV
Sisältö Mikrotalousteoria 2, 2008, osa IV 1 Hyvinvoinnin taloustiedettä 2 2 Pareto-kriteeri 2 3 Kaldorin kompensaatiokriteeri 2 4 Peliteoriasta 3 5 Peliteoreettisen analyysin vaiheet 3 6 Staattiset pelit
Hex-pelin matematiikkaa
Solmu 3/2013 1 Hex-pelin matematiikkaa Tuomas Korppi Johdanto Hex on kahden pelaajan strategiapeli, jonka ovat keksineet toisistaan riippumatta matemaatikot Piet Hein ja taloustieteen Nobelinkin saanut
Peliteoria ja kalatalous YE4
Peliteoria ja kalatalous YE4 Kansainväliset kalastussopimukset Tarve kansainväliselle yhteistyölle: Vain kestävillä kansainvälisillä sopimuksilla voidaan taata biologinen ja taloudellinen tehokkuus. Neuvottelujen
isomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari
Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä
Strategiset valinnat. Taloustieteen perusteet Matti Sarvimäki
Strategiset valinnat Taloustieteen perusteet Matti Sarvimäki Johdanto Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen peliteorian
Paljonko maksat eurosta -peli
Paljonko maksat eurosta -peli - Ajattele todellinen tilanne ja toimi oman näkemyksesi mukaisesti - Tee tarjous eurosta: * Korkein tarjous voittaa euron. * Huonoimman tarjouksen esittäjä joutuu maksamaan
Evolutiivisesti stabiilin strategian oppiminen
Evolutiivisesti stabiilin strategian oppiminen Janne Laitonen 8.10.2008 Maynard Smith: s. 54-60 Johdanto Käytös voi usein olla opittua perityn sijasta Tyypillistä käytöksen muuttuminen ja riippuvuus aikaisemmista
verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari
Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on
Prof. Marko Terviö Assist. Jan Jääskeläinen
Mallivastaukset 6. 1. (a) Molemmilla yrityksillä on kaksi mahdollista toimenpidettä, joten pelissä on 2 2 = 4 potentiaalisesti erilaista tulemaa. i. Jos Row Corporation valitsee Mainosta ja Column Industries
Äärellisten mallien teoria
Äärellisten mallien teoria Harjoituksen 4 ratkaisut Tehtävä 1. Määritä suurin aste k, johon saakka kuvan verkot G ja G ovat osittaisesti isomorfisia: Ratkaisu 1. Huomataan aluksi, että G =4 G : Ehrenfeucht-Fraïssé
Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi
Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku
Signalointi: kustannukseton signalointi (halpa puhe)
Signalointi: kustannukseton signalointi (halpa puhe) Mat-2.4142 Optimointiopin seminaari Esa Mononen Stag hunt (1/2) Heimon jäsenet joutuvat yksilöinä päättämään menevätkö he metsästämään vai paneutuvatko
Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)
Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
Haitallinen valikoituminen: Kahden tyypin malli
Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
Äärellisten mallien teoria
Äärellisten mallien teoria Harjoituksen 5 ratkaisut (Hannu Niemistö) Tehtävä 1 OlkootGjaG neljän solmun verkkoja Määritä, milloing = 2 G eli verkot ovat osittaisesti isomorfisia kahden muuttujan suhteen
Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
Johdatus verkkoteoriaan 4. luento
Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,
TALOUSTIETEEN LUENTOJEN TEHTÄVÄT
TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla
Johdatus graafiteoriaan
Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste
Algoritmit 2. Luento 10 To Timo Männikkö
Algoritmit 2 Luento 10 To 19.4.2018 Timo Männikkö Luento 10 Peruutusmenetelmä Osajoukon summa Verkon 3-väritys Pelipuut Pelipuun läpikäynti Algoritmit 2 Kevät 2018 Luento 10 To 19.4.2018 2/34 Algoritmien
Markkinoiden suunnittelu ja Gale-Shapley-algoritmi
Markkinoiden suunnittelu ja Gale-Shapley-algoritmi Markkinat eivät välttämättä synny itsestään ja monesti on useita tapoja järjestää markkinat. Markkinoiden keskeinen tehtävä on mahdollistaa vaihdanta.
2017 = = = = = = 26 1
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu
Luento 3: Bayesiläiset pelit
Luento 3: Bayesiläiset pelit Saara Hämäläinen Helsingin yliopisto TA5 Luento 3 2017 1 / 33 Game Theory by Ben Polak (Open Yale) "Nash Equilibrium"(luento 5, kokonaan) "Mixed strategies: definition"(luento
Prospektiteoria. Systeemianalyysin. Antti Toppila. Esitelmä 4 3. helmikuuta laboratorio Aalto-yliopiston TKK
Prospektiteoria Antti Toppila sivu 1/19 Optimointiopin seminaari keväällä 2010 Prospektiteoria Antti Toppila Esitelmä 4 3. helmikuuta 2009 Prospektiteoria Antti Toppila sivu 2/19 Optimointiopin seminaari
Uusien keksintöjen hyödyntäminen
Uusien keksintöjen hyödyntäminen Otso Ojanen 9.4.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Käyttöönoton viiveet Ulkoisvaikutukset ja standardointi Teknologiaodotusten koordinointimalli Lisensiointi
Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,
Kokonaislukuoptiomointi Leikkaustasomenetelmät
Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat
ESSEE-TEHTÄVÄT 1. KYSYMYS
KOE 1 Elintarvike-ekonomia ja yrittäjyys, kuluttajaekonomia, maatalousekonomia ja yrittäjyys, markkinointi, metsäekonomia ja markkinointi Sekä A- että B-osasta tulee saada vähintään 7 pistettä. Mikäli
Matemaatiikan tukikurssi
Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon
Johdatus logiikkaan I Harjoitus 4 Vihjeet
Johdatus logiikkaan I Harjoitus 4 Vihjeet 1. Etsi lauseen ((p 0 p 1 ) (p 0 p 1 )) kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa normaalimuodossa, (b) konjunktiivisessa normaalimuodossa.