MS-C2132 Systeemianalyysilaboratorio I Laboratoriotyö 2. Sähkönkulutuksen ennustaminen aikasarjamallin avulla & Sähkön hankinnan optimointi
|
|
- Aune Seppälä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 MS-C2132 Syeemianalyyilaboraorio I Laboraorioyö 2 Sähkönkuluuken ennuaminen aikaarjamallin avulla & Sähkön hankinnan opimoini
2 Laboraorioyö 2 Aikaarjamalli erään yriyken ähkönkuluukelle SARIMAX-malli: kauivaihelu, ulkoiena eliäjänä ulkolämpöila ox & Jenkin -meneelmä: idenifioini, eimoini, diagnoie arkiuke Työkaluna R, Yhden vuorokauden unneiainen ähkönkuluuennue Opimaalinen kuannuke minimoiva ähkön hankinaraegia Kyynnän ennuaminen ärkeää Vapauunella ähkömarkkinoilla erilaiia oimijoia - ähköpörejä, ähkömeklareia, pienempiä markkinapaikkoja, ääövaaava Opimoini eim. Excelin olverilla
3 Aikaarjojen mallinamiea (perueellinen eoriakuvau k. MS-C2128 maeriaali, mycoure.aalo.fi/coure/view.php?id=7565 Aikaarja muodouu jonkin muuujan (ähkönkuluu, lämpöila käyäyymieä peräkkäin ajaa ehdyiä havainnoia Lähöajau: aikaarja on okaien proein generoima Havainno proein (erä realiaaio Hae aikaarajamalli, joka kuvaa proein ominaiuukia riiävän hyvin Mallin hyödynäminen Aikaarjan kuvaaminen Aikaarjan eliäminen Aikaarjan ennuaminen Aikaarjan ohjaaminen
4 Aikaarjan aionaariuu Aikaarjamallien peruoleu: aionaariuu Hyvin rukuroiu eimoini- ja eaueoria Järjeelmällinen mallinnuproei Saionaariella aikaarjalla on vakio Kekiarvo Variani Kovariani Saionaariuu aavueaan differoimalla aikaarjaa Lineaariei kavavan ai vähenevän rendin poiaminen Kauivaihelun poiaminen
5 ARIMA-malli Kaki ärkeää perumallirakennea: AR ja MA AuoRegreive: eliäjinä edellie arvo MovingAverage: eliäjänä edellie virheermi Inegraed, viiaa differoineihin ARIMA(p,d,q: z a p (, d z q ( mallieava uure valkoia kohinaa viiveoperaaori p q i, j ( ( i, j (1 (1 1,1 1,1 z 1,2 1,2 1 mallin parameri z 2 2 a, differeni , p 1, q q p (1
6 SARMA-malli Q D P a z ( ( Kauivaihelu-ARMA-malli Kauivaihelun piuu, poieaan differoimalla viiveellä Mallia käyeään eliäjinä kauivaihelun piuien viiveen päää oeujen uureen ja kohinan arvoja SARMA(P,D,Q: mallin parameri,... (1 (... (1 ( (1, viiveoperaaori valkoia kohinaa mallieava uure,,, 2,2,1, 2,2,1 j i j i Q Q S Q P P S P z z a z
7 Muliplikaiivinen SARIMA-malli Ueia kauivaiheluia, eim. jakoilla 1 ja TÄRKEÄÄ: Synyy muliplikaiivinen malli SARIMA(p,d,qx(P,D,Q: p ( d D P ( z q ( Q ( z a mallieava uure valkoia kohinaa viiveoperaaori kuen edellä polynomi kuen edellä a
8 . ja vihdoin SARIMAX-malli Seaonal ARIMA wih exernal variable Mukana ulkoinen eliäjä X Siirofunkio-kohina-mallin erikoiapau: d kun D z A( C( A( p d ( P D x ( ( q p ( Q P ( ( a SARIMAX(p,d,qx(P,D,Q p ( P ( d D z C( d D x ( q Q ( a x eliävä muuuja C( viivepolynomi
9 oxin ja Jenkinin meneelmä SARIMA-mallien rakenamiraegia: 1. Mallin idenifioini: - Differenoinnin keraluvu, viivepolynomien aeluvu 2. Mallin eimoini: - R roukuaa => infoa idenifioiniin 3. Diagnoie arkiuke: - Ex po ennue, (ilaollie ei, reiduaalien analyoini Onko eimoiu mallin riiävä? Ei Palaaan vaiheeeen (1 On Malli on valmi
10 Aikaarjamallin idenifioinnin kulmakiviä Auokorrelaaiofunkio (eielouehävä!! Vaimeneva => AR-oa, ykiäie piiki => MA-oa Ykiäiiä vaimenevia piikkejä viiveen välein => luulavai kauivaihelu Oiaiauokorrelaaiofunkio Saadaan auokorrelaaioa rakaiemalla n. Yule-Walkerin yhälö Nollaa poikkeava viiveeeen p ai => AR-oan keraluku on ainakin p Ykiäie nollaa poikkeva piiki => luulavai kauivaihelu Riikorrelaaio: korreloiko kaki aikaarjaa kekenään? Ulkoinen muuuja R piirelee em. käppyrä
11 Sähkönkuluumallin idenifioinnia Onko alkuperäinen ähkönkuluuaikaarja aionaarinen? Aikaarjan kuvaaja Korrelaaiofunkioiden kuvaaja (aionaarinen => auokor. lakee nopei nollaa Lineaarinen rendi? AR(1-mallin paramerin eimaai lähellä ykköä (>0.9 => differoini ok Kauivaihelun? (eim. vuorokaui, viikko, vuoivaihelu A priori ieämy mallieavaa proeia SAR(1-mallin paramerin eimaai lähellä ykköä => differoini jakon ajalla ok Signaali-kohinauhde aaaa differoiaea heikenyä olennaiei Lämpöiladaa? Riikorrelaaio => korreloiko ähkönkuluu ja lämpöila? Differoinni ähkönkuluudaan differoinien mukaan?
12 Daa kwh o C hour
13 Idenifioinnia eimoiniin Kun aikaarja aionaarinen, valiaan käyeävän SARMA-mallin viivepolynomien aeluvu Korrelaaiofunkioiden kuvaaja R lakee Eimaai paramereille Erilaiia unnulukuja Eimoinnia infoa, eim. Paramerien ilaollinen merkievyy, -ei & luoamuväli Mallin AIC (Akaiken informaaiokrieeri & jäännövariani Lämpöilan liäy, viive? Kokeile ja veraile erilaiia malleja!!! Johopääöke mallin rakeneea ja oikeelliuudea
14 Mallin diagnoie arkiuke 1/2 Mallin reiduaali valkoia kohinaa => Eimoiu malli OK Reiduaalien korrelaaiofunkio Ljung-ox:n Q-eiuure (Pormaneau-ei: Q k n( n 2 joa r k = reiduaalien auokorrelaaio viiveellä k i1 /( n k Teiuure Q K aa iä uurempia arvoja miä voimakkaammin reiduaali ova auokorreloiuneia. k r Q-eiuure ^2 jakauunu vapaueella k-m, joa m eimoiujen paramerien lukumäärä 2 i
15 Mallin diagnoie arkiuke 2/2 Jo malli ei ole riiävä, palaaan idenifioini-vaiheeeen Teien jälkeen voi olla ueia malleja Mallin AIC & jäännövariani Ex po -ennuukyky Milä ex ane -ennue näyää? Niukkuuperiaae: Valie kahdea aman uoriukyvyn mallia e, joa on vähemmän paramerejä (ylimääräie parameri liäävä ennuuvirheen variania
16 Ennua konruoidulla mallilla havainojen jälkeielle vuorokaudelle unneiainen ähkönkuluu
17 Toeuunu & eräiä ennueia uni nro
18 Sähkön hankinnan opimoini 1/2 Vapauunee ähkömarkkina => Sähköä voidaan hankkia eri oimijoila Laadi raegia yriyken yhden vuorokauden unneiaielle ähköhankinnalle.e. kokonaikuannuke minimoiuva Hankinnan ulee vaaa ennueua kyynää Excel, aivo Vaihoehoie ähkön hankinaava Pohjoimainen ähköpöri NordPool Kunkin unnin oo ja myyni, unneiaie hinna unneaan Meklarin väliykellä pohjoimainen ähköpöri NordPool Kunkin unnin oo, kiineä päivä- ja yöhina Kiineä opimupreemio riippumaa oeua ähkön määrää Sähkönmyyniyhiö SVK Kunkin unnin oo, kiineä perupäivä- ja yöhina, kiineä huippupäivä- ja yöhina
19 Sähkön hankinnan opimoini 2/2 Hankinnan ja oeuuneen kuluuken välien erouken aaaja on Aivoima Hankiu liikaa: Ai oaa päiväaikaan NordPool -4% ja yöaikaan NordPool -3% Hankiu liian vähän: Ai myy päivällä NordPool +5% ja yöllä NordPool +4% Avoimela oimiajala oeu ähkö kalliimpaa kuin eukäeen ilau ähkö ja oiaala myynihina on huonompi Eukäeen hankiu liikaa ai liian vähän => Kummaakin kuannukia => Riki Millainen rikiaenne liiyy ähkön hankinaraegiaan? Kuluuennue normaalijakauunu
20 Eielouehävä Yheenveo yöehäviä Määrää auokorrelaaiofunkio kahdelle muliplikaiivielle SARMA-mallille Konruoi SARIMAX-malli ähkönkuluukelle Peruele malli, peruele differoinni, peruele keraluvu Ei ole yhä oikeaa mallia!! Ennua euraavan vuorokauden ähkönkuluu Opimoi euraavan vuorokauden ähkön hankina (mahdolliimman halvalla ennueeeen peruuen Ei ole yhä oikeaa opimoinimallia Rikiaenne
21 Aikaarjayön käyännön oeuu Aari jakaa. Työn aikaaulu Palaueava iedoo Työelouken vaaimuke R-demo
Työ 2: 1) Sähkönkulutuksen ennustaminen SARIMAX-mallin avulla 2) Sähkön hankinnan optimointi
Ma-2.3132 Syseemianalyysilaboraorio I Työ 2: 1) Sähkönkuluuksen ennusaminen SARIMAX-mallin avulla 2) Sähkön hankinnan opimoini 1 yö 2 Aikasarjamalli erään yriyksen sähkönkuluukselle SARIMAX-malli: kausivaihelu,
Lisätiedot12. ARKISIA SOVELLUKSIA
MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina
LisätiedotSysteemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen
LisätiedotKOE 2 Ympäristöekonomia
Helingin yliopio Valinakoe.5. Maaalou-meäieeellinen iedekuna KOE Ympäriöekonomia Sekä A- eä B-oioa ulee aada vähinään 5 pieä. Mikäli A-oion piemäärä on vähemmän kuin 5 pieä B-oio jäeään arvoelemaa. B-OSIO
LisätiedotBINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA
BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka
LisätiedotDerivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan
87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen
LisätiedotViikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus
MS-C2128 Ennustaminen ja aikasarja-analyysi 5. harjoitukset / Tehtävät Kotitehtävät: 2 Aihe: ARMA-mallit Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tehtävä 5.1. Tarkastellaan
LisätiedotOPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2
OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA OV Io Jokinen 01 SISÄLTÖ SIVU 1. Mekaniikka Nopeu Kekinopeu Kehänopeu 3 Kiihyvyy 3 Puoamikiihyvyy 4 Voima 5 Kika 6 Työ 7 Teho 8 Paine 9
Lisätiedot4. Tietokoneharjoitukset
4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume
Lisätiedot4. Tietokoneharjoitukset
4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume
Lisätiedot805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin
LisätiedotDynaaminen optimointi ja ehdollisten vaateiden menetelmä
Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia
8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.
LisätiedotW dt dt t J.
DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan
Lisätiedot( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:
ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän
Lisätiedot( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt
SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5
LisätiedotDynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
Lisätiedot2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t
Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina
Lisätiedot( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.
ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!
LisätiedotTehtävä 1. Vaihtoehtotehtävät.
Kem-9.7 Proeiautomaation peruteet Perutehtävät Tentti 9.. Tehtävä. Vaihtoehtotehtävät. Oikea vatau,p, väärä vatau -,p ja ei vatauta p Makimi,p ja minimi p TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN
LisätiedotMittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M
Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa
LisätiedotDVC. VARIZON Piennopeuslaite säädettävällä hajotuskuviolla. Pikavalintataulukko
VARIZON Piennoeuslaie säädeävällä hajouskuviolla Lyhyesi Säädeävä hajouskuvio ja lähivyöhyke Soii kaikenyyisiin iloihin Miausyhde Helosi uhdiseava Peiey ruuviliiännä Eri värivaihoehoja Pikavalinaaulukko
LisätiedotMS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä
MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä Tehtävä 4.1. Ncss-ohjelmiston avulla on generoitu AR(1)-, AR(2)-, MA(1)- ja MA(2)-malleja vastaavia aikasarjoja erilaisilla parametrien arvoilla.
LisätiedotTehtävä I. Vaihtoehtotehtävät.
Kem-9.7 Prosessiauomaaion perusee Teni 5.9.5 TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN MUKANA NIMI: (OS: ) OPINTOKIRJA: VIERAILULUENNOT KUUNNELTU: VALV. LASK: Tehävä I. Vaihoehoehävä. Oikea vasaus
LisätiedotRATKAISUT: 17. Tasavirtapiirit
Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö
LisätiedotKonvoluution laskeminen vaihe vaiheelta Sivu 1/5
S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,
LisätiedotSysteemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -uvaus ja ilayhälömalli, ila Linearisoini Jauva-aiaisen lineaarisen järjeselmän siirofunio, sabiilisuus Laplace-muunnos Disreeiaiaisen lineaarisen järjeselmän
LisätiedotLaboratoriotyö 2: Sähkönkulutuksen ennustaminen ja hankinnan optimointi
MS-C2132 Systeemianalyysilaboratorio I Laboratoriotyö 2: Sähkönkulutuksen ennustaminen ja hankinnan optimointi Aikasarja on joukko peräkkäisiä, toisistaan riippuvia havaintoja. Aikasarja-analyysin tavoitteena
Lisätiedot9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.
9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille
LisätiedotEpävarmuus diskonttokoroissa ja mittakaavaetu vs. joustavuus
Epävarmuus diskonokoroissa ja miakaavaeu vs. jousavuus Opimoiniopin seminaari - Syksy 2000 / 1 Esielmän sisälö Kirjan Invesmen Under Uncerainy osan I luvu 4 ja 5. Mien epävarmuus diskonokorossa vaikuaa
LisätiedotTKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta
KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän
LisätiedotElektroniikan, tietoliikenteen ja automaation tiedekunta
TEKNIINEN KORKEAKOUU Elekroniikan, ieoliikeneen ja auomaaion iedekuna Suanna Pöyhönen IIKKUVAAN MATERIAAIIN SYNKRONOITUVA EIKKAUS TAAJUUSMUUTTAJASOVEUKSENA Diplomiyö, joka on jäey opinnäyeenä arkaeavaki
Lisätiedot7. Muut nostotarvikkeet
7. Muu nosoarvikkee - akkeli - Nososilmuka - Vaniruuvi - Väkipyörä - eikari - Köysipyörä - Nosohaaruka - Tynnyrinnosolaiee - Nosoverko - Noso-orre akkeli akkeli /34 Rakenne: ilman sokkaa, 34 sokalla. Maeriaali:
LisätiedotTilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu
Tilausohjaun uoannon areasuunnielu Tilausohjaussa uoannossa sarjojen muodosaminen ei yleensä ole relevani ongelma, osa uoevaihelu on suura, mä juuri onin peruse MTO-uoannolle Tuoe- ja valmisusraenee ova
LisätiedotKUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto
KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri
Lisätiedot805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan
LisätiedotRahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille
Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial
LisätiedotMat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:
Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,
LisätiedotSopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen
Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen
LisätiedotDEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset
D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,
LisätiedotMat-2.090 Sovellettu todennäköisyyslasku A
Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie
LisätiedotKertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 1: Yleinen lineaarinen malli 1 Määritelmä
LisätiedotKäyttövarmuuden ja kunnossapidon perusteet, KSU-4310: Tentti ma
KSU-430/Ten 4..2008/Prof. Seppo Vranen /3 Käyövarmuuden ja kunnossapdon perusee, KSU-430: Ten ma 4..2008 Huom. Vasaus van veen kysymykseen. Funko- ja/a ohjelmoavan laskmen, musnpanojen, luenomonseden ja
LisätiedotDEE Lineaariset järjestelmät Harjoitus 6, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset
DEE- ineaarie järjeelmä Harjoiu 6, harjoiuenpiäjille arkoieu rakaiuehdouke Tää harjoiukea käiellään aplace-muunnoa ja en hyödynämiä differeniaaliyhälöiden rakaiemiea Tehävä Määrielmän mukaan funkion f
LisätiedotKoska Box Jenkins-malleja on käsitelty kurssilla Mat-2.3128 Ennustaminen ja aikasarjaanalyysi, ei työohjeessa esitellä ARIMA-mallien perusasioita.
Mat-2.3132 Systeemianalyysilaboratorio I Laboratoriotyö 2: Aikasarja-analyysi Aikasarja on joukko peräkkäisiä, toisistaan riippuvia havaintoja. Aikasarja-analyysin tavoitteena on kuvata, selittää, ennustaa
Lisätiedot1 Excel-sovelluksen ohje
1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen
LisätiedotHuomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).
DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4
LisätiedotYMPJåoSTÖ 2?.5.14 J Ub,
YMPJåoSTÖ 2?.5.14 J Ub, ),II1 1 SATAMA ILMOITTAMIE YMPÄRISTÖ- SUOJELU TIETOJÄRJESTELMÄÄ JA SATAMA JÄTEHUOLTOSUUITELMA ranomaisen yheysiedo Merkiy ympärisönsuojelun ieojärjeselmään A. SATAMA TOIMITAA VALVOVA
LisätiedotARMA mallien ominaisuudet ja rakentaminen
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen
LisätiedotAlipäästösuodatuksesta jää kuitenkin pieni vaihtovirtakomponentti, joka summautuu tasajännitteen päälle:
. Saainen analyyi.. Buck-opoloia Käiellään enin buck-yyppiä hakkurieholähdeä (kuva 2.2a ja 3.). ää eimerkiä kuorma on puhaai reiiivinen (R), mua yleiei e on yöeävien laieiden ominaiuukia muodouva impedani.
LisätiedotKÄYTTÖOPAS. -järjestelmän sisäyksikkö HXHD125A8V1B
KÄYÖOPAS -järjeselmän sisäyksikkö SISÄLÖ 1. Määrielmä... 1 1.1. Merkkien ja varoiusen arkoiukse... 1 1.2. Käyeyjen ermien merkiys... 1 2. Yleise varooime... 2 3. Johdano... 2 3.1. Yleisä... 2 3.2. ämän
Lisätiedot2. Systeemi- ja signaalimallit
2. Syseemi- ja signaalimalli Malliyyppejä: maemaainen malli: muuujien välise suhee kuvau maemaaisesi yhälöin lohkokaaviomalli: syseemin oiminojen looginen jako lohkoihin, joiden välisiä vuorovaikuuksia
LisätiedotKertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Viikko 1: Yleinen lineaarinen malli 1 Määritelmä
Lisätiedota. Varsinainen prosessi on tuttua tilaesitysmuotoa:
ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,
LisätiedotIdentifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
LisätiedotPD-säädin PID PID-säädin
-äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen
LisätiedotKÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1
EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1 EKHBRD011ADY1 EKHBRD014ADY1 EKHBRD016ADY1 KÄYÖOPAS Ilma vesilämpöpumppujärjeselmän sisäyksikkö ja lisävarusee EKHBRD011ADV1+Y1 EKHBRD014ADV1+Y1 EKHBRD016ADV1+Y1
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte
4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.
Lisätiedot1 x 2 1 x 2 C 1 D. 1 x 2 C 1. x 2 C 1 C x2 D x 2 C 1; x 0: x 2 C 1 C 1. x 2 x 4 C 1 ja. x 4 C 1 D.x4 1/.x 4 C 1/
Matematiikan ja tilatotieteen valintakoetehtävien 9 ratkaiut Sivu. a). / 6,
LisätiedotÖljyshokkien talousvaikutusten heikkeneminen ja ilmiön syyt
Öljyhokkien alouvaikuuen heikkeneinen ja iliön yy Kananalouiede Pro gradu -ukiela Talouieeiden laio Taereen ylioio Ohjaaja: Jukka Pirilä Lokakuu 20 Terhi Lohander TIIVISTELMÄ Taereen ylioio Talouieeiden
LisätiedotBETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 2009) Betonipäivät 2010
DIPLOMITYÖ: BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 29) Beonipäivä 21 DIPLOMITYÖ prosessina Aie: yön eeäjän aloieesa Selviykse beonin, eräksen ja puun osala oli jo ey/käynnissä
Lisätiedot6.2.3 Spektrikertymäfunktio
ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden
Lisätiedotb) Esitä kilpaileva myötöviivamekanismi a-kohdassa esittämällesi mekanismille ja vertaile näillä mekanismeilla määritettyjä kuormitettavuuksia (2p)
LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II:.5.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,
Lisätiedot7. Pyörivät sähkökoneet
Pyörivät ähkökoneet 7-1 7. Pyörivät ähkökoneet Mekaanien energian muuntamieen ähköenergiaki ekä ähköenergian muuntamieen takaiin mekaanieki energiaki käytetään ähkökoneita. Koneita, jotka muuntavat mekaanien
Lisätiedotjoka on separoituva yhtälö, jolla ei ole reaalisia triviaaliratkaisuja. Ratkaistaan: z z(x) dx =
HY / Maemaiikan ja ilasoieeen laios Differeniaalihälö I kevä 09 Harjois 4 Rakaisehdoksia. Rakaise differeniaalihälö = (x + + Rakais: Tehdään differeniaalihälöön lineaarinen mnnos z(x = x + (x + jolloin
LisätiedotTiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus
Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen
Lisätiedotmäärittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.
MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen,
LisätiedotAikasarjatutkimuksia Valkeakosken kaupunki-ilman hajurikkipitoisuuksista
Aikasarjaukimuksia Valkeakosken kaupunki-ilman hajurikkipioisuuksisa Tampereen yliopiso Informaaioieeiden iedekuna VÄISÄNEN, JAANI Pro gradu -ukielma Tilasoiede Lokakuu 004 TAMPEREEN YLIOPISTO Informaaioieeiden
LisätiedotLasin karkaisun laatuongelmat
Rakeneiden Mekaniikka Vol. 44, Nro, 11, s. 14-155 Lasin karkaisun laauongelma Ani Aronen Tiiviselmä. Karkaisula lasila vaadiaan hyvää lujuua sekä visuaalisa laaua. Näihin voidaan vaikuaa lasin karkaisuprosessin
LisätiedotIlmavirransäädin. Mitat
Ilmairransäädin Mia (MF, MP, ON, MOD, KNX) Ød nom (MF-D, MP-D, ON-D, MOD-D, KNX-D) Tuoekuaus on ilmairasäädin pyöreälle kanaalle. Se koosuu sääöpellisä ja miaaasa oimilaieesa ja siä oidaan ohjaa huonesääimen
Lisätiedotjärjestelmät Luento 4
DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä
LisätiedotPiennopeuslaite FMH. Lapinleimu
Piennopeuslaie FMH Floormaser FMH on puolipyöreä uloilmalaie, joka on arkoieu käyeäväksi syrjäyävään ilmanjakoon Floormaser- järjeselmässä. KANSIO VÄLI 6 ESITE Lapinleimu.1.0 Floormaser Yleisä Floormaser
LisätiedotEnnustaminen ARMA malleilla ja Kalmanin suodin
Ennustaminen ARMA malleilla ja Kalmanin suodin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017
Lisätiedot2. Nostokettingit ja komponentit
2. Nosokeingi ja komponeni - Nosokeinki - Keinki- - komponeni - Nosorenkaa - Keinkiyhiselmä Nosokeinki yhyhahloinen nosokeinki Maeriaali: ämpökäsiely eräs. uokka. Ei saa lämpökäsiellä. Merkinä: Vähinään
LisätiedotPOSITIIVISEN LINSSIN POLTTOVÄLI
S-108110 OPTIIKKA 1/6 POSITIIVISEN LINSSIN POLTTOVÄLI Laboratoriotyö S-108110 OPTIIKKA /6 SISÄLLYSLUETTELO 1 Poitiivien linin polttoväli 3 11 Teoria 3 1 Mittauken uoritu 5 LIITE 1 6 Mittaupöytäkirja 6
LisätiedotLuento 11. tietoverkkotekniikan laitos
Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3
LisätiedotDVC. VARIZON Piennopeuslaite säädettävällä hajotuskuviolla LYHYESTI
VARIZON Piennoeuslaie säädeävällä hajouskuviolla LYHYESTI Säädeävä hajouskuvio ja lähivyöhyke Soii kaikenyyisiin iloihin Miausyhde Helosi uhdiseava Peiey ruuviliiännä Vakioväri Valkoinen RAL 9003 -- 5
LisätiedotStationaariset stokastiset prosessit ja ARMA-mallit
Stationaariset stokastiset prosessit ja ARMA-mallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
Lisätiedot2. Suoraviivainen liike
. Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus
LisätiedotETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET
TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL
LisätiedotXII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA
II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =
LisätiedotLuku 16 Markkinatasapaino
68 Luku 16 Markkinataaaino 16.1 Markkinataaainon määrity Tarkatelemme kilailulliia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaiuna uhteea makimihintoihin talouenitäjien
LisätiedotHAMMASHIHNAJOHDEAKSELEIDEN LIIKKEIDEN SYNKRONOINTI
LAEENRANNAN TEKNILLINEN YLIOISTO Teknillinen iedekuna LUT Energia Sähköekniikan kouluuohjelma Jukka arkkinen HAMMASHIHNAJOHDEAKSELEIDEN LIIKKEIDEN SYNKRONOINTI Työn arkaaja: rofeori Juha yrhönen TkT Markku
LisätiedotAsennus- ja hoito-ohje
FI Asennus- ja hoio-ohje V15/V20/V30/V30-3P/V40/V60-3P H15/H20/H30/H30-3P/H60 Gullberg & Jansson AB Smälaregaan 6 SE - 263 39 Höganäs Tel: +46 (0) 42 34 05 90 Fax: +46 (0) 42 34 02 10 E-mail: info@gullbergjansson.se
LisätiedotOsaketuottojen volatiliteetin mallintaminen
Osakeuoojen volailieein mallinaminen Kansanalousiede Pro gradu -ukielma Talousieeiden laios Tampereen yliopiso 9.5.008 Janne Kivinen Tampereen yliopiso Talousieeiden laios KIVINEN, JANNE: OSAKETUOTTOJEN
Lisätiedot805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet
LisätiedotViivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli
hum.9. oiman potentiaalienergia Potentiaalienergiata puhutaan, kun kappaleeeen vaikuttaa jokin konervatiivinen voima. oima on konervatiivinen, jo en tekemä tö vaikutupieen iirteä tiettä paikata toieen
LisätiedotKEHITTYNEIDEN VALUUTTAMARKKINOIDEN TEHOKKUUS: USD INDEKSI
Kauppaieeellinen iedekuna Talouden ja yriysjuridiikan laios Kandidaainukielma Rahoius KEHITTYNEIDEN VALUUTTAMARKKINOIDEN TEHOKKUUS: USD INDEKSI Currency Marke Efficiency of Developed Counries: USD Index
LisätiedotHY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I
HY / Matematiikan ja tilatotieteen laito Tilatollinen päättely II, kevät 207 Harjoitu 4 Ratkaiuehdotukia Tehtäväarja I. (Kvantiili-kvantiili kuvion [engl. q q plot] idea.) Olkoon atunnaimuuttujalla X ellainen
LisätiedotOjala, Leena Ojala ja Timo Ranta LAPLACE-MUUNNOS
Timo Ojala, eena Ojala ja Timo Rana APACE-MUUNNOS Eipuhe Tämä aplace-muunnoa ja en ovelamia käielevä oppimaeriaali on arkoieu ähköekniikan ininöörikouluukeen. Eiieoina ulii unea eimerkiki Ojalain lakuoppien
Lisätiedot2 1017/2013. Liitteet 1 2 MUUTOS LASKUPERUSTEISIIN TYÖNTEKIJÄN ELÄKELAIN MUKAISTA TOIMINTAA HARJOITTAVILLE ELÄKESÄÄTIÖILLE
07/03 Liitteet MUUOS LASKUPERUSEISIIN YÖNEKIJÄN ELÄKELAIN MUKAISA OIMINAA HARJOIAVILLE ELÄKESÄÄIÖILLE 07/03 3 Liite VAKUUUSEKNISE SUUREE Näiä laueruteia eiintyät auututeniet uureet laetaan yel:n muaien
LisätiedotFDPa. Rei itetty seinään asennettava poistoilmalaite
Rei iey seinään asenneava poisoilmalaie Lyhyesi Säädeävä Kiineä miausyhde Suuri poisoehokkuus Helposi puhdiseava Eri värivaihoehoja Pikavalinaaulukko I L M A V I R T A Ä Ä N I T A S O l/s Koko db(a) db(a)
LisätiedotC B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia.
Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on tiitaina 23.5.2017. Ektra-tehtävät vataavat kolmea tehtävää, kun kurin lopua laketaan lakuharjoitupiteitä.
Lisätiedota) Esitä piirtämällä oheisen kaksoissymmetrisen ulokepalkkina toimivan kotelopalkin kaksi täysin erityyppistä plastista rajatilamekanismia (2p).
LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II: 9.9.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,
LisätiedotTehokasta talvipitoa MICHELIN-renkailla
Tehokasa alvipioa MICHELIN-renkailla y y 2014 www.michelinranspor.com 1 Lainsäädänö koskien kuorma- ja linja-auonrenkaiden käyöä alvella Lainsäädänö koskien kuormaja linja-auonrenkaiden käyöä alvella Seuraavassa
LisätiedotEsimerkkilaskelma. Jäykistävä CLT-seinä
Eimerilaelma Jäyitävä CLT-einä 30.5.014 Siällyluettelo 1 LÄHTÖTIEDOT... - 3 - LEVYJÄYKISTEEN TIEDOT... - 3-3 ATERIAALI... - 4-4 PANEELILEIKKAUSKESTÄVYYS... - 4-5 LAELLIN LEIKKAUSKESTÄVYYS... - 5-6 LAELLIEN
LisätiedotS-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006
S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita
LisätiedotLuento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
LisätiedotKAAVOITUSKATSAUS VALMISTUMASSA OLEVAT KAAVAT 3 VIREILLÄ OLEVAT KAAVAT 6 UUDET KAAVAHANKKEET, EI KAAVOITUSPÄÄTÖSTÄ 18 MAAKUNTAKAAVOITUS 18
OIUU LIU OLE IEILLÄ OLE ä - ä, ä d UUDE HNEE, EI OIUÄÄÖÄ UNOIU OLLIUINEN LIIEE:,,, - d: / O: O, ONLINN d:, Fx: - äö: ()f :wwwf / / Höö, ääö B ä, - H, äö, H, N E,,, OIUU ää ä ä ää d ä ää ä, dää g äö- :
LisätiedotKULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA
1 KULMMOULOITUJEN SIGNLIEN ILMISU ISKRIMINTTORILL Millaisia keinoja on PM & FM -ilmaisuun? 51357 Tieoliikenneekniikka I Osa 17 Kai Käkkäinen Kevä 015 ISKRIMINTTORIN TOIMINTKÄYRÄ J -YHTÄLÖ FM-signaalin
Lisätiedot