Tuulivoiman vaikutus järjestelmän dynamiikkaan

Koko: px
Aloita esitys sivulta:

Download "Tuulivoiman vaikutus järjestelmän dynamiikkaan"

Transkriptio

1 Tuulivoiman vaikutus järjestelmän dynamiikkaan Johdanto Useimmissa maissa suuriin verkkoihin kytkettyä tuulivoimaan on hyvin vähän suhteessa järjestelmän vaatimaan tehoon. Tuulivoiman määrä lisääntyy kuitenkin koko ajan, jolloin se tulee korvaamaan yhä suurempaa osaa perinteisten tahtigeneraattoreiden tuotannosta. Tällä on luonnollisesti myös vaikutusta koko järjestelmän käyttäytymiseen. Järjestelmän dynaaminen käyttäytyminen määräytyy pääasiassa generaattorien kautta, ja tähän mennessä melkein kaikessa verkkoon tuotetussa tehossa on käytetty perinteisiä suoraan verkkoon kytkettyjä tahtigeneraattoreita. Tällaisten järjestelmien käyttäytyminen erilaisissa tilanteissa onkin hyvin tiedossa, koska niitä on käytetty jo vuosikymmeniä. Kyseistä generaattorityyppiä on sovellettu aikoinaan myös tuulivoimakäytössä, mutta nykyisin tilanne on toinen. Käytössä on mm. häkkikäämigeneraattoreita ja tehoelektroniikkaratkaisuja, ja niiden verkkovaikutukset, ja täten myös dynaaminen käyttäytyminen eroavat perinteisestä tahtigeneraattorista. Lisäksi eri tuuliturbiinityyppien verkkovaikutukset vaihtelevat, joten erityyppisten turbiinien dynamiikkaa täytyy tarkastella erikseen. Sähkövoimajärjestelmän dynamiikka Sähkövoimajärjestelmän dynamiikassa tarkastellaan sitä, kuinka järjestelmä vastaa herätteisiin (häiriö, muutos), jotka muuttavat järjestelmän toimintapistettä. Herätteitä voivat olla esimerkiksi taajuuden muuttuminen generaattorin sammuessa tai kuormaa kytkettäessä tai irrotettaessa, tai jännitteen putoaminen vikatilanteessa. Heräte liipaisee vasteen järjestelmälle, jolloin järjestelmän jännitteet ja virrat alkavat muuttua. Järjestelmä on stabiili, jos uusi toimintapiste saavutetaan muutostilanteen jälkeen ja kaikki generaattorit ja kuormat pysyvät kytkettyinä. Jos uudessa toimintapisteessä generaattoreita tai kuormia kytkeytyy pois, järjestelmä on epästabiili. Riippuen herätteestä, stabiili järjestelmä voi muutostilanteen jälkeen säilyttää nykykyisen toimintapisteensä tai toimintapiste voi muuttua. Epästabiilissakaan tilanteessa ei välttämättä päädytä täydelliseen katkostilanteeseen, vaan suojauslaitteet erottavat epästabiilin tilan aiheuttajan, ja järjestelmä siirtyy toimintapisteeseen, jossa se voi toimia stabiilisti. Järjestelmän dynamiikkaa voidaan tarkastella aikatason simuloinneilla tai taajuustason analyysillä. Aikatasossa simuloidaan järjestelmää, kun sille tehdään heräte, ja sen vasteesta voidaan päätellä mm. onko järjestelmä kyseisessä tilanteessa stabiili. Taajuustason analysointi perustuu järjestelmän linearisoituun malliin, jossa järjestelmän vaste perustuu tilamuuttujien muutoksiin. 1

2 Yleisimmät tuuliturbiinityypit Pääosa nykyisin asennettavista tuuliturbiineista käyttää yhtä kolmesta yleisimmästä turbiinityypistä. Ensimmäinen tyyppi on ns. Tanskalainen konsepti, eli tyyppi A. Tässä käytetään (epätahti-) häkkikäämigeneraattoria muuttamaan mekaaninen energia sähköenergiaksi. Turbiinin roottori ja generaattori pyörivät eri nopeudella, joten tarvitaan myös vaihdelaatikko. Järjestelmää kutsutaan vakio- tai kiinteänopeuksiseksi. Toinen yleinen tyyppi, tyyppi C, käyttää kaksoiskäämittyä generaattoria, ja tarvitsee myös vaihdelaatikon. Staattori on kytketty suoraan verkkoon ja roottorin käämitykset on kytketty tehomuuntimen kautta verkkoon. Tehomuuntimella voidaan kompensoida mekaanisen taajuuden ja sähkötehon taajuuden eroa. Muuttuvanopeuksinen toiminta tulee mahdolliseksi. Kolmas yleinen tyyppi on tyyppi D. Tämä tyyppi ei tarvitse vaihdelaatikkoa, vaan se hyödyntää useampinapaisia tahtigeneraattoreita, ja teho syötetään tehomuuntimen kautta verkkoon. Tämä tyyppi on myös muuttuvanopeuksinen. Tuulivoiman dynamiikka aikatasossa Tuuliturbiinityyppien dynaaminen käyttäytyminen Kiinteänopeuksiset tuuliturbiinit (tyyppi A). Tämä tyyppi käyttää suoraan verkkoon kytkettyjä häkkikäämittyjä generaattoreita. Järjestelmän käyttäytymistä tarkastellaan pätötehon, loistehon sekä generaattorin jännitteen ja pyörimisnopeuden välisillä suhteilla. Kuvassa 1 esittelee järjestelmän ekvivalenttipiirin. Kuva 1. Häkkikäämigeneraattorin ekvivalenttipiiri. Kyseiset generaattorit voivat mennä epästabiiliksi jänniteenalenemistilanteissa, joka voi johtaa edelleen tilanteeseen, jossa loistehon kulutus kasvaa, ja lopulta turbiinin jännite voi romahtaa kokonaan. 2

3 Kun generaattorin jännite laskee esimerkiksi via takia, vain pieni määrä sähkötehoa syötetään verkkoon. Tuuli jatkaa kuitenkin mekaanisen tehon syöttämistä roottoriin, jolloin syötetyn mekaanisen tehon ja sähkötehon välinen epätasapaino saa generaattorin kiihtymään. Kun vikatilanne korjautuu, generaattori ottaa verkosta suuren määrän loistehoa korkean pyörimisnopeutensa takia, jolloin generaattorin jännite palautuu ennalleen suhteellisen hitaasti. Jos roottori kiihtyy ennen kuin generaattorin jännite on palautunut, loistehon kulutus kasvaa ja tämä pienentää jännitettä entisestään, lopulta tuuliturbiinin jännite romahtaa ja koko voimala voidaan joutua irrottamaan verkosta. Edellä mainittua jännite-epästabiilisuutta voidaan ehkäistä kiinteänopeuksisissa tuuliturbiineissa mm. seuraavilla tavoilla: 1. Kiinteänopeuksiset tuuliturbiinit, joissa on tavallisesti sakkaussäätö, voidaan varustaa lapakulmaohjauksella, joka kasvattaa lapakulmaa, jos havaitaan, että roottori kiihtyy haitallisesti. Tämä vähentää mekaanista tehoa ja rajoittaa roottorin nopeutta ja loistehon kulutusta. 2. Tuuliturbiinit voidaan varustaa säädeltävillä loistehon lähteillä, nopeuttamaan jännitteen palautumista. 3. Generaattorin mekaanisten tai sähköisten parametrien muuttaminen. Häkkikäämityn generaattorin vaste verkon taajuuden muutoksiin on samanlainen kuin tahtigenerattoreilla. Staattorin kentän taajuus jaettuna napapariluvulla on sama kuin verkon taajuus. Jos tämä taajuus muuttuu, myös roottorin taajuus muuttuu. Pyörivään massaan varastoitunut energia, joka aiheutuu roottorin nopeudenmuutoksesta, joko syötetään järjestelmään tai otetaan järjestelmästä. Muuttuvanopeuksiset tuuliturbiinit. Muuttuvanopeuksisten tuuliturbiinien dynaaminen käyttäytyminen eroaa merkittävästi kiinteänopeuksisista. Muuttuvanopeuksiset käyttävät tehomuunninta erottamaan mekaanisen pyörimistaajuuden ja verkon taajuuden. Tämä on voimassa niin normaalissa toimintatilassa, kuin häiriöiden aikana ja niiden jälkeenkin. Jännitteen alenemien aikana tehomuuntimen puolijohteiden läpi kulkeva virta kasvaa hyvin nopeasti, muunnin monitoroi kuitenkin jännitteitä, virtoja ja verkon taajuutta koko ajan, jolloin vikatilanteeseen ehditään reagoida nopeasti. Turbiini voidaan esimerkiksi kytkeä pois verkosta. Verkosta pois kytkeminen ei kuitenkaan ole haluttua varsinkaan, jos tuulivoima vastaa suureen osaan alueen kuormituksesta. Tällöin tuuliturbiineja ei tulisi irrottaa verkosta pienten jännitekuoppien aikana. Verkkoyhtiöt, joiden alueella on paljon tuulivoimaa, ovatkin alkaneet vaatia, että tuulivoiman on pysyttävä verkossa vian aikana. Tämä 3

4 voidaan saavuttaa esimerkiksi ohjaamalla tehomuunninta siten, että jännitealeneman aikana virta rajoitetaan nimelliseen arvoonsa. Kun vikatilanne on ohi, muuttuvanopeuksisten tuuliturbiinien täytyy palata normaaliin toimintatilaansa. Suoraan verkkoon kytkettyihin generaattoireihin verrattuna muuttuvanopeuksisilla on enemmän vapausasteita palautua normaaliin toimintatilaansa. On mahdollista mm. generoida ylimääräistä loistehoa nopeuttamaan jännitteen palautusta normaaliin tilaansa. Mekaanisen roottorin taajuuden ja verkon taajuuden erotuksella on myös oma vaikutuksensa. Verkon taajuuden muutokset eivät nimittäin näy muutuvanopeuksisen tuuliturbiinin mekaanisessa taajuudessa. Tehomuunninta ohjaamalla voidaan pikemminkin kompensoida verkon taajuutta muuttamalla roottorin taajuutta. Tuulipuistojen dynaaminen käyttäytyminen Tuuliturbiineista kootaan yhä useammin tuulipuistoja. Syy tähän on hyvien tuuliolosuhteiden tehokas hyödyntäminen sekä myös tuulivoimaloiden esteettisen vaikutuksen rajoittaminen tietylle alueelle. Tuulipuistoja pyritäänkin sijoittamaan usein merelle, jossa on hyvät tuuliolosuhteet, eikä visuaalisuus ja melu ole merkityksellisiä. Toteuttamiskelpoisia tuulipuistokokoonpanoja on monia. Kaikilla on tiettyjä samoja piirteitä, kuten ulostulotehon heilunta, huonohko ohjattavuus ja tuotetun tehon ennustettavuus. Tuulipuiston jännite- ja taajuushäiriöiden vasteet riippuvat kuitenkin vahvasti tuulipuiston kokoonpanosta. Siksi erilaisten tuulipuistokokoonpanojen dynamiikkaa tulee käsitellä erikseen. Jos infrastruktuurin sekä tuulipuiston verkkoliitännässä käytetään AC-linkkejä, tuulipuiston vaste häiriöihin riippuu tuuliturbiineista, koska liitännät ovat passiivisia elementtejä. Jos sen sijaan käytetään DC-linkkiä yhdistämään tuulipuisto verkkoon, tuuliturbiinit ovat sähköisesti erotettuja analysoitavasta järjestelmästä. Tällöin vaste riippuu DC-linkin toteutustavasta, ei niinkään käytetyistä tuuliturbiinityypeistä. DC-liityntä voi olla virta- tai jännitelähdetyyppinen. Perinteinen tyristoreihin perustuva HVDC on virtalähdetyyppinen. Jos HVDC:n tapauksessa vikatilanteessa jännite laskee, mutta pystyy nousemaan tarpeeksi lähelle nimellistä arvoaan, järjestelmä pystyy toimimaan alemmalla jännitetasolla, jolloin myös energiaa siirretään vähemmän. Jos jännite pysyy vikatilanteessa liian matalana ja kommutointi ei onnistu, invertteri ohitetaan oikosulkemalla sen sisäänmeno ja blokkaamalla sen ulostulo. Kun jännite palautuu, invertteri kytketään takaisin. Takaisinkytkeminen voi kestää sadasta millisekuntista useisiin sekunteihin. Tilanteessa tulee tiedostaa että HVDClinkin yhdistäminen takaisin aiheuttaa transientti-ilmiöitä tuulipuistoon ja koko järjestelmään. 4

5 Jännitelähdetyyppisessä DC-linkissä käytetään IGBT- ja MOSFET-kytkimiä. Teknologiaa kutsutaan nimellä HVDC Light tai HVDC Plus riippuen valmistajasta. Tässä tapauksessa tehomuunnin asettelee rajat loistehon säätämiseen. Muuntimen virta on mahdollista rajoittaa vikatilanteissa nimelliseen arvoonsa, jotta ei tarvittaisi verkosta irrottautumisia. Simulointituloksia Simuloinnit suoritettiin käyttäen PSS/E ohjelmaa sekä testijärjestelmää (New England), joka on esiteltynä kuvassa 2. Se koostuu 39 kiskosta ja 10 generaattorista, johon lisättiin simuloinneissa tuuliturbiinien mallit. Simuloinneissa käytettiin testijärjestelmään jonkin oikean sähkövoimajärjestelmän sijasta, koska oikeat järjestelmät eivät ole hyvin dokumentoituja ja osa tiedoista on salaisia. Oikeat järjestelmät ovat usein myös erittäin isoja, jolloin simuloinneista tulisi pitkiä ja raskaita. Kuva 2. Simuloinneissa käytetty testiverkko Jännitteen aleneman aiheuttama vaste: Tarkastellaan mekanismeja, jotka johtavat jännitteen ja roottorin nopeuden epästabiiliuteen. Kuvan 2 kiskossa 32 oleva tahtigeneraattori on korvattu kiinteänopeuksisten tuuliturbiinien tuulipuistolla, ja ajanhetkellä 150 ms tapahtuu vikatilanne kiskossa 11. Kuvassa 3a i-ii on roottorin nopeus ja kiskon 32 jännite. Havaitaan, että jännite ei palaudu vikaa edeltäneeseen arvoon vaan alkaa värähdellä, mikä johtuu tuuliturbiinin suhteellisen pehmeästä akselista, joka aiheuttaa suuren kulmavirheen akselin päiden välillä. Sitten kuvan 2 kiskossa 32 oleva tahtigeneraattori korvataan muuttuvanopeuksisten tuuliturbiinien tuulipuistolla. Kuva 3b i-ii esittää simulointituloksia kun sama vikatilanne aiheutetaan muuttuvanopeuksisten tapauksessa. Huomataan, että jännite käyttäytyy paljon 5

6 paremmin kuin kiinteänopeuksisessa tapauksessa, varsinkin kun jännitteen säätö on käytössä (pisteviiva). Myös roottorinopeus käyttäytyy sujuvammin. Kuva 3. Jännitealeneman vaikutus (a) kiinteänopeuksisen ja (b) muuttuvanopeuksisen tuuliturbiininin (i) roottorinopeuteen ja (ii) jännitteeseen. Myös generaattorin poiskytkeminen verkosta voi aiheuttaa epästabiiliutta. Kuva 4 esittää roottorin nopeutta ja jännitettä kiskossa 32 tilanteessa, jossa kiskon 31 generaattori irtoaa verkosta. Huomataan, kiinteänopeuksisen toiminta (Kuva 4a) muuttuu epästabiiliksi, mutta muuttuvanopeuksinen (Kuva 4b) jatkaa irtoamatta verkosta. Kuva 4. Kiskon 31 generaattorin irtoamisen vaikutus (a) kiinteänopeuksisen ja (b) muuttuvanopeuksisen tuuliturbiininin (i) roottorinopeuteen ja (ii) jännitteeseen. 6

7 Taajuuden muuttumisen aiheuttama vaste: Kuvan 2 järjestelmän kiskojen 32, 36, 37 generaattorit korvataan tuulipuistoilla. Kuva 5 esittää tilannetta, jossa kiskon 30 tahtigeneraattori irtoaa verkosta. Huomataan, että sekä kiinteä- että muuttuvanopeuksisessa tapauksessa (piste- ja katkoviivat) taajuus romahtaa selvästi enemmän verrattuna pelkkien tahtigeneraattorien tapaukseen (kiinteä viiva). Kuva 5. Taajuuden muuttuminen yhden tahtigeneraattorin irrotessa verkosta. Kiinteä viiva: ei tuulivoimaloita. Pisteviiva: kiinteänopeuksiset. Katkoviiva: muuttuvanopeuksiset. Roottorinopeuden värähtely tahtigeneraattorissa: Tarkastellaan eri tilanteissa miten tahtigeneraattorin roottorin nopeus värähtelee vikatilanteen sattuessa verkossa, jossa on tuulivoimaa. Kuva 6 esittää roottorin nopeuksia kiskojen 30, 31, 35 ja 38 generaattoreissa, kun kiskossa 1 tapahtuu vikatilanne ajanhetkellä 150 ms. Huomataan, että tilanteissa ilman tuuliturbiineja (kiinteä viiva), kiinteänopeuksisten tuuliturbiinien (pisteviiva) sekä muuttuvanopeuksisten tuuliturbiinien (katkoviiva) tapauksissa ei ole suuria eroja, ja kaikki järjestelmät pysyvät stabiileina. 7

8 Kuva 6. Vikatilanteesta johtuvat roottorinopeuden värähtelyt generaattoreissa, jotka ovat kiskoissa (a) 30, (b) 31, (c) 35 ja (d) 38, kun tuulivoiman osuus on 28,5 %. Kiinteä viiva: ei tuulivoimaloita. Pisteviiva: kiinteänopeuksinen. Katkoviiva: muuttuvanopeuksinen. Tuulivoiman dynamiikka taajuustasossa Taajuustason analyysi (ominaisarvot) Kun analysoidaan stabiiliutta piensignaalien kannalta, järjestelmän dynaamisen käyttäytymisen määräävät epälineaariset yhtälöt pitää linearisoida. Linearisoidut yhtälöt voidaan koota matriisimuotoon, ja yhden matriisin, ns. tilamatriisin ominaisarvot antavat tietoa järjestelmän dynamiikasta. Esitys pätee vain tietyssä tilassa tehdylle tarpeeksi pienelle herätteelle. Tuulivoiman vaikutus järjestelmän stabiiliuteen piensignaalimielessä Tahtigeneraattorien sähköinen momentti riippuu pääosin roottorin ja staattorin vuon välisestä kulmasta. Tämä kulma on näiden kahden vuon integraali, joka taas riippuu mekaanisen ja sähköisen momentin erosta. Tästä johtuen tahtikoneen mekaaninen osa on toisen asteen järjestelmä, johon voi liittyä värähtelyä. Tällöin tarvitaan lisäkomponentteja, esim. käämityksiä värähtelyn vaimentamiseen. Heikot linkit ja suuri määrä tahtikoneita johtavat helposti huonosti vaimennettavaan värähtelyyn. Värähtely voi levitä muuallekin verkkoon, ja mitä matalampi värähtelytaajuus (esim. alle 1 Hz), sitä vaikeampi sitä on vaimentaa käämitysten avulla. Tuuliturbiineissa käytetyt generaattorityypit osallistuvat harvoin järjestelmän värähtelyyn. Häkkikäämigeneraattorin, joita käytetään kiinteänopeuksisissa tuuliturbiineissa, roottorin 8

9 jättämän ja sähköisen momentin välillä on yhteys, ja tällöin mekaaninen osa on ensimmäistä astetta, eikä ole altis värähtelyilmiölle, kuten perinteinen tahtigeneraattori. Muuttuvanopeuksissa tuuliturbiineissa käytetyt generaattorit on erotettu järjestelmästä tehoelektroniikan avulla. Tehomuuntimella voidaan säätää roottorin nopeutta ja sähkötehoa, sekä vaimentaa roottorin nopeudessa tapahtuvia värähtelyitä. Täten siis tahtigeneraattorin korvaamisen tuuliturbiinilla voidaan päinvastoin olettaa parantavan järjestelmän värähtelyvaimennusta. Yhteenveto Kappale käsitteli tuulivoiman vaikutusta sähkövoimajärjestelmän dynamiikkaan. Kappaleessa todettiin, että vaikka tuuliturbiinit vaikuttavatkin järjestelmän dynamiikkaan ja stabiiliuteen transientti- ja piensignaalimielessä, se ei estä tuulivoiman lisärakentamista. Verkon stabiilius voidaan säilyttää vaikka tuulivoiman osuus verkossa kasvaa, jos tiedostetaan stabiiliuteen liittyvät asiat. 9

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA SMG-4500 Tuulivoima Viidennen luennon aihepiirit Tuulivoimaloiden generaattorit Toimintaperiaate Tahtigeneraattori Epätahtigeneraattori Vakionopeuksinen voimala Vaihtuvanopeuksinen voimala 1 YLEISTÄ ASIAA

Lisätiedot

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA SMG-4500 Tuulivoima Viidennen luennon aihepiirit Tuulivoimaloiden generaattorit Toimintaperiaate Tahtigeneraattori Epätahtigeneraattori Tuulivoimalakonseptit 1 YLEISTÄ ASIAA GENERAATTOREISTA Generaattori

Lisätiedot

Wind Power in Power Systems. 16. Practical Experience with Power Quality and Wind Power (Käytännön kokemuksia sähkön laadusta ja tuulivoimasta)

Wind Power in Power Systems. 16. Practical Experience with Power Quality and Wind Power (Käytännön kokemuksia sähkön laadusta ja tuulivoimasta) Wind Power in Power Systems 16. Practical Experience with Power Quality and Wind Power (Käytännön kokemuksia sähkön laadusta ja tuulivoimasta) 16.1 Johdanto Täydellinen sähkön laatu tarkoittaisi, että

Lisätiedot

Tuulivoima Gotlannin saarella Ruotsissa

Tuulivoima Gotlannin saarella Ruotsissa Tuulivoima Gotlannin saarella Ruotsissa Johdanto Tässä kappaleessa tarkastellaan ongelmia ja ratkaisuja, joita ruotsalainen Gotlands Energi AB (GEAB) on kohdannut tuulivoiman verkkoon integroinnissa. Tarkastelun

Lisätiedot

Tuulivoimalaitosten generaattori- ja tehoelektroniikkaratkaisut

Tuulivoimalaitosten generaattori- ja tehoelektroniikkaratkaisut Tuulivoimalaitosten generaattori- ja tehoelektroniikkaratkaisut Tuuliturbiinityypit Kiinteän nopeuden turbiini Tuuliturbiinit voivat toimia joko kiinteällä nopeudella tai muuttuvalla nopeudella. 90-luvun

Lisätiedot

DEE Tuulivoiman perusteet

DEE Tuulivoiman perusteet Viidennen luennon aihepiirit Tuulivoimaloiden generaattorit Toimintaperiaate Tahtigeneraattori Epätahtigeneraattori Tuulivoimalakonseptit 1 YLEISTÄ ASIAA GENERAATTOREISTA Generaattori on laite, joka muuttaa

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

Wind Power in Power Systems

Wind Power in Power Systems Wind Power in Power Systems 29. Aggregated modelling and short-term voltage stability of large wind farms (Kokonaisuuden mallintaminen ja lyhyen aikavälin jännitestabiilisuus suurilla tuulipuistoilla)

Lisätiedot

Käyttötoimikunta Sähköjärjestelmän matalan inertian hallinta

Käyttötoimikunta Sähköjärjestelmän matalan inertian hallinta Käyttötoimikunta Sähköjärjestelmän matalan inertian hallinta Miksi voimajärjestelmän inertialla on merkitystä? taajuus häiriö, esim. tuotantolaitoksen irtoaminen sähköverkosta tavanomainen inertia pieni

Lisätiedot

Liisa Haarla Fingrid Oyj. Muuttuva voimajärjestelmä taajuus ja likeenergia

Liisa Haarla Fingrid Oyj. Muuttuva voimajärjestelmä taajuus ja likeenergia Liisa Haarla Fingrid Oyj Muuttuva voimajärjestelmä taajuus ja likeenergia Mikä muuttuu? Ilmastopolitiikka, teknologian muutos ja yhteiskäyttöjärjestelmien välinen integraatio aiheuttavat muutoksia: Lämpövoimalaitoksia

Lisätiedot

WIND POWER IN POWER SYSTEMS

WIND POWER IN POWER SYSTEMS WIND POWER IN POWER SYSTEMS 26. HIGH-ORDER MODELS OF DOUBLY-FED INDUCTION GENERATORS Anssi Mäkinen 181649 JOHDANTO Tässä kappaleessa käsitellään kaksoissyötettyyyn liukurengaskonekäyttöön (DFIG, doubly-fed

Lisätiedot

WIND POWER IN POWER SYSTEMS

WIND POWER IN POWER SYSTEMS WIND POWER IN POWER SYSTEMS Anssi Mäkinen 181649 WIND POWER AND VOLTAGE CONTROL JOHDANTO Sähköverkon päätehtävä on siirtää generaattoreilla tuotettu sähköteho kuluttajille. Jotta sähköverkon kunnollinen

Lisätiedot

Oikosulkumoottorikäyttö

Oikosulkumoottorikäyttö Oikosulkumoottorikäyttö 1 DEE-33040 Sähkömoottorikäyttöjen laboratoriotyöt TTY Oikosulkumoottorikäyttö T. Kantell & S. Pettersson 2 Laboratoriomittauksia suorassa verkkokäytössä 2.1 Käynnistysvirtojen

Lisätiedot

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit TUULEN TEHO

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit TUULEN TEHO SMG-4500 Tuulivoima Kolmannen luennon aihepiirit Tuulen teho: Betzin lain johtaminen Tuulivoimalatyypeistä: Miksi vaaka-akselinen, miksi kolme lapaa? Aerodynamiikkaa: Tuulivoimalan roottorin lapasuunnittelun

Lisätiedot

215.3 MW 0.0 MVR pu MW 0.0 MVR

215.3 MW 0.0 MVR pu MW 0.0 MVR Sami Repo, TTKK/Sähkövoimatekniikka 1 ESIMERKKI KÄYTTÖVARMUUDEN MÄÄRITTÄMISESTÄ Testijärjestelmässä on kaksi solmupistettä, joiden välillä on kaksi rinnakkaista identtistä johtoa, joidenka yhdistetty impedanssi

Lisätiedot

Wind Power in Power Systems: 24 Introduction to the Modelling of Wind Turbines

Wind Power in Power Systems: 24 Introduction to the Modelling of Wind Turbines Wind Power in Power Systems: 24 Introduction to the Modelling of Wind Turbines Johdanto Tässä kappaleessa esitetään näkökohtia liittyen tuulivoimaloiden simulointiin ja niiden mallintamiseen. Tietokonemallinnuksen

Lisätiedot

Offshore puistojen sähkönsiirto

Offshore puistojen sähkönsiirto Offshore puistojen sähkönsiirto Johdanto Puistojen rakentamiseen merelle useita syitä: Parempi tuotannon odotus Poissa näkyvistä Rannikolla hyviä sijoituspaikkoja ei välttämättä saatavilla Tästä seuraa

Lisätiedot

Pienjännitejohtoa voidaan kuvata resistanssin ja induktiivisen reaktanssin sarjakytkennällä.

Pienjännitejohtoa voidaan kuvata resistanssin ja induktiivisen reaktanssin sarjakytkennällä. SÄHKÖJOHDOT Pienjännitejohtoa voidaan kuvata resistanssin ja induktiivisen reaktanssin sarjakytkennällä. R jx Resistanssit ja reaktanssit pituusyksikköä kohti saadaan esim. seuraavasta taulukosta. Huomaa,

Lisätiedot

DEE Sähkömoottorikäyttöjen laboratoriotyöt. Tasavirtakäyttö

DEE Sähkömoottorikäyttöjen laboratoriotyöt. Tasavirtakäyttö Tasavirtakäyttö 1 Esiselostus 1.1 Mitä laitteita kuuluu Leonard-käyttöön, mikä on sen toimintaperiaate ja mihin ja miksi niitä käytetään? Luettele myös Leonard-käytön etuja ja haittoja. Kuva 1.1 Leonard-käyttö.

Lisätiedot

Tasasähkövoimansiirto

Tasasähkövoimansiirto TAMK Tasasähkövoimansiirto 1 () Sähkölaboratorio Jani Salmi 13.04.014 Tasasähkövoimansiirto Tavoite Työn tavoitteena on muodostaa tasasähkövoimansiirtoyhteys kahden eri sähköverkon välille. Tasasähkölinkillä

Lisätiedot

SMG-4500 Tuulivoima. Kahdeksannen luennon aihepiirit. Tuulivoiman energiantuotanto-odotukset

SMG-4500 Tuulivoima. Kahdeksannen luennon aihepiirit. Tuulivoiman energiantuotanto-odotukset SMG-4500 Tuulivoima Kahdeksannen luennon aihepiirit Tuulivoiman energiantuotanto-odotukset Tuulen nopeuden mallintaminen Weibull-jakaumalla Pinta-alamenetelmä Tehokäyrämenetelmä 1 TUULEN VUOSITTAISEN KESKIARVOTEHON

Lisätiedot

SÄHKÖMOOTTORI JA PROPULSIOKÄYTTÖ

SÄHKÖMOOTTORI JA PROPULSIOKÄYTTÖ SÄHKÖMOOTTORI JA PROPULSIOKÄYTTÖ Sähkökonetyyppien soveltuvuus pienitehoiseen propulsioon 25.5.2011 Metropolia Ammattikorkeakoulu 1 Sisältö Sähkökoneen funktio Sähkökonetyyppejä Lataavan propulsion vaatimuksia

Lisätiedot

Jännitestabiiliushäiriö Suomessa 1992. Liisa Haarla

Jännitestabiiliushäiriö Suomessa 1992. Liisa Haarla Jännitestabiiliushäiriö Suomessa 1992 Liisa Haarla Pohjoismainen voimajärjestelmä 1992 Siirtoverkko: Siirtoyhteydet pitkiä, kulutus enimmäkseen etelässä, vesivoimaa pohjoisessa (Suomessa ja Ruotsissa),

Lisätiedot

ELEC-E8419 syksy 2016 Jännitteensäätö

ELEC-E8419 syksy 2016 Jännitteensäätö ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on

Lisätiedot

Savolainen. Pienvoimalaitoksen käyttötekniikka

Savolainen. Pienvoimalaitoksen käyttötekniikka Tekijä: Markku Savolainen Pienvoimalaitoksen käyttötekniikka Sisältö Erilaiset generaattorityypit Sähköntuotannossa käytetyt generaattorityypit Verkkomagnetoitu epätahtigeneraattori Kondensaattorimagnetoitu

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Roottorin toimintaperiaate TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Roottorin toimintaperiaate TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Roottorin toimintaperiaate Roottorin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Tuulivoimalan tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

Wind Power in Power Systems

Wind Power in Power Systems Jatko-opintoseminaari kirjasta: Referaatti kirjan kappaleesta 25: 25. Tuuliturbiinien malllintaminen dynamiikkalaskentaohjelmistolla (Reduced-order Modelling of Wind Turbines) Pasi Vuorenpää Op.num.: 176838

Lisätiedot

Luku 27: Dynaamisten tuuliturbiinimallien täysimittainen verifiointi (Full-Scale Verification of Dynamic Wind Turbine Models)

Luku 27: Dynaamisten tuuliturbiinimallien täysimittainen verifiointi (Full-Scale Verification of Dynamic Wind Turbine Models) Luku 27: Dynaamisten tuuliturbiinimallien täysimittainen verifiointi (Full-Scale Verification of Dynamic Wind Turbine Models) 27.1 Johdanto (Introduction) Vladislav Akhmatov Tuulivoiman määrä sähkövoimajärjestelmässä

Lisätiedot

Wind Power in Power Systems: 15 Wind Farms in Weak Power Networks in India

Wind Power in Power Systems: 15 Wind Farms in Weak Power Networks in India Wind Power in Power Systems: 15 Wind Farms in Weak Power Networks in India Johdanto Tuulivoiman rakentaminen Intiaan kiihtyi 1990-luvulla tuotantotukien ja veroalennusten jälkeen. Luvun kirjoittamisen

Lisätiedot

Lämpöä tuulivoimasta ja auringosta. Esa.Eklund@KodinEnergia.fi. Kodin vihreä energia Oy 30.8.2012

Lämpöä tuulivoimasta ja auringosta. Esa.Eklund@KodinEnergia.fi. Kodin vihreä energia Oy 30.8.2012 Lämpöä tuulivoimasta ja auringosta 30.8.2012 Esa.Eklund@KodinEnergia.fi Kodin vihreä energia Oy Mitä tuulivoimala tekee Tuulivoimala muuttaa tuulessa olevan liikeenergian sähköenergiaksi. Tuulesta saatava

Lisätiedot

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Mat Systeemien Identifiointi. 4. harjoitus

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Mat Systeemien Identifiointi. 4. harjoitus TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.4129 Systeemien Identifiointi 4. harjoitus 1. a) Laske valkoisen kohinan spektraalitiheys. b) Tarkastellaan ARMA-prosessia C(q 1 )y = D(q 1 )e,

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

VOIMALAITOSTEKNIIKKA MAMK YAMK Tuomo Pimiä

VOIMALAITOSTEKNIIKKA MAMK YAMK Tuomo Pimiä VOIMALAITOSTEKNIIKKA 2016 MAMK YAMK Tuomo Pimiä Voimalaitoksen säätötehtävät Voimalaitoksen säätötehtävät voidaan jakaa kolmeen toiminnalliseen : Stabilointitaso: paikalliset toimilaiteet ja säätimet Koordinointitaso:

Lisätiedot

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia.

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Mitä on sähköinen teho? Tehojen mittaus Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Tiettynä ajankohtana, jolloin

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

ELEC-E8419 syksy 2016 Laskeminen tietokoneohjelmilla 1. Verkon tiedot on annettu erillisessä Excel-tiedostossa: nimeltä CASE_03-50-prosSC.

ELEC-E8419 syksy 2016 Laskeminen tietokoneohjelmilla 1. Verkon tiedot on annettu erillisessä Excel-tiedostossa: nimeltä CASE_03-50-prosSC. ELEC-E8419 syksy 2016 Laskeminen tietokoneohjelmilla 1 Yleisiä ohjeita: Työ tehdään yhdessä laskuharjoitusten aikaan tiistaina 29.11. kello 10.15 12.00 Jos tämä aika ei sovi, voidaan järjestää toinen aika.

Lisätiedot

Maatuulihankkeet mahdollistavat teknologiat. Pasi Valasjärvi

Maatuulihankkeet mahdollistavat teknologiat. Pasi Valasjärvi Maatuulihankkeet mahdollistavat teknologiat Pasi Valasjärvi Sisältö Yritys ja historia Mikä mahdollistaa maatuulihankkeet? Tuotetarjonta Asioita, joilla tuulivoimainvestointi onnistuu Verkkovaatimukset

Lisätiedot

Wind Power in Power Systems: 3 An Introduction

Wind Power in Power Systems: 3 An Introduction Wind Power in Power Systems: 3 An Introduction Historia ja nykytila Sähköistymisen tuomat edut huomattiin ympäri maailmaa 1880-luvulla Thomas Alva Edisonin näyttäessä tietä. Voimakas yllyke sähköjärjestelmien

Lisätiedot

Tasavirtakäyttö. 1 Esiselostus. TEL-1400 Sähkömoottorikäyttöjen laboratoriotyöt

Tasavirtakäyttö. 1 Esiselostus. TEL-1400 Sähkömoottorikäyttöjen laboratoriotyöt Tasavirtakäyttö 1 Esiselostus 1.1 Mitä laitteita kuuluu Leonard-käyttöön, mikä on sen toimintaperiaate ja mihin ja miksi niitä käytetään? Luettele myös Leonard-käytön etuja ja haittoja. Kuva 1.1 Leonard-käyttö.

Lisätiedot

VOIMALASÄÄTIMET Sivu 1/5 10.6.2009. FinnPropOy Puhelin: 040-773 4499 Y-tunnus: 2238817-3

VOIMALASÄÄTIMET Sivu 1/5 10.6.2009. FinnPropOy Puhelin: 040-773 4499 Y-tunnus: 2238817-3 VOIMALASÄÄTIMET Sivu 1/5 VOIMALASÄÄTIMET Sivu 2/5 YLEISTÄ VOIMALASÄÄTIMISTÄ Miksi säädin tarvitaan ja mitä se tekee? Tuulesta saatava teho vaihtelee suuresti tuulen nopeuden mukaan lähes nollasta aina

Lisätiedot

Jännitteensäädön ja loistehon hallinnan kokonaiskuva. Sami Repo Sähköenergiatekniikka TTY

Jännitteensäädön ja loistehon hallinnan kokonaiskuva. Sami Repo Sähköenergiatekniikka TTY Jännitteensäädön ja loistehon hallinnan kokonaiskuva Sami Repo Sähköenergiatekniikka TTY Agenda Taustaa Tutkimuskysymykset ja tavoitteet Simuloitava malli Skenaarioiden tarkastelu Tekniset tulokset Taloudelliset

Lisätiedot

Oikosulkumoottorin vääntömomenttikäyrä. s = 0 n = n s

Oikosulkumoottorin vääntömomenttikäyrä. s = 0 n = n s Oikosulkumoottorin vääntömomenttikäyrä M max M n M nk. kippauspiste M = momentti M max = maksimimomentti M n = nimellismomentti s = jättämä n = kierrosnopeus n s = tahtikierrosnopeus n n = nimelliskierrosnopeus

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan

Lisätiedot

6. Sähkön laadun mittaukset

6. Sähkön laadun mittaukset Wind Power in Power Systems -kurssi Janne Strandén 6.1. Johdanto 6. Sähkön laadun mittaukset Sähkön laadulla (power quality) tarkoitetaan tuuliturbiinin yhteydessä puhuttaessa turbiinin suorituskykyä tuottaa

Lisätiedot

OUM6410C4037 3-pisteohjattu venttiilimoottori 24 VAC

OUM6410C4037 3-pisteohjattu venttiilimoottori 24 VAC OUM6410C4037 3-pisteohjattu venttiilimoottori 24 VAC TUOTETIEDOT YLEISTÄ OUM6410C venttiilimoottori soveltuu hitaiden säätöprosessien ohjaamiseen, esim. lämmityspiirien säätöön. Venttiilimoottori ei tarvitse

Lisätiedot

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1. SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 6 Tehtävä 1. Aurinkokennon virta I s 1,1 A ja sen mallissa olevan diodin estosuuntainen kyllästysvirta I o 1 na. Laske aurinkokennon maksimiteho suhteessa termiseen

Lisätiedot

SATE1050 PIIRIANALYYSI II / MAARIT VESAPUISTO: APLAC, MATLAB JA SIMULINK -HARJOITUSTYÖ / SYKSY 2015

SATE1050 PIIRIANALYYSI II / MAARIT VESAPUISTO: APLAC, MATLAB JA SIMULINK -HARJOITUSTYÖ / SYKSY 2015 1 SAT1050 PANAYYS / MAAT VSAPUSTO: APA, MATAB JA SMUNK -HAJOTUSTYÖ / SYKSY 2015 Harjoitustyön tarkoituksena on ensisijaisesti tutustua Aplac-, Matab ja Simulink simulointiohjelmistojen ominaisuuksiin ja

Lisätiedot

CRT NÄYTÖN VAAKAPOIKKEUTUS- ASTEEN PERIAATE

CRT NÄYTÖN VAAKAPOIKKEUTUS- ASTEEN PERIAATE CRT NÄYTÖN VAAKAPOIKKEUTUS- ASTEEN PERIAATE H. Honkanen Kuvaputkinäytön vaakapoikkeutusaste on värähtelypiirin ja tehoasteen sekoitus. Lisäksi tahdistuksessa on käytettävä vaihelukittua silmukkaa ( PLL

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

Liittymissäännöt tuulivoimaloiden liittämiseksi Suomen voimansiirtoverkkoon

Liittymissäännöt tuulivoimaloiden liittämiseksi Suomen voimansiirtoverkkoon FINGRID OYJ Liittymissäännöt tuulivoimaloiden liittämiseksi Suomen voimansiirtoverkkoon 31.3.29 Liittymissäännöt tuulivoimaloiden ja maakohtaiset lisätäsmennykset tuulivoimaloiden liittämiseksi Suomen

Lisätiedot

Merelle rakennettujen tuulivoimapuistojen sähkönsiirtojärjestelmät

Merelle rakennettujen tuulivoimapuistojen sähkönsiirtojärjestelmät Merelle rakennettujen tuulivoimapuistojen sähkönsiirtojärjestelmät Johdanto Kiinnostus offshore-tyyppisten tuulivoimapuistojen rakentamiseen on ollut suuri Euroopassa viime vuosina. Syinä tähän ovat mm.

Lisätiedot

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit

Lisätiedot

Voimalaitoksen lisästabiloinnin virittämisohje. Voimalaitospäivä Scandic Park Antti Harjula

Voimalaitoksen lisästabiloinnin virittämisohje. Voimalaitospäivä Scandic Park Antti Harjula Voimalaitoksen lisästabiloinnin virittämisohje Voimalaitospäivä Scandic Park 24.2.2016 Antti Harjula Sisältö Pohjoismainen voimajärjestelmä ja lisästabiloinnit VJV 2013, vaatimukset lisästabiloinnille

Lisätiedot

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2)

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2) SMG-4500 Tuulivoima Kuudennen luennon aihepiirit Tuulivoimalan energiantuotanto-odotukset Aiheeseen liittyvä termistö Pinta-alamenetelmä Tehokäyrämenetelmä Suomen tuulivoimatuotanto 1 AIHEESEEN LIITTYVÄ

Lisätiedot

VOIMALAITOSTEKNIIKKA 2016. MAMK YAMK Tuomo Pimiä

VOIMALAITOSTEKNIIKKA 2016. MAMK YAMK Tuomo Pimiä VOIMALAITOSTEKNIIKKA 2016 MAMK YAMK Tuomo Pimiä Pääsäätöpiirit Luonnonkierto- ja pakkokiertokattilan säädöt eivät juurikaan poikkea toistaan prosessin samankaltaisuuden vuoksi. Pääsäätöpiireihin kuuluvaksi

Lisätiedot

TUULIVOIMALOIDEN MELUVAIKUTUKSET

TUULIVOIMALOIDEN MELUVAIKUTUKSET TUULIVOIMALOIDEN MELUVAIKUTUKSET Tuulivoima Kotkassa 28.11.2013 Jani Kankare Puh. 040 574 0028 Jani.Kankare@promethor.fi Promethor Oy Vuonna 1995 perustettu asiantuntijayritys, jonka yhtenä toimialueena

Lisätiedot

Suprajohtava generaattori tuulivoimalassa

Suprajohtava generaattori tuulivoimalassa 1 Suprajohtava generaattori tuulivoimalassa, Seminaaripäivä, Pori 2 Tuulivoiman kehitysnäkymät Tuuliturbiinien koot kasvavat. Vuoden 2005 puolivälissä suurin turbiinihalkaisija oli 126 m ja voimalan teho

Lisätiedot

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit ILMAVIRTAUKSEN ENERGIA JA TEHO. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa.

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit ILMAVIRTAUKSEN ENERGIA JA TEHO. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa. SMG-4500 Tuulivoima Kolmannen luennon aihepiirit Tuulen teho: Betzin lain johtaminen Tuulen mittaaminen Tuulisuuden mallintaminen Weibull-jakauman hyödyntäminen ILMAVIRTAUKSEN ENERGIA JA TEHO Ilmavirtauksen

Lisätiedot

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan

Lisätiedot

LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi. Servokäyttö (0,9 op)

LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi. Servokäyttö (0,9 op) LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi Servokäyttö (0,9 op) JOHDNTO Työssä tarkastellaan kestomagnetoitua tasavirtamoottoria. oneelle viritetään PI-säätäjä

Lisätiedot

VLT HVAC Drive FC-102 Pikaohje ulkopuoliselle ohjaukselle

VLT HVAC Drive FC-102 Pikaohje ulkopuoliselle ohjaukselle HVAC Drive - Pikaohjeita VLT HVAC Drive FC-102 Pikaohje ulkopuoliselle ohjaukselle 1 HVAC Drive ohjaus ulkopuolisella säätimellä... 2 1.1 Parametrit Quick Menun alta (02 quick set-up)... 3 1.2 Parametrit

Lisätiedot

S. Kauppinen / H. Tulomäki

S. Kauppinen / H. Tulomäki 1 (8) Tutkimustyön tausta... 1 Verkon mallinnus... 2 Sähkön laatu saarekekäytössä ja VJV-vaatimukset... 2 Simulaatiot... 2 Simulaatio 1... 2 Simulaatio 2... 4 Simulaatio 3... 4 Simulaatio 4... 5 Simulaatio

Lisätiedot

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10 Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

Agenda. Johdanto Säätäjiä. Mittaaminen. P-, I-,D-, PI-, PD-, ja PID-säätäjä Säätäjän valinta ja virittäminen

Agenda. Johdanto Säätäjiä. Mittaaminen. P-, I-,D-, PI-, PD-, ja PID-säätäjä Säätäjän valinta ja virittäminen 8. Luento: Laitteiston ohjaaminen Arto Salminen, arto.salminen@tut.fi Agenda Johdanto Säätäjiä P-, I-,D-, PI-, PD-, ja PID-säätäjä Säätäjän valinta ja virittäminen Mittaaminen Johdanto Tavoitteena: tunnistaa

Lisätiedot

PID-sa a timen viritta minen Matlabilla ja simulinkilla

PID-sa a timen viritta minen Matlabilla ja simulinkilla PID-sa a timen viritta minen Matlabilla ja simulinkilla Kriittisen värähtelyn menetelmä Tehtiin kuvan 1 mukainen tasavirtamoottorin piiri PID-säätimellä. Virittämistä varten PID-säätimen ja asetettiin

Lisätiedot

Liittymän vikadiagnosointi

Liittymän vikadiagnosointi Liittymän vikadiagnosointi Yleistä Kuitupohjaisen laajakaistaliittymän luotettavuus on korkealla tasolla, mutta silti joskus saattaa esiintyä häiriöitä liittymän tai siihen kytkettyjen laitteiden toiminnassa.

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

Tuulivoiman ympäristövaikutukset

Tuulivoiman ympäristövaikutukset Tuulivoiman ympäristövaikutukset 1. Päästöt Tuulivoimalat eivät tarvitse polttoainetta, joten niistä ei synny suoria päästöjä Valmistus vaatii energiaa, mikä puolestaan voi aiheuttaa päästöjä Mahdollisesti

Lisätiedot

Sangean PR-D4 Käyttöohjeet

Sangean PR-D4 Käyttöohjeet Sangean PR-D4 Käyttöohjeet Kytkimet 1. Taajuuden valintanäppäimet 2. Radioasemien selailun ja kellonajan asetus 3. Muistipaikan valintanäppäimet 4. Äänenvoimakkuuden säätö 5. LCD-näyttö 6. Herätyksen asetus

Lisätiedot

KYTKENTÄOHJEET. MicroMax370

KYTKENTÄOHJEET. MicroMax370 KYTKENTÄOHJEET ROTAATIOLÄMMÖNVAIHTIMEN OHJAUSYKSIKKÖ MicroMax370 Tarkistettu 04-12-13 1.1 F21037902FI Valmistajan seloste Valmistajan vakuutus siitä, että tuote on EMC-DIREKTIIVIN 89/336/EEG ja sen lisäysten

Lisätiedot

Releco teollisuusreleiden sovellusopas

Releco teollisuusreleiden sovellusopas Keskus Releet Teollisuusreleet Yleistä Releco teollisuusreleiden sovellusopas Sovellusopas Vakiorele Releco vakiorelettä voidaan käyttää useimmissa sovelluksissa esim. automaatio, pneumatiikka, lämpötilansäätö,

Lisätiedot

Van der Polin yhtälö

Van der Polin yhtälö Van der Polin yhtälö RLC-virtapiirissä oleva vastus vaikuttaa varsin olennaisesti piirissä esiintyviin värähtelyilmiöihin. Kuitenkin aivan uuden elementin komponenttitekniikkaan toivat aikoinaan puolijohdediodeja

Lisätiedot

1 f o. RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET. U r = I. t τ. t τ. 1 f O. KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala

1 f o. RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET. U r = I. t τ. t τ. 1 f O. KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 7 ELEKTRONIIKAN LABORAATIOT H.Honkanen RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET TYÖN TAVOITE - Mitoittaa ja toteuttaa RC oskillaattoreita

Lisätiedot

Aurinkopaneelin lataussäädin 12/24V 30A. Käyttöohje

Aurinkopaneelin lataussäädin 12/24V 30A. Käyttöohje Aurinkopaneelin lataussäädin 12/24V 30A Käyttöohje 1 Asennuskaavio Aurinkopaneeli Matalajännitekuormitus Akku Sulake Sulake Invertterin liittäminen Seuraa yllä olevaa kytkentäkaaviota. Sulakkeet asennetaan

Lisätiedot

VLT HVAC Drive. VLT HVAC Drive 102 pikaohjeita

VLT HVAC Drive. VLT HVAC Drive 102 pikaohjeita VLT HVAC Drive 102 pikaohjeita VLT HVAC Drive 102 pikaohjeita s. 1-4 1. VLT HVAC Drive 102 ohjaus ulkopuolisella säätimellä s. 5 4. Huomioitavaa asennuksessa 1. HVAC Drive 102 ohjaus ulkopuolisella säätimellä

Lisätiedot

Verkosto2011, 2.2.2011, Tampere

Verkosto2011, 2.2.2011, Tampere Verkosto2011, 2.2.2011, Tampere Sähköverkkoliiketoiminnan tavoitetila 2030 Jarmo Partanen, 040-5066564 Jarmo.partanen@lut.fi Perususkomuksia, vuosi 2030 sähkön käyttö kokonaisuutena on lisääntynyt energiatehokkuus

Lisätiedot

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,

Lisätiedot

Sähköjärjestelmä antaa raamit voimalaitoksen koolle

Sähköjärjestelmä antaa raamit voimalaitoksen koolle Sähköjärjestelmä antaa raamit voimalaitoksen koolle Käyttövarmuuspäivä 2.12.2013 Johtava asiantuntija Liisa Haarla, Fingrid Oy Adjunct professor, Aalto-yliopisto Sisältö 1. Tehon ja taajuuden tasapaino

Lisätiedot

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin. VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Hyvyyskriteerit. ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit

Hyvyyskriteerit. ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit Hyvyyskriteerit ELEC-C1230 Säätötekniikka Aikaisemmilla luennoilla on havainnollistettu, miten systeemien käyttäytymiseen voi vaikuttaa säätämällä niitä. Epästabiileista systeemeistä saadaan stabiileja,

Lisätiedot

ELEC-A8001. Sähköntuotannon ja kulutuksen tasapaino ja verkon stabiilisuus

ELEC-A8001. Sähköntuotannon ja kulutuksen tasapaino ja verkon stabiilisuus ELEC-A8001 Johdatus sähköenergiajärjestelmiin Sähköntuotannon ja kulutuksen tasapaino ja verkon stabiilisuus Henrik Nortamo Elmer Bergman Anssi Mäkinen 10. lokakuuta 2017 Sisältö 1 Johdanto 2 2 Yli- ja

Lisätiedot

Varavoiman asiantuntija. Marko Nurmi

Varavoiman asiantuntija. Marko Nurmi Varavoiman asiantuntija Marko Nurmi kw-set Oy (www.kwset.fi) Sähköverkon varmistaminen Sähköverkon varmistaminen Varmistamistavat UPS Kuorma ei havaitse sähkökatkoa Varmistusaika riippuvainen akkujen mitoituksesta

Lisätiedot

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen MEI-55100 Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen Tehtävä 1: Tarkastellaan luentojen esimerkkiä, jossa johepalkki liikkuu kahen johelevyn välissä homogeenisessä magneettikentässä,

Lisätiedot

Koesuunnitelma. ViDRoM Virtual Design of Rotating Machines. Raine Viitala

Koesuunnitelma. ViDRoM Virtual Design of Rotating Machines. Raine Viitala Koesuunnitelma ViDRoM Virtual Design of Rotating Machines Raine Viitala ViDRoM Virtual Design of Rotating Machines Mitataan dynaamista käyttäytymistä -> nopeuden funktiona Puhtaat laakerit, kolmikulmaiset

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

Pohjoismaisen sähköjärjestelmän käyttövarmuus

Pohjoismaisen sähköjärjestelmän käyttövarmuus Pohjoismaisen sähköjärjestelmän käyttövarmuus 26.11.2003 Professori Jarmo Partanen Lappeenrannan teknillinen yliopisto 1 Skandinaavinen sähkömarkkina-alue Pohjoismaat on yksi yhteiskäyttöalue: energian

Lisätiedot

Releco teollisuusreleiden sovellusopas

Releco teollisuusreleiden sovellusopas Keskus Releet Teollisuu Releco teollisuusreleiden sovellusopas Sovellusopas Vakiorele Releco vakiorelettä voidaan käyttää useimmissa sovelluksissa esim. automaatio, pneumatiikka, lämpötilansäätö, ohjausten

Lisätiedot

TEKNIS-TALOUDELLISET TEKIJÄT DFIG-TUULIVOIMALAN SUOSION TAUSTALLA

TEKNIS-TALOUDELLISET TEKIJÄT DFIG-TUULIVOIMALAN SUOSION TAUSTALLA TEKNIS-TALOUDELLISET TEKIJÄT DFIG-TUULIVOIMALAN SUOSION TAUSTALLA Joona Niemelä Opinnäytetyö Huhtikuu 2015 Sähkötekniikan ko. Sähkövoimatekniikka TIIVISTELMÄ Tampereen ammattikorkeakoulu Sähkötekniikan

Lisätiedot

Webinaari Jari Siltala. Ehdotus merkittävien verkonkäyttäjien nimeämiseksi

Webinaari Jari Siltala. Ehdotus merkittävien verkonkäyttäjien nimeämiseksi Webinaari 23.10.2018 Jari Siltala Ehdotus merkittävien verkonkäyttäjien nimeämiseksi 2 Merkittävien verkonkäyttäjien nimeäminen Jari Siltala Koodi velvoittaa: Jakeluverkkoyhtiöitä Merkittäviä verkonkäyttäjiä:

Lisätiedot

DEE Tuulivoima

DEE Tuulivoima DEE-53020 Tuulivoima Aihepiiri 4 Tuulivoimalan rakenne Roottorin toimintaperiaate Roottorin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Tuulivoimalan tehonsäätö 1 TUULIVOIMALAN RAKENNE

Lisätiedot

Van der Polin yhtälö. virtap6.nb 1

Van der Polin yhtälö. virtap6.nb 1 virtap6.nb Van der Polin yhtälö RLC-virtapiirissä oleva vastus vaikuttaa varsin olennaisesti piirissä esiintyviin värähtelyilmiöihin. Kuitenkin aivan uuden elementin komponenttitekniikkaan toivat aikoinaan

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot