Palkin taivutus. 1 Johdanto. missä S on. määritetään taivuttamalla. man avulla.
|
|
- Mikko Korhonen
- 10 vuotta sitten
- Katselukertoja:
Transkriptio
1 PALKIN TAIVUTUS 1 Johdanto Jos homogeenista tasapaksua palkkia venytetäänn palkin suuntaisella voimalla F, on jännitys σ mielivaltaisellaa etäisyydellää tukipisteestä, 1 missä S on palkin poikkileikkauksen pinta-ala. Jos voima F etäisyydellä l 0 aiheuttaa venymän l, on suhteellinenn venymä. 2 Aineen kimmokerroin määritellään jännityksen j ja suhteellisen venymän välisenä v suhteena. 3 Palkin venymälle l pätee, 4 joten kimmokerroin voidaan määrittää jännittämällä palkkia tunnetulla voimalla F ja mittaamalla venymä. Näin saadut venymät ovat kuitenkin pieniä,, joten tässä laboratoriotyössä kimmokerroin määritetään taivuttamalla. Kuva 1. a) Palkin taivutus, b) palkin venymän arvioiminen taipumiskulm man avulla. 1
2 Oletetaan, että palkin, jonka pituus on l 0, toinenn pää on kiinnitetty seinään ja toista kuormitetaan voimalla F (kuva 1a). Oletetaan edelleen, että palkin poikkipinta-ala S on vakio ja symmetrinen n sen tason suhteen, jossa kuormitus tapahtuu (kuva 2), ja että palkin oma massa on pieni suhteessa kuormittavaan voimaan. Palkin taipuessa sen ylemmät kerrokset venyvät ja alemmat kerrokset puristuvat kokoon.. Palkin keskellä kulkeee kerros, joka ei veny lainkaan. Kuvassa 1a tämä ns. neutraalikerros onn CB. Voidaan lisäksi osoittaa, että tasapainossaa neutraalikerros kulkee poikkileikkauksen painopisteen kautta k (koska poikkileikkaustasoon vaikuttava kokonaisvoima on nolla). Tarkastellaan sitten palkin neutraalikerroksen mielivaltaisesta pisteestää etäisyydellä a sijaitsevaa kerrosta (kuva 1b). Jos neutraalikerroksen kaarevuussädee tässä pisteessä on R, etäisyydellä a sijaitsevan kerroksen d:nn pituisen osan suhteelliseksi venymäksi saadaan kuvan 1b avulla, 5 kun oletetaan, että palkin poikkileikkaustasot pysyvät tasoina palkkia normaalijännitys on kaavan (3) perusteella taivutettaessa. Venymäää ε vastaavaa. 6 Kuva 2. Palkin poikkileikkau us etäisyydellä x palkin kiinnityspistek eestä. Etäisyydellää a olevan kerroksen jännityksestä aiheutuu taivutusmomenttii MadF a 7 pisteen x kautta kulkevan akselin suhteen (kuvassa 1 kohtisuorassa paperin p tasoa vastaan ja kuvassa 2 merkitty A:lla). Kokoo palkin jännityksestä aiheutuva taivutusmomentti akselin A suhteen saadaan integroimalla palkin poikkipinta-alan yli. 8 Integraali 9 2
3 on poikkileikkauspinnan jäyhyysmomentti eli pintahitausmomentti pinnassa painopisteen kautta kulkevan akselin suhteen. Jäyhyysmomentin I S arvo riippuu pinnan S muodostaa ja siitä, minkä akselin suhteen se lasketaan. Palkin kaarevuussäde vaihtelee palkin eri kohdissa. Kaarevuuden taipumaksi etäisyydellä l 0 [1]. perusteella voidaan johtaa palkin 10 Kuva 3. Mittausgeometria palkin taivutuksessa. Laboratoriotyössä tutkittava palkki on kahden etäisyydellä s olevann tuen varassa (Kuva 3). Palkkiaa kuormitetaan keskeltä voimalla P. Tuet aiheuttavat palkin kumpaankin päähän tukivoiman P/2. Palkin taipumisen kannalta tällainen tilanne on samanlainen kuin, jos palkki olisi kiinnitettyty keskeltä ja voimat P/2 taivuttaisivat palkkia ylöspäin etäisyydellä s/2 kiinnityspisteestä. Yllä rakennetun mallin mukaan kuormituksenn P aiheuttaman poikkeaman itseisarvo s voidaan laskeaa yhtälöstä (10) asettamalla F=P/2 ja l o =s/2, jolloin. 11 Työssä poikkeama s mitataan usealla eri kuormituksen P arvolla. Jos voiman P jaa poikkeaman s välinenn riippuvuus on lineaarinen, voidaan kimmokerroin E määrittää esim. graafisesti. Palkin painon vaikutusta ei tarvitse tuntea, sillä painon aiheuttama poikkeama merkitsee vain lisättävää vakiota yhtälössä (11). 2 Tavoitteett Laboratoriotyön tehtyään opiskelija osaa selittää, miten palkin poikkileikkauksen muoto vaikuttaa palkin taipumiseen osaa selittää, mitä kimmokertoimella tarkoitetaan osaa määrittää yksinkertaisen palkin jäyhyysmomentin eli pintahitausmomentin on harjoitellut mittaustulosten esittämistä kuvaajan avulla ja suoran sovittamista pisteistöön 3
4 3 Laitteisto Tässä työssä palkin aipumista tutkitaan kuvassa (4) kuvatulla mittausjärjestelyllä, jossa noin metrin mittainen palkki tuetaan päistään siirrettävien tukien avulla. Päistäänn tuetun palkin keskellee ripustetaan pidike, johon voidaan kiinnittää punnuksia. Punnusten avulla palkkiin kohdistuvaa kuormitusta voidaan muuttaa. Mittauslaitteistoon on kiinnitetty mikrometriruuvi, jonka avulla palkin taipuma mitataan. Mikrometriruuvin koskiessa mittalaitteistoa see sulkee sähköisen virtapiirin ja sytyttää lampun. Lampun syttymisen avulla saadaan selvitettyä palkin ja mikrometriruuvin kosketuskohta tarkasti. Mittalaitteiston lisäksi tarvitaan metrimitta palkin tukipisteident n välisen etäisyyden määrittämiseen sekä työntömitta palkin poikkileikkauksen mittojen määrittämiseen. Nämä työkalut saat assistentilta. Kuva 4. Työssää käytettävä mittauslaitte isto. 4 Esitehtävät Tutustu työhön liittyvään teoriaan haluamastasi i fysiikan oppikirjasta esim. [2 4], lue työohje läpi ja vastaaa alla oleviin kysymyksiin vastauslomakkeeseen Mitä taivutuspalkin neutraalikerroksella tarkoitetaan? Selitä mikä on jäyhyysmomentti ja johda jäyhyysmomentin lauseke l suorakulmaisellee palkille. Työssä mitataan ja piirretään palkinn taipuma s kuormituksen P funktiona sekä sovitetaan tähän suora ( ). Mikä on yhtälön (11) mukaan tämän suoran s kulmakerroin k? Anna yhtälö k:lle ja ratkaise siitä kimmokerroin E. Määritä kokonaisdifferentiaalilla virhearvio kimmokertoimelle E edellisessä kohdassaa saamastasi yhtälöstä. Ota muuttujista huomioon kulmakerroin k, jäyhyysmomentti I s sekä tukipisteiden etäisyys s. (Vinkki: Tässä tapauksessa suhteellinen virhe onn helpompi laskea) 4
5 5 Mittaukset Kaikki mittaustulokset ja kysymysten vastaukset kirjataan vastauslomakkeelle, joita saa assistentilta. On suositeltavaa käyttää lyijykynää. Vastauslomake palautetaan lopuksi assistentille. 1. Punnitse massat ja pidike vaa alla. Huomaa, että punnusten massat eivät ole yhtä suuria! Merkitse massat ja punnusten numerot vastauslomakkeeseen. 2. Merkitse muistiin suorakaiteen muotoisen palkin leveys ja korkeus. Käytä mittaamiseen työntömittaa. Arvioi mittauksen virhettä toistamalla mittaus muutaman kerran palkin eri kohdista. Kirjaa tulokset vastauslomakkeeseen. 3. Aseta tutkittava palkki tukipisteiden päälle. Varmista laitteiston toiminta tarkistamalla, että lamppu syttyy mikrometriruuvin osuessa tutkittavaan palkkiin. 4. Mittaa palkin tukipisteiden välinen etäisyys ja merkitse se vastauslomakkeeseen virhearvioineen. 5. Tee hypoteesi ja kirjaa se vastauslomakkeeseen: Kummassa asennossa poikkileikkaukseltaan suorakulmion muotoinen palkki taipuu enemmän? Perustele vastauksesi. 6. Ennen varsinaista mittausta: Testaa tekemääsi hypoteesia ja kirjoita tekemäsi havainnot ja päätelmät vastauslomakkeelle. Jos havaintosi poikkesivat hypoteesista, niin pohdi miksi. 7. Aseta palkki nyt tukipisteiden päälle siten, että palkin poikkileikkauspinnan pidempi sivu on vaakaasennossa. 8. Aseta punnusten pidike palkkiin roikkumaan mahdollisimman lähelle tukipisteiden puoliväliä. Tarkista pidikkeen sijainti metrimitan avulla. 9. Etsi sellainen mikrometriruuvin asetus, jolla lamppu juuri ja juuri syttyy, ja merkitse lukema ylös. Huomaa, että mikrometriruuvin tulee olla mahdollisimman keskellä palkkia. Merkitse mikrometriruuvin lukema vastauslomakkeeseen. 10. Lisää punnuksia yksitellen, kunnes kaikki kymmenen punnusta ovat kannattimessa, ja mittaa palkin taipuma jokaisella taivuttavan voiman arvolla. Merkitse tulokset vastauslomakkeen taulukkoon. Tämän jälkeen poista punnuksia yksitellen ja mittaa jälleen taipuma jokaisella kuormalla. Muista löysätä mikrometriruuvia ennen jokaisen punnuksen poistamista, jotta mikrometriruuvi ei kuormitu turhaan! 6 Tulosten käsittely 1. Määritä palkin leveys ja korkeus keskiarvona mittaamistasi tuloksista. Määritä myös virherajat näille esim. vaihteluvälistä. 2. Tutki mittaustuloksista, palautuuko palkki. Laske kullakin painolla taipuma keskiarvona punnuksia lisättäessä ja vähennettäessä mitatuista taipumista ja merkitse tulokset vastauslomakkeeseen. 3. Piirrä taipuma s kuormituksen P funktiona. Yhtälön (11) mukaan pisteiden tulisi osua suoralle. 4. Sovita pisteistöön suora ja määritä sen kulmakerroin ja kulmakertoimelle virherajat. 5. Tulosta piirtämäsi kuvaaja vastauslomakkeen liitteeksi. 6. Laske jäyhyysmomentti virheineen mittauksessa käytetylle konfiguraatiolle. 7. Laske jäyhyysmomentin ja kulmakertoimen avulla materiaalille kimmokerroin E ja määritä sille virhearvio E. Merkitse tulokset lomakkeeseen. 5
6 7 Pohdittavaa 1. Selitä yleisellä tasolla, miten kappaleen muoto vaikuttaa sen taipumiseen. Miksi rakentamisessa käytetään paljon ns. I-palkkeja? 2. Arvioi, mitkä virhelähteet ovat vaikutukseltaan suurimpia käytetyssä mittausjärjestelyssä. 3. Taivutettava palkki on tehty alumiinista. Vertaa saamaasi tulosta kimmokertoimelle kirjallisuuteen. Osuuko kirjallisuusarvo virherajoihin? Lähteet [1] E. Pennala, Lujuusopin perusteet, 9. painos, Otatieto [2] D.C. Giancoli, Physics for Scientists & Engineers with Modern Physics 4 th edition, International edition, Pearson Education, Inc, [3] Hugh Young, Roger Freedman, A. Lewis Ford: University Physics with Modern Physics. International Edition. 13. painos. Pearson Education, [4] Halliday, Resnick, Walker, Fundamentals of Physics Extended, Extended 9 th edition, International Student Version, Wiley & Sons, Inc.,
PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys
PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä
1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla
PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen
SOLENOIDIN MAGNEETTIKENTTÄ
SOLENOIDIN MAGNEETTIKENTTÄ 1 Johdanto Tarkastellaan suljettua pyöreää virtasilmukkaa (virta I), jonka säde on R. Biot-Savartin laista voidaan johtaa magneettivuon tiheydelle virtasilmukan keskiakselilla,
Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
Kuva 1. Fotodiodi (vasemmalla) ja tässä työssä käytetty mittauskytkentä (oikealla).
VALOSÄHKÖINEN ILMIÖ 1 Johdanto Valosähköisessä ilmiössä valo, jonka taajuus on f, irrottaa metallilta elektroneja. Koska valo koostuu kvanteista (fotoneista), joiden energia on hf (missä h on Planckin
TOROIDIN MAGNEETTIKENTTÄ
TOROIDIN MAGNEETTIKENTTÄ 1 Johdanto Suljettu virtasilmukka synnyttää ympärilleen magneettikentän. Kun virtasilmukoita liitetään peräkkäin yhteen, saadaan solenoidi ja solenoidista puolestaan toroidi, kun
Termodynamiikan mukaan ideaalikaasujen molaaristen lämpökapasiteettien erotus on yleinen kaasuvakio R
ADIABAATTIVAKIO 1 Johdanto Aineen ominaislämpökapasiteetti c kertoo kuinka paljon lämpöä vaaditaan aineen lämpötilan kasvattamiseen massayksikköä kohden. Kiinteillä ja nestemäisillä aineilla ominaislämpö
Kuva 1. Langan päässä oleva massa m vetää pudotessaan lankaan kiinnitettyä M-massaista vaunua.
KIIHTYVÄ LIIKE 1 Johdanto Kuva 1. Langan päässä oleva massa m vetää pudotessaan lankaan kiinnitettyä M-massaista vaunua. Työssä kiinnitetään eri massaisia punnuksia langan ja väkipyörän kautta kiskolla
Kuva 1. Kaaviokuva mittausjärjestelystä. Laserista L tuleva valonsäde kulkee rakojärjestelmän R läpi ja muodostaa diffraktiokuvion varjostimelle V.
VALON DIFFRAKTIO 1 Johdanto Tässä laboratoriotyössä havainnollistetaan diffraktiota ja interferenssiä valaisemalla kapeita rakoja laservalolla ja tarkastelemalla rakojen takana olevalle varjostimelle syntyviä
tutustuttaa materiaalien lujuusominaisuuksiin luentoja perusteellisemmin
FYSP102 / K2 KIMMOKERTOIMEN MÄÄRITYS Työn tavoitteita tutustuttaa materiaalien lujuusominaisuuksiin luentoja perusteellisemmin kerrata monia toistoja sisältävien laskujen sekä suoransovituksen tekemistä
PUOLIJOHTEEN SÄHKÖNJOHTAVUUS
PUOLIJOHTEEN SÄHKÖNJOHTAVUUS 1 Johdanto Kiinteissä aineissa aineen elektronit ovat järjestyneet niin kutsutuille energiavöille. Hyvissä sähkönjohteissa ylin elektroneita sisältävä energiavyö on vain osittain
TASAVIRTAPIIRI - VASTAUSLOMAKE
TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan
Nimi: Muiden ryhmäläisten nimet:
Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,
Kiihtyvä liike. 1 Johdanto. vaunua. ja vaunulle. ntti jätetään. punnukselle. Punnus: Vaunu: hyödyntäenn määritetään. 2 Tavoitteett
KIIHTYVÄ LIIKE 1 Johdanto Kuva 1. Langan päässä oleva massa m vetää pudotessaan lankaan kiinnitettyä k M-massaista vaunua. Työssä kiinnitetään eri massaisia punnuksia langan ja väkipyörän kautta kiskolla
+ = +, (1) + = +. (2)
TÖRMÄYKSET 1 Johdanto Tarkastellaan kahden kappaleen välistä törmäystä yhdessä ulottuvuudessa. Törmäyksessä kappaleet vuorovaikuttavat vaihtaen liikemääriä ja energiaa keskenään. Törmäyksessä kappaleet
Koesuunnitelma Kimmokertoimien todentaminen
KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt Koesuunnitelma Kimmokertoimien todentaminen Ryhmä S: Pekka Vartiainen 427971 Jari Villanen 69830F Anssi Petäjä 433978 Sisällysluettelo 1 Johdanto...
LIITE 1 VIRHEEN ARVIOINNISTA
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi
LIITE 1 VIRHEEN ARVIOINNISTA
1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten
Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.
TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde
LIITE 1 VIRHEEN ARVIOINNISTA
1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista
33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ
TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien
LÄMMÖNJOHTAVUUS. 1 Johdanto , (1) Lämmönjohtavuus
LÄMMÖNJOHAVUUS 1 Johdanto Kokeellisesti on havaittu, että lämpövirtaus ainekerroksen läpi on suoraan verrannollinen johtavan kerroksen pinta-alaan ja kerroksen eri puolilla vallitsevaan lämpötilaeroon.
FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269)
Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Sisällysluettelo 1. Johdanto... 2 2. Tutkimusmenetelmät... 2 2.1 Kokeellinen
Kuva 1. Michelsonin interferometrin periaate.
INTERFEROMETRI 1 Johdanto 1.1 Michelsonin interferometri Michelsonin interferometrin periaate on esitetty kuvassa 1. Laitteisto koostuu laserista, puoliläpäisevästä peilistä, kahdesta tasopeilistä ja varjostimesta.
Perusopintojen Laboratoriotöiden Työselostus 1
Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa
Jousen jousivoiman riippuvuus venymästä
1 Jousen jousivoiman riippuvuus venymästä Mikko Vestola Koulun nimi Fysiikka luonnontieteenä FY3-Projektityö 12..2002 Arvosana: K+ (10) 2 1. Tutkittava ilmiö Tehtävänä oli tehdä oppikirjan tutkimustehtävä
Laskuharjoitus 7 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin 25.4. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 7 Ratkaisut 1. Kuvan
Ryhmä T. Koesuunnitelma. Kone- ja rakennustekniikan laboratoriotyöt, KON-C3004
Ryhmä T Koesuunnitelma Kone- ja rakennustekniikan laboratoriotyöt, KON-C3004 Henri Makkonen 430450, Iivari Sassi 311582, Alexander Hopsu 429005 12.10.2015 Sisällys Tutkimusongelma ja tutkimuksen tavoite...
Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä
Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn
PUHDAS, SUORA TAIVUTUS
PUHDAS, SUORA TAIVUTUS Qx ( ) Nx ( ) 0 (puhdas taivutus) d t 0 eli taivutusmomentti on vakio dx dq eli palkilla oleva kuormitus on nolla 0 dx suora taivutus Taivutusta sanotaan suoraksi, jos kuormitustaso
HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA
1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla
Tuulen nopeuden mittaaminen
KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2
4A 4h. KIMMOKERROIN E
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 A h. KIMMOKERROIN E 1. TYÖN TAVOITE 2. TEORIAA Tässä työssä muista töistä poiketen tärkein tavoite on ymmärtää fysikaalisten suureiden keskinäistä riippuvuutta toisistaan
FYSP1082 / K4 HELMHOLTZIN KELAT
FYSP1082 / K4 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funktiona. Sähkömagnetismia ja
B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?
Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,
Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä
FYSP105 / K2 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funtiona. Sähkömagnetismia ja työssä
3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla.
TYÖ 9d. FYSIKAALISEN HEILURIN HITAUSMOMENTTI Tehtävä Välineet Taustatietoja Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. Fysikaalisena heilurina on metrin teräsmittana,
ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on
FYSA210 / K1 HITAUSMOMENTTI Työn tavoitteena on opetella määrittämään kappaleen hitausmomentti kappaletta pyörittämällä ja samalla havainnollistaa kitkan vaikutusta. Massapisteinä toimivat keskipisteestään
Fysiikan laboratoriotyöt 3 Sähkömotorinen voima
Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä
KIERTOHEILURI JA HITAUSMOMENTTI
1 KIERTOHEILURI JA HITAUSMOMENTTI MOTIVOINTI Tutustutaan kiertoheiluriin käytännössä. Mitataan hitausmomentin vaikutus värähtelyyn. Tutkitaan mitkä tekijät vaikuttavat järjestelmän hitausmomenttiin. Vahvistetaan
Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA TYÖN TAVOITE Tavoitteena on ymmärtää aineen kimmoisuuteen liittyviä käsitteitä sekä aineen lämpölaajenemista. Sovelluksena
on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
Muuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4].
FYS 102 / K6. MUUNTAJA 1. Johdanto Muuntajassa on kaksi eristetystä sähköjohdosta kierrettyä kelaa yhdistetty rautasydämellä ensiöpiiriksi ja toisiopiiriksi. Muuntajan toiminta perustuu sähkömagneettiseen
y=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
4757 4h. MAGNEETTIKENTÄT
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ
y 1 x l 1 1 Kuva 1: Momentti
BMA58 Integraalilaskenta ja sovellukset Harjoitus 4, Kevät 17 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Integraalit eivät tosin ole niin vaikeita etteikö niitä suurimmassa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ
FYSP105 /1 ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ 1 Johdanto Työssä tutkitaan elektronin liikettä homogeenisessa magneettikentässä ja määritetään elektronin ominaisvaraus e/m. Tulosten analyysissa tulee kiinnittää
KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618. Koesuunnitelma
KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618 Koesuunnitelma Sisällysluettelo Sisällysluettelo 1 1 Tutkimusongelma ja tutkimuksen tavoit e 2 2 Tutkimusmenetelmät 3 5 2.1 Käytännön
1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011
1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan
Suorakulmainen kolmio
Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2
Differentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat
TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat Lasketaan suurimmat leikkaus- ja taivutusrasitukset Analysoidaan sauvoja, jotka ovat suoria,
a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
origo III neljännes D
Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä
FYSA210/K2 KÄÄNTÖHEILURI
FYSA10/K KÄÄNTÖHEILURI Työn tarkoituksena on määrittää putoamiskiihtyvyyden arvo reversio- eli kääntöheilurin avulla. Ennen laboratoriovuoroa on syytä kerrata matemaattisiin ja fysikaalisiin heilureihin
Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti
Aineopintojen laboratoriotyöt 1 Veden ominaislämpökapasiteetti Aki Kutvonen Op.nmr 013185860 assistentti: Marko Peura työ tehty 19.9.008 palautettu 6.10.008 Sisällysluettelo Tiivistelmä...3 Johdanto...3
AVOIMEN SARJAN VASTAUKSET JA PISTEITYS
AVOIME SARJA VASTAUKSET JA PISTEITYS 1. Käytössäsi on viivoitin, 10 g:n punnus, 2 :n kolikko sekä pyöreä kynä. Määritä kolikon ja viivoittimen massa. Selosta vastauksessa käyttämäsi menetelmät sekä esitä
Eksimeerin muodostuminen
Fysikaalisen kemian Syventävät-laboratoriotyöt Eksimeerin muodostuminen 02-2010 Työn suoritus Valmista pyreenistä C 16 H 10 (molekyylimassa M = 202,25 g/mol) 1*10-2 M liuos metyylisykloheksaaniin.
Palkin kimmokertoimen kokeellinen määrittäminen. KON-C3004 Eetu Veikkanen, Aino Salmi, Jarna Verho
Palkin kimmokertoimen kokeellinen määrittäminen KON-C3004 Eetu Veikkanen, Aino Salmi, Jarna Verho Sisällys 1. Johdanto... 3 2. Teoria ja laskennallinen mittaaminen... 3 2.1 Yleistä... 3 2.2. Taipumaviivan
7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ
TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin
Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon
Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no
VALON KÄYTTÄYTYMINEN RAJAPINNOILLA
VALON KÄYTTÄYTYMINEN RAJAPINNOILLA 1 Johdanto 1.1 Valon nopeus ja taitekerroin Maxwellin yhtälöiden avulla voidaan johtaa aaltoyhtälö sähkömagneettisen säteilyn (esimerkiksi valon) etenemiselle väliaineessa.
766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4
766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
FYSA220/1 (FYS222/1) HALLIN ILMIÖ
FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys
Arjen riippuvuuksia. Tavoitteet:
Koostanut: Elina Viro Opettajalle Arjen riippuvuuksia Kohderyhmä: 7. luokka Esitiedot: koordinaatisto Taustalla oleva matematiikka: Riippuvuus koordinaatistossa, suoran piirtäminen Ajankäyttö: noin 9-11
tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista
FYSP102 / 2 KIERTOHEILURI Työn tavoitteita tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista Kiertoheiluri on aihe, joka
1 Johdanto (1) missä 0 on. interferenssi. mittauksen tarkkuudeksi Δ
25B INTERFEROMETRI 1 Johdanto 1.1 Michelsonin interferometri Kuva 1. Michelsonin interferometrin periaate. Michelsoninn interferometrin periaate on esitetty kuvassa 1. Laitteisto koostuu laserista, puoliläpäisevästää
Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa
8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti
Työ 5: Putoamiskiihtyvyys
Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista
Ensimmäisen asteen polynomifunktio
Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()
Menetelmäohjeet. Muuttuvan magneettikentän tutkiminen
Kannuksen lukio Maastossa ja mediahuoneessa hanke Fysiikan tutkimus Muuttuvan magneettikentän tutkiminen Menetelmäohjeet Muuttuvan magneettikentän tutkiminen Työn tarkoitus Opiskelijoille magneettikenttä
KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti
KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti Apulaisprofessori Konetekniikan laitos Statiikan välikoe 12.3.2018 Ajankohta ma 12.3.2018 klo 14:00 17:00 Salijako
TUTKIMUSRAPORTTI VTT-R Menetelmäkuvaus tartuntavetotankojen
TUTKIMUSRAPORTTI VTT-R-02477-18 Menetelmäkuvaus tartuntavetotankojen kokonaislujuuden varmistamiseksi kenttäolosuhteissa Kirjoittajat: Tapio Vehmas Luottamuksellisuus: Julkinen 2 (8) Sisällysluettelo
HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE
HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta
SUORAN PALKIN RASITUKSET
SUORAN PALKIN RASITUKSET Palkilla tarkoitetaan pitkänomaista rakenneosaa, jota voidaan käsitellä yksiulotteisena eli viivamaisena. Palkkia kuormitetaan pääasiassa poikittaisilla kuormituksilla, mutta usein
2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv
2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten
Harjoitus 6. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
KJR-C001 Kiinteän aineen mekaniikan perusteet, IV/01 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 1:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri
7. Resistanssi ja Ohmin laki
Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi
Differentiaalilaskennan tehtäviä
Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1
1 Johdanto. energiavyö, saavutetaan (1) missä E on
35 PUOLIJOHTEEN ENERGIA-AUKKO 1 Johdanto Kiinteissä aineissa aineen elektronitt ovat järjestyneet niin kutsutuille energiavöille. Hyvissä sähkönjohteissa ylin elektroneita sisältävä energiavyö on vain
Työ 3: Veden höyrystymislämmön määritys
Työ 3: Veden höyrystymislämmön määritys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä vettä höyrystetään uppokuumentimella ja mitataan jäljellä olevan veden painoa sekä höyrystymiseen
Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4
Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.
Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on
Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin
KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4
KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +
Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!
MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki
Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.
Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
tutustua kiertoheilurin teoriaan ja toimintaan
FYSP102 / 2 KIERTOHEILURI Työn tavoitteita tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista Kiertoheiluri on aihe, joka
TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg
TEHTÄVIEN RATKAISUT 15-1. a) Hyökkääjän liikemäärä on p = mv = 89 kg 8,0 m/s = 71 kgm/s. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 71 p v = = s 6,8 m/s. m 105 kg 15-.
KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit
KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,