Ratkaisuehdotukset Kesäyliopisto Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio.
|
|
- Jarno Mäkelä
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Harjoitukset 2 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio. a) Mikä on kysynnän hintajousto 12 :n ja 6 :n välillä? Käytä laskemiseen keskipistemenetelmää. Jouston kaava käyttäen keskipistemenetelmää on = Δ Δ = ( ) ( ), Jossa =( + )/2 eli uuden ja vanhan määrän keskiarvo ja =( + )/2 uuden ja vanhan hinnan keskiarvo. Nyt voidaan merkitä = 12 ja = 6, jolloin kuvan kysyntäkäyrästä nähdään, että =4 ja =7, joten = (7 + 4)/2 = 5,5 ja = (6+ 12) 2 =9. Sijoittamalla nämä luvut kaavaan saadaan = b) Miten kuvailisit laskemaasi kysynnän hintajoustoa? (7 4) 5,5 (6 12) 9 = 0,8182. Kysyntä on joustamatonta, koska -1 < e < 0. Eli kysytty määrä muuttuu suhteessa vähemmän kuin hinta. 2. Haalaritukku Oy laskee haalareiden hintoja 6 :sta 5 :n ja huomaa, että opiskelijoiden kysyntä kasvaa samalla 400kpl:stä 600kpl:n kuussa. a) Laske kysynnän hintajousto käyttäen keskipistemenetelmää.
2 Käytetään jouston laskemiseen tehtävässä 1 annettua kaavaa: = ( ) ( ). Sijoittamalla = 600, = 400, = ( ) 2 = 500 sekä = 5, = 6 ja = (6 +5) 2 = 5,5 kaavaan saadaan = ( )/500 (5 6) 5,5 b) Miten kuvailisit laskemaasi kysynnän hintajoustoa? = 2,2. Kysyntä on joustavaa, koska e<-1. Haalareita kysytään suhteessa enemmän, kuin miten hinta muuttuu. 3. Kuvassa on hyödykkeen kysyntäkäyrä ja kaksi tarjontakäyrää. Toinen (S) kuvastaa markkinatarjontaa ilman veroja ja toinen (S+tax) markkinatarjontaa, kun hyödykkeeseen kohdistetaan 3 :n suuruinen hyödykevero. a) Kuinka paljon valtio saa kerättyä veroja? Valtio saa kerättyä veroja (12 9 ) 4500 = Tässä 3 on siis kerätyn veron suuruus per yksikkö ja 4500 on tasapainomäärä, kun vero on sisällytetty tarjontakäyrään. b) Kuinka paljon tästä verokertymästä koituu kuluttajien maksettavaksi? Entä myyjien maksettavaksi? Kuluttajien maksettavaksi tulee (12 10 ) 4500 = ja tarjoajien maksettavaksi (10 9 ) 4500 =
3 c) Kuinka suuri on veron aiheuttama tehokkustappio? Tarjontakäyrän siirtyessä kolmion pinta-alan suuruinen alue. Kolmion pinta-ala lasketaan kaavalla ½*kanta*korkeus h = (12 9) ( ) = Tarkastellaan taskulaskinten markkinaa Irlannissa per päivä. Kysyntäkäyrä D on = 12 (4/50) ja tarjontakäyrä S on = 3 + (1/10), jossa x on taskulaskinten määrä. Taskulaskinten maailmanmarkkinahinta on 4. a) Laske taskulaskinten tasapainohinta ja -määrä, kun Irlanti ei käy kansainvälistä kauppaa. Tasapainohinta löytyy tällöin käyrien leikkauspisteestä. Oletaan, että kysyntäkäyrän määrittelevä ehto (p = 12 (4/50) ) ja tarjontakäyrän määrittelevä ehto ( = 3 + (1/10) ) ovat voimassa samanaikaisesti. Tarkastellussa tilanteessa pätee =
4 = = =9 = 50 Tasapainohinta saadaan täten asettamalla tasapainomäärä x=50 joko kysyntä- tai tarjontakäyrään. Ratkaistaan tasapainohinta nyt tarjontakäyrän kautta: = = =8 b) Kuinka suuri on a)-kohdan tilanteessa kuluttajan ylijäämä? Entä myyjän ylijäämä? Kuluttajan ylijäämä on ää ä = 1 (12 8) 50 = Ja tuottajan (myyjän) ylijäämä ää ä = 1 (8 3) 50 = c) Oletetaan että Irlanti vapauttaa kaupan kokonaan. Mitä tapahtuu kuluttajan ylijäämälle? Entä myyjän ylijäämälle? Uusi tasapainohinta on siis 4. Uusi tasapainomäärä saadaan asettamalla p=4 ja sijoittamalla tämä kysyntäkäyrään: = 12 (4/50) 4 = 12 (4/50) 4 50 =8 = 100 Kuinka suuren osan pystyy Irlanti itse tuottamaan tästä määrästä? Tämä saadaan tarjontakäyrästä: Asetetaan hinta p=4 tarjontakäyrään: = 3 + (1/10) 4 = 3 + (1/10) (1/10) =1 = 10
5 Tällä määrällä tuotantoa ylijäämä Irlantilaiselle tuottajalle on: ää ä = 1 2 (4 3) 10=5. Vapaakaupassa kuluttajan ylijäämä saadaan ää ä = 1 (12 4) 100 = Ajatellaan, että Koffin puistosta voi vuokrata päiväksi bassokaiuttimella varustettuja CD-soittimia. Olkoon niiden tarjontakäyrä = 5 + 0,1, jossa on päivävuokra (euroa/kpl) ja tarjottu määrä. Olkoon kysyntäkäyrä puolestaan = 20 0,2, jossa on kysytty määrä. a) Jos musiikin kuuntelusta aiheutuu rööperiläisille 3 euron kustannus jokaista soitinta kohden melun muodossa, niin miten markkinatasapaino ja Koffin puistoyhteiskunnan optimaalinen tasapaino eroavat toisistaan? Markkinatasapainossa kysyntä=tarjonta. Joten on oltava että tasapainossa pätee =. Asetetaan tämä tasapainoehtoon ja ratkaistaan: 20 0,2 = 5 + 0,1 0,2 + 0,1 =20 5 0,3 = 15 = 50 Sijoittamalla = 50 kumpaan tahansa käyrään (nyt kysyntäkäyrään) saadaan hinta: = 20 0,2 50 = 10 Yhteiskunnallinen optimi: Tiedetään että kysyntäkäyrä on yksityinen rajahyöty (kuluttajien saama rajahyöty) ja tarjontakäyrä on yksityinen rajakustannus (tuottajien rajakustannus). Yhteiskunnallisessa optimissa pitää ottaa huomioon myös negatiivinen ulkoisvaikutus, joka nyt voidaan määritellä olevan 3 euroa/soitin. Tämä ulkoisvaikutus voidaan sisäistää joko kuluttajien tai tuottajien puolelle tasapainoa, esim. jos se sisäistetään kuluttajien maksettavaksi voidaan yhteiskunnallisen optimin ehto kirjoittaa: Yksityinen rajahyöty + ulkoisvaikutus = ykstyinen rajakustannus (nyt ulkoisvaikutus on negatiivinen, joten se pienentää yhtälön vasenta puolta).
6 20 0,2 3=5+0,1 0,3 = 12 = 40 c) Millaisella verolla ja miten tämän ulkoisvaikutuksesta aiheutuvan ongelman voi korjata? Perustele! Jos ulkoisvaikutus sisäistetään kuluttajille, voidaan periä 3 :n käyttömaksu per vuokrattu soitin. Tällöin kysyntäkäyrä on kuten edellä yhteiskunnallisessa optimissa: = 20 0,2 3 Jos ulkoisvaikutus sisäistetään tuottajalle, silloin voidaan periä 3 :n vero per soitin soittimia vuokraavilta yrityksiltä. Tällöin tarjontakäyrä on: = 5 + 0,1 +3. Eli yrityksille tulee ylimääräinen kustannus. Huomaa, että hinta ilman veroa (tai käyttömaksua) on nyt: ja käyttömaksun/veron kanssa: =5+0,1 40=9 = 5 + 0, = 12. Vastaava tulos saadaan myös sijoittamalla = 40 kysyntäkäyrään.
Kuntosaliharjoittelun kesto tunteina Kokonaishyöty Rajahyöty 0 0 5 1 5 10 2 15 8 3 23 6 4 29 4 5 33 -
Harjoitukset 1 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. Oheisessa taulukossa on esitettynä kuluttajan saama hyöty kuntosaliharjoittelun kestosta riippuen. a) Laske taulukon tyhjään
5. www-kierroksen mallit
5. www-kierroksen mallit Tehtävä 1 Ratkaistaan tasapainopiste merkitsemällä kysyntä- ja tarjontakäyrät yhtäsuuriksi: 3 4 q+20=q+6 q=8 ja sijoittamalla p=14. Kuluttajan ja tuottajan ylijäämä voidaan ratkaista
MIKROTEORIA, HARJOITUS 4 KULUTTAJAN YLIJÄÄMÄ, MARKKINAKYSYNTÄ JA TASAPAINO
MIKROTEORIA, HARJOITUS 4 KULUTTAJAN YLIJÄÄMÄ, MARKKINAKYSYNTÄ JA TASAPAINO HUOM! Kun arvioidaan politiikkamuutoksen vaikutusta kuluttajien hyvinvointiin, täytyy pohtia kahta vaihetta: 1) miten muutos vaikuttaa
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden
MAA10 HARJOITUSTEHTÄVIÄ
MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5
30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55.
RATKAISUT, Insinöörimatematiikan koe 1.5.201 1. Kahdessa astiassa on bensiinin ja etanolin seosta. Ensimmäisessä astiassa on 10 litraa seosta, jonka tilavuudesta 5 % on etanolia. Toisessa astiassa on 20
KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET
KANSANTALOUSTIETEEN ÄÄSYKOE 6.6.013: MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja, 01] sivuihin. (1) (a) igou -verot: Jos markkinoilla
2 MARKKINOIDEN TOIMINTA
2 MARKKINOIDEN TOIMINTA 1 Markkinoiden toiminta Kuinka markkinat toimivat kysyntä ja tarjonta Markkinatasapaino Kysynnän joustot Markkinoiden toimivuus ja niiden säätely 2 Markkinat ovat mikä tahansa järjestely,
Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10
Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,
4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)
4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016
tudent: ate: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 016 Assignment: 016 www 1. Millä seuraavista tuotteista on itseisarvoltaan pienin kysynnän hintajousto? A. Viini B. Elokuvat
KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset
KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun
MS-A0004 - Matriisilaskenta Laskuharjoitus 3
MS-A0004 - Matriisilaskenta Laskuharjoitus 3 atkaisut Tehtävä Merkitään matriisin rivejä, 2 ja 3. Gaussin eliminoinnilla saadaan 3 5 4 7 3 5 4 7 3 2 4 2+ 0 3 0 6 6 8 4 3+2 2 0 3 0 6 3 5 4 7 0 3 0 6 3+
2. Hyödykkeen substituutit vaikuttavat kyseisen hyödykkeen kysynnän hintajoustoon.
TU-91.1001 Kansantaloustieteen perusteet WWW-harjoitus 2, syksy 2016 Vastaukset 1. Millä hyödykkeistä on pienin kysynnän hintajousto? V: D. Maito. Pienin kysynnän hintajousto (eli hinnanmuutoksen vaikutus
Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c.
Epäyhtälö Kahden lausekkeen A ja B välisiä järjestysrelaatioita A < B, A B, A > B ja A B nimitetään epäyhtälöiksi. Esimerkiksi 2 < 6, 9 10, 5 > a + + 2 ja ( + 1) 2 2 + 2 ovat epäyhtälöitä. Epäyhtälössä
Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola)
Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola) Hyvinvointiteoria tarkastelee sitä, miten resurssien allokoituminen kansantaloudessa vaikuttaa ihmisten hyvinvointiin Opimme
talletetaan 1000 euroa, kuinka paljon talouteen syntyy uutta rahaa?
TALOUSTIETEEN PÄÄSYKOE 1.6.2017 1. Kerro lyhyesti (korkeintaan kolmella lauseella ja kaavoja tarvittaessa apuna käyttäen), mitä tarkoitetaan seuraavilla käsitteillä: (a) moraalikato (moral hazard) (b)
Harjoitusten 2 ratkaisut
Harjoitusten 2 ratkaisut Taloustieteen perusteet 31A00110 Tea Lönnroth tea.lonnroth(at)aalto.fi Teach a parrot the terms 'supply and demand' and you've got an economist. Thomas Carlyle 2 Tehtävä 1 Tarkastellaan
Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö
Aluksi Matemaattisena käsitteenä lineaarinen optimointi sisältää juuri sen saman asian kuin mikä sen nimestä tulee mieleen. Lineaarisen optimoinnin avulla haetaan ihannearvoa eli optimia, joka on määritelty
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu Harjoitukset 1. Kysynnän ja tarjonnan perusteet (kertausta ja lämmittelyä). 1. Jampan
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Tehtävä 1.Tarkastellaan opiskelijaa, jolla opiskelun ohella jää 8 tuntia päivässä käytettäväksi työntekoon ja vapaa-aikaan. Olkoot hänen
TALOUSTIETEEN LUENTOJEN TEHTÄVÄT
TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla
c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4. Koe 8.5.0 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P
Osa 5. Joustoista Kysynnän hintajousto (price elasticity of demand) mittaa, miten kysynnän määrä reagoi hinnan muutokseen = kysytyn määrän suhteellinen muutos jaettuna hinnan suhteellisella muutoksella
Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto
Viime kerralta Luento 9 Markkinatasapaino Markkinakysyntä kysyntöjen aggregointi Horisontaalinen summaaminen Eri kuluttajien kysynnät eri hintatasoilla Huom! Kysyntöjen summaaminen käänteiskysyntänä Jousto
1. Hyödykkeen tarjonta on p = 10 + q ja kysyntä puolestaan p = 40-2q. Markkinatasapainossa kysynnän hintajousto on
1. Hyödykkeen tarjonta on p = 10 + q ja kysyntä puolestaan p = 40-2q. Markkinatasapainossa kysynnän hintajousto on D. ε = 1 Ratkaistaan ensin markkinatasapaino asettamalla kysyntä ja tarjonta yhtä suuriksi.
ARVIOINTIPERIAATTEET
PSYKOLOGIAN YHTEISVALINNAN VALINTAKOE 2012 ARVIOINTIPERIAATTEET Copyright Helsingin yliopisto, käyttäytymistieteiden laitos, Materiaalin luvaton kopiointi kielletty. TEHTÄVÄ 1. (max. 34.5 pistettä) 1 a.i)
5 Markkinoiden tehokkuusanalyysin sovelluksia (Mankiw & Taylor, Chs 6, 8-9)
5 Markkinoiden tehokkuusanalyysin sovelluksia (Mankiw & Taylor, Chs 6, 8-9) Hyvinvointiteoria tarkastelee sitä, miten resurssien allokoituminen kansantaloudessa vaikuttaa ihmisten hyvinvointiin Opimme
KA 1 2009, tentti 14.10. 2009 (mikrotaloustieteen osuus), luennoitsija Mai Allo
1 KA 1 2009, tentti 14.10. 2009 (mikrotaloustieteen osuus), luennoitsija Mai Allo ÄLÄ IRROTA PAPEREITA TOISISTAAN! Ohjeet: Tenttikysymyksiä on kuusi (+ jokeri ohjeineen viimeisellä sivulla). Valitse tenttikysymyksistä
Luento 6. June 1, 2015. Luento 6
June 1, 2015 Normaalimuodon pelissä on luontevaa ajatella, että pelaajat tekevät valintansa samanaikaisesti. Ekstensiivisen muodon peleissä pelin jonottaisella rakenteella on keskeinen merkitys. Aluksi
KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET
KANSANTALOUSTIETEEN ÄÄSYKOE 5.6.2014 MALLIVASTAUKSET Jokaisen tehtävän perässä on pistemäärä sekä sivunumero (Matti ohjola, Taloustieteen oppikirja, 2012) josta vastaus löytyy. (1) (a) Suppea raha sisältää
Lukion. Calculus. Polynomifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN
Calculus Lukion MAA Polynomifunktiot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Polynomifunktiot (MAA) Pikatesti ja kertauskokeet Tehtävien ratkaisut
I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT
I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT Tehtävä 1! " # $%& ' ( ' % %' ' ) ) * ' + )$$$!," - '$ '' ' )'( % %' ) '%%'$$%$. /" 0 $$ ' )'( % %' +$%$! &" - $ * %%'$$%$$ * '+ ' 1. " - $ ' )'( % %' ' ) ) * '
KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET
KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:
MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2013
MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2013 KOE 2: Ympäristöekonomia KANSANTALOUSTIEDE JA MATEMATIIKKA Sekä A- että B-osasta tulee saada vähintään 7 pistettä. Mikäli A-osan pistemäärä on vähemmän
4 Kysyntä, tarjonta ja markkinatasapaino
4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
Esimerkkejä derivoinnin ketjusäännöstä
Esimerkkejä derivoinnin ketjusäännöstä (5.9.008 versio 1.0) Esimerkki 1 Määritä funktion f(x) = (x 5) derivaattafunktio. Funktio voidaan tulkita yhdistettynä funktiona, jonka ulko- ja sisäfunktiot ovat
Markkinainstituutio ja markkinoiden toiminta. TTT/Kultti
Markkinainstituutio ja markkinoiden toiminta TTT/Kultti Pyrin valottamaan seuraavia käsitteitä i) markkinat ii) tasapaino iii) tehokkuus iv) markkinavoima. Määritelmiä 1. Markkinat ovat mekanismi/instituutio,
monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä.
.. Käänteisunktio.. Käänteisunktio Mikäli unktio : A B on bijektio, niin joukkojen A ja B alkioiden välillä vallitsee kääntäen yksikäsitteinen vastaavuus eli A vastaa täsmälleen yksi y B, joten myös se
Luku 34 Ulkoisvaikutukset
Luku 34 Ulkoisvaikutukset Markkinoiden kilpailutasapaino ei ole Pareto-tehokas, jos taloudessa esiintyy ulkoisvaikutuksia. Kertaus: Pareto-tehokas tasapaino on tasapaino, jossa yhden toimijan asemaa markkinoilla
Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV
c. Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on MRS NL = MU L
MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi HARJOITUKSET II 1. Jutan ruokavalio koostuu yksinomaan nauriista ja lantuista. Jutan hyötyfunktio on muotoa U(N,L) = 12NL. Tällä hetkellä Jutta on päättänyt
Taloustieteen perusteet 31A Ratkaisut 3, viikko 4
Taloustieteen perusteet 31A00110 2018 Ratkaisut 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden
Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 2 Mallivastaukset
Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 2 Mallivastaukset 1 Tehtävä 1 Lähde M&T (2006, 84, luku 4 tehtävä 1, muokattu ja laajennettu) Selitä seuraavat väittämät hyödyntämällä kysyntä- ja tarjontakäyrän
1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä
0 5 Nauris 10 15 20 MIKROTALOUSTIEDE A31C00100 Kevät 2017 HARJOITUKSET II Palautus 24.1.2017 klo 16:15 mennessä suoraan luennoitsijalle (esim. harjoitusten alussa) tai sähköpostitse (riku.buri@aalto.fi).
SAIPPUALIUOKSEN SÄHKÖKEMIA 09-2009 JOHDANTO
SAIPPUALIUOKSEN SÄHKÖKEMIA 09-009 JOHDANTO 1 lainaus ja kuvat lähteestä: Työssä tutkitaan johtokyky- ja ph-mittauksilla tavallisen palasaippuan kemiallista koostumusta ja misellien ja aggregaattien muodostumista
Induktio kaavan pituuden suhteen
Induktio kaavan pituuden suhteen Lauselogiikan objektikieli määritellään kurssilla Logiikka 1B seuraavasti: 1. Lausemuuttujat p 1, p 2, p 3,... ovat kaavoja. 2. Jos A on kaava, niin A on kaava. 3. Jos
5 Markkinat, tehokkuus ja hyvinvointi
5 Markkinat, tehokkuus ja hyvinvointi Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja kuluttaa sellaisen määrän
( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.
Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen
2.2 Täydellinen yhtälö. Ratkaisukaava
. Täydellinen yhtälö. Ratkaisukaava Tulon nollasäännöstä näkee silloin tällöin omituisia sovellutuksia. Jotkut näet ajattelevat, että on olemassa myöskin tulon -sääntö tai tulon "mikä-tahansa"- sääntö.
Laakerin kestoikälaskenta ISO-281, ISO-281Add1 ja ISO16281 mukaan
Laakerin kestoikälaskenta ISO-28, ISO-28Add ja ISO628 mukaan Laakerit 6204 C := 2700 C o := 6550 n := 500 Käytettävän öljyn viskositeetti ν := 45 mm 2 / s Lasketaan laakerin kestoikä kolmella eri tavalla:
Luku 34 Ulkoisvaikutukset
Luku 34 Ulkoisvaikutukset Markkinoiden kilpailutasapaino ei ole Pareto-tehokas, jos taloudessa esiintyy ulkoisvaikutuksia. Kertaus: Pareto-tehokas tasapaino on tasapaino, jossa yhden toimijan asemaa markkinoilla
KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7
KEMIALLINEN TASAPAINO Määritelmiä Kemiallinen reaktio A B pyrkii kohti tasapainoa. Yleisessä tapauksessa saavutetaan tasapainoa vastaava reaktioseos, jossa on läsnä sekä lähtöaineita että tuotteita: A
4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7)
4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja
Matematiikan tukikurssi 3.4.
Matematiikan tukikurssi 3.4. Neliömuodot, Hessen matriisi, deiniittisyys, konveksisuus siinä tämän dokumentin aiheet. Neliömuodot ovat unktioita, jotka ovat muotoa T ( x) = x Ax, missä x = (x 1,, x n )
TU Kansantaloustieteen perusteet Syksy 2016
TU-91.1001 Kansantaloustieteen perusteet Syksy 2016 5. www-harjoitusten mallivastaukset Tehtävä 1 Ratkaistaan tasapainopiste yhtälöparista: P = 25-2Q P = 10 + Q Ratkaisu on: Q = 5, P = 15 Kuluttajan ylijäämä
Prof. Marko Terviö Assist. Jan Jääskeläinen
Harjoitukset 3. 1. (a) Dismalandissa eri puolueiden arvostukset katusiivoukselle ovat Q A (P ) = 60 6P P A (Q) = 10 Q/6 Q B (P ) = 80 5P P B (Q) = 16 Q/5 Q C (P ) = 50 2P P C (Q) = 25 Q/2 Katusiivous on
MIKROTALOUSTIEDE A31C00100
MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi & Emmi Martikainen emmi.martikainen@kkv.fi Luennon sisältö Hintakilpailu ja tuotedifferentiaatio Peräkkäiset pelit (12.4-12.5) Alalle tulon estäminen Taloudellinen
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 4: Entropia Pe 4.3.2016 1 AIHEET 1. Klassisen termodynamiikan entropia 2. Entropian
Ilmastonmuutoksen hyödyt ja kustannukset - kommentti. Markku Ollikainen Taloustieteen laitos, ympäristöekonomia 3.12. 2007
Ilmastonmuutoksen hyödyt ja kustannukset - kommentti Markku Ollikainen Taloustieteen laitos, ympäristöekonomia 3.12. 2007 0. Taustaa Kokonaistaloudellisten politiikkamallien tulokset juontuvat lähinnä
Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta
Simo K. Kivelä, 15.4.2003 Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Aksioomat Luonnolliset luvut voidaan määritellä Peanon aksioomien avulla. Tarkastelun kohteena on
TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset
TU-91.1001 Kansantaloustieteen perusteet Syksy 2017 5. www-harjoitusten mallivastaukset Tehtävä 1: Tuotteen X kysyntäkäyrä on P = 25-2Q ja tarjontakäyrä vastaavasti P = Q + 10. Mikä on markkinatasapinopiste
Kilpailulliset markkinat. Taloustieteen perusteet Matti Sarvimäki
Kilpailulliset markkinat Taloustieteen perusteet Matti Sarvimäki Johdanto Tähän mennessä valinta niukkuuden vallitessa strateginen kanssakäyminen, instituutiot, yritykset hinnat ja määrät kun yrityksellä
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto 31C00100 Syksy 2016 Assist. Jan Jääskeläinen Kauppakorkeakoulu
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto 31C00100 Syksy 2016 Assist. Jan Jääskeläinen Kauppakorkeakoulu Vastaukset 1. 1. Pirjon väite huonosta huumevalistuksesta vastaa näkemystä, jonka mukaan
Kilpailulliset markkinat Taloustieteen perusteet Matti Sarvimäki
Johdanto Kilpailulliset markkinat Taloustieteen perusteet Matti Sarvimäki Tähän mennessä valinta niukkuuden vallitessa strateginen kanssakäyminen, instituutiot, yritykset hinnat ja määrät kun yrityksellä
KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT
KYSYNTÄ, TARJONTA JA HINTA Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT Paikka, jossa ostaja ja myyjä kohtaavat, voivat hankkia tietoa vaihdettavasta tuotteesta sekä tehdä
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset
Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015
Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015 1. Onko olemassa yhtenäistä verkkoa, jossa (a) jokaisen kärjen aste on 6, (b) jokaisen kärjen aste on 5, ja paperille piirrettynä sivut eivät
2.7 Neliöjuuriyhtälö ja -epäyhtälö
2.7 Neliöjuuriyhtälö ja -epäyhtälö Neliöjuuren määritelmä palautettiin mieleen jo luvun 2.2 alussa. Neliöjuurella on mm. seuraavat ominaisuudet. ab = a b, a 0, b 0 a a b =, a 0, b > 0 b a2 = a a > b, a
Seuraavaksi kysymme, onko tällainen markkinatasapaino yhteiskunnan kannalta hyvä vai huono eli toimivatko markkinat hyvin vai huonosti
Osa 7: Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7, Pohjolan mukaan) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla
SMG-4300: Yhteenveto toisesta luennosta. Miten puolijohde eroaa johteista ja eristeistä elektronivyörakenteen kannalta?
SMG-4300: Yhteenveto toisesta luennosta Miten puolijohde eroaa johteista ja eristeistä elektronivyörakenteen kannalta? Puolijohteesta tulee sähköä johtava, kun valenssivyön elektronit saavat vähintään
SOPIMUS KIINTEISTÖN KAUPAN MAKSUJÄRJESTELYISTÄ
1 (7) SOPIMUS KIINTEISTÖN KAUPAN MAKSUJÄRJESTELYISTÄ 1. OSAPUOLET 1.1. Hankintayksikkö Helsingin kaupunki, Y-tunnus 0201256-6 jota edustaa kiinteistölautakunta PL 2200, 00099 HELSINGIN KAUPUNKI (jäljempänä:
Talousmatematiikan perusteet, ORMS1030
Tamprn ksäyliopisto, 2015-2016 Talousmatmatiikan prustt, ORMS1030 1. väliko, (ti 15.12.2015) Ratkais 3 thtävää. Kokssa saa olla mukana laskin (myös graafinn laskin on sallittu) ja taulukkokirja (MAOL tai
SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä:
Magneettikentät 2 SISÄLTÖ: Ampèren laki Menetelmän valinta Vektoripotentiaali Ampèren laki Ampèren lain avulla voidaan laskea maneettikenttiä tietyissä symmetrisissä tapauksissa, kuten Gaussin lailla laskettiin
12 Oligopoli ja monopolistinen kilpailu
12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä
Talousmatematiikan perusteet, ORMS1030
Vaasan yliopisto, kvät 206 Talousmatmatiikan prustt, ORMS030 3. harjoitus, viio 5. 5.2.206 Malliratkaisut. Yrityksn rään tuotlinjan kysyntäfunktio on p 20 0.030 ja vastaava kustannusfunktio on C 0.02 2
Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi
2. OSA: GEOMETRIA Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Montako tasokuviota voit muodostaa viidestä neliöstä siten, että jokaisen neliön vähintään
Tietoturva langattomissa verkoissa. Anekdootti
Tietoturva langattomissa verkoissa Anekdootti Tapio Väättänen 21.04.2005 Tiivistelmä Tässä tutkimuksessa on tutkittu kattavasti langattomien verkkojen tietoturvaa. Tutkimuksen välineinä on käytetty kannettavaa
Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68
Esimerkki 8 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3 3 4 4 4 8 32 1 3 10 0 13 26 4 8 32 r 3 4r 1 1 3 10 3 4 4 r 2 3r 1 4 8 32 1 3 10 0 13 26 r 2 /13 0 4 8
LUPAOSAKASLUETTELO (ns. yhteislupa) Liite hirvieläinten pyyntilupahakemukseen Sivu 1
LUPAOSAKASLUETTELO (ns. yhteislupa) Liite hirvieläinten pyyntilupahakemukseen Sivu 1 Jos hakijoita on useampi kuin yksi (henkilö tai metsästysseura/-seurue), nimetään yksi hakijaksi ja kaikista metsästysoikeuden
Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18
Panoskysyntä Luku 26 Marita Laukkanen November 15, 2016 Marita Laukkanen Panoskysyntä November 15, 2016 1 / 18 Monopolin panoskysyntä Kun yritys määrittää voitot maksimoivia panosten määriä, se haluaa
- Kommentoi koodisi. Koodin kommentointiin kuuluu kuvata metodien toiminta ja pääohjelmassa tapahtuvat tärkeimmät toiminnat. Esim.
Projektityö olioista. Projektityön ohjeistus: - Jokainen valitsee vain yhden aiheen projektityökseen. Projektityön tarkoitus on opetella tekemään hieman isompi, toimiva ohjelma olioita käyttäen. Ohjelmakoodi
Espoon kaupunki Pöytäkirja 159
12.06.2013 Sivu 1 / 1 2710/05.10.01/2013 159 Oikaisuvaatimus Huurrepolun ryhmäperhepäiväkodin lakkauttamisesta Valmistelijat / lisätiedot: Marjatta Korhonen, puh. (09) 816 83685 Maria Rauman, puh. (09)
Sonera Hosted Mail -palvelun käyttöohje 12.05.2011
Sonera Hosted Mail -palvelun käyttöohje 12.05.2011 Sonera Hosted Mail -palvelun käyttöohje 1. Johdanto Hosted Mail on yrityskäyttöön suunniteltu sähköposti- ja ryhmätyösovelluspalvelu. Se perustuu Microsoft
1.7 Gradientti ja suunnatut derivaatat
1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset
TimeEdit henkilökunnan ohje
TIMEEDIT-OHJE 1 (13) TimeEdit henkilökunnan ohje TIMEEDIT WEB... 2 TYÖJÄRJESTYKSET... 2 TYÖJÄRJESTYKSET NÄKYMÄT JA HAKUEHDOT... 4 VARAA TILA... 5 VARAA AUTO... 6 NÄYTÄ OMAT VARAUKSET... 6 TEE POISSAOLOILMOITUS...
Johdatus yliopistomatematiikkaan, 2. viikko (2 op)
Johdatus yliopistomatematiikkaan, 2. viikko (2 op) Jukka Kemppainen Mathematics Division Yhtälöt ja epäyhtälöt Jokainen osaa ratkaista ensimmäisen asteen yhtälön ax + by + c = 0. Millä parametrien a, b
KESTÄVÄN KEHITYKSEN OPPIMISTULOSTEN ARVIOINTI AMMATILLISESSA PERUSKOULUTUKSESSA 2015
KESTÄVÄN KEHITYKSEN OPPIMISTULOSTEN ARVIOINTI AMMATILLISESSA PERUSKOULUTUKSESSA 215 Koulutuksen järjestäjän ja kansallisen tuloksen vertailu Kansallinen koulutuksen arviointikeskus (Karvi) toteutti keväällä
Y56 laskuharjoitukset 6
Y56 Kevät 00 Y56 laskuharjoitukset 6 Palautus joko luennolle/mappiin tai Katjan lokerolle (Koetilantie 5, 3. krs) to.4. klo 6 mennessä (purku luennolla ti 7.4.) Ole hyvä ja vastaa suoraan tähän paperiin.
Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015.
Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön
11 Monopoli. (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15)
11 Monopoli (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15) Monopoli on tilanne, jossa markkinoilla on vain yksi myyjä, jonka valmistamalle tuotteelle ei ole läheistä substituuttia yritys
LUOVUTUSSOPIMUS. Koulutuskeskus Salpaus -kuntayhtymän, Orimattilan kaupungin. välillä koskien
LUOVUTUSSOPIMUS Koulutuskeskus Salpaus -kuntayhtymän, ja Orimattilan kaupungin välillä koskien Osoitteessa Koulutie 19, 16300 Orimattila sijaitseva opetuskiinteistöä (kiinteistötunnus 560-418-37-71) sekä
Derivaatta, interpolointi, L6
, interpolointi, L6 1 Wikipeia: (http://fi.wikipeia.org/wiki/ ) Etälukio: (http://193.166.43.18/etalukio/ pitka_matematiikka/kurssi7/maa7_teoria10.html ) Maths online: (http://www.univie.ac.at/future.meia/
DYNAAMISET SYSTEEMIT kevät 2000
1. harjoitukset, viikko 3 1. Mitkä seuraavista differentiaaliyhtälöistä ovat lineaarisia? a) x = t 2 b) x + t 3 x = t c) x x = x d) x - (x ) 2 = 0 e) e t x + e -t x = (1-t 2 ) ½ f) (x ) 2 = x 2 2. Määritä
Sähköstaattisen potentiaalin laskeminen
Sähköstaattisen potentiaalin laskeminen Potentiaalienegia on tuttu mekaniikan kussilta eikä se ole vieas akielämässäkään. Sen sijaan potentiaalin käsite koetaan usein vaikeaksi. On hyvä muistaa, että staattisissa
A31C00100 MIKROTALOUSTIEDE. Kevät Riku Buri. HARJOITUKSET I: vastaukset
A31C00100 MIKROTALOUSTIEDE Kevät 2017 Riku Buri HARJOITUKSET I: vastaukset 1. Vastaa seuraaviin kysymyksiin a. Miten hyödykkeen kysyntään vaikuttaa jos, i. Substituutin hinta nousee Kysyntä kasvaa ii.
JOENSUUN SEUDUN HANKINTATOIMI KOMISSIOMALLI 28.03.2014
JOENSUUN SEUDUN HANKINTATOIMI KOMISSIOMALLI 28.03.2014 KOMISSIO Komissio otetaan käyttöön kaikissa kilpailutuksissa, joiden hankintakausi alkaa 1.1.2012 tai sen jälkeen Raha liikkuu Joensuun seudun hankintatoimen
Kasvuteorian perusteita
Tapio Palokangas Helsingin taloustutkimuskeskus (HECER) Helsingin yliopisto HECER, kevät 2015 Contents Mitä on kasvu? 1 Mitä on kasvu? 2 3 4 5 6 Talouskasvun määritelmä Talouskasvu lisää talouden tuotantokapasiteettia