Chomskyn hierarkia ja yhteysherkät kieliopit
|
|
- Marjut Myllymäki
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Chomskyn hierarkia ja yhteysherkät kieliopit Laskennan teorian opintopiiri Tuomas Hakoniemi 21. helmikuuta 2014 Käsittelen tässä laskennan teorian opintopiirin harjoitustyössäni muodollisten kielioppien Chomskyn hierarkiaa, sekä hieman tarkemmin erästä hierarkian tasoa, yhteysherkkiä kielioppeja. Hierarkia on nelitasoinen. Esittelen työssä hierarkian tasot sekä niitä vastaavat automaatit. Tarkoituksena on antaa lyhyt yleiskatsaus, joten monet todistuksista sivuutetaan, sillä etenkin todistukset kielioppien ja automaattien ekvivalensseista ovat hyvin pitkiä. Kaikki todistukset ovat samankaltaisia. Ensinäkin kutakin kielioppia kohden konstruoidaan automaatti, joka simuloi kieliopin lauseenmuodostusta. Toisaalta kutakin automaattia kohden konstruoidaan kielioppi, joka simuloi automaatin toimintaa. Todistukset on löydettävissä Hopcroftin ja Ullmanin kirjasta [1]. 1 Muodollinen kielioppi Määritellään ensin, mitä tarkoitetaan muodollisella kieliopilla. Määritelmä 1. Muodollinen kielioppi G on nelikko missä G = (V, Σ, P, S), 1. V on äärellinen epätyhjä joukko välikkeitä; 2. Σ on äärellinen epätyhjä joukko päätemerkkejä; 3. P (V Σ) V (V Σ) (V Σ) on äärellinen epätyhjä joukko produktiosääntöjä tai produktiota; 4. S V on aloitusmerkki. 1
2 5. V Σ = Produktiolle (α, β) P käytetään merkintää α β. Kukin muodollinen kielioppi määrittelee (tai tuottaa) muodollisen kielen. Muodollisen kieliopin määrittämän kielen merkkijonoja ovat ne pelkistä päätemerkeistä koostuvat merkkijonot, jotka on muodostettavissa soveltamalla äärellisen monta kertaa produktiosääntöjä lähtien aloitusmerkistä. Produktiota voidaan soveltaa merkkijonoon, jos produktion etujäsen on merkkijonon osajono. Tällöin soveltamisella tarkoitetaan kyseisen osajonon korvaamista produktion takajäsenellä. Seuraavat kaksi määritelmää formalisoivat tämän. Määritelmä 2. Olkoon α, β, γ, δ, ω (V Σ), A V ja βaγ ω produktio. Sanotaan, että αβaγδ tuottaa suoraan merkkijonon αωδ, merkitään αβaγδ αωδ. Sanotaan, että merkkijono α tuottaa merkkijonon β, merkitään α β, jos on olemassa äärellinen jono merkkijonoja (δ i ) i<n s.e. α δ 0, δ 0 δ 1,..., δ n 1 β Määritelmä 3. Muodollisen kieliopin G tuottama kieli L(G) määritellään seuraavasti: L(G) = {ω Σ : S ω} 2 Säännölliset kieliopit Pienin Chomskyn hierarkian luokista on säännöllisten kielioppien luokka. Säännöllisiä kielioppeja on kahta muotoa, oikealle ja vasemalle lineaariset kieliopit. Määritelmä 4. Muodollinen kielioppi G on oikealle lineaarinen, jos sen kaikki produktiot ovat muotoa missä A, B V ja ω Σ. A ωb tai A ω, Vastaavasti G on vasemmalle lineaarinen, jos sen kaikki produktiot ovat muotoa A Bω tai A ω. Muodollinen kielioppi G on säännöllinen, jos se on oikealle tai vasemmalle lineaarinen. Säännöllisen kieliopin tuottamaa kieltä kutsutaan säännölliseksi kieleksi. 2
3 Laskennan mallien kurssilla säännölliseksi kieleksi kutsuttiin kieltä, jonka jokin äärellinen automaatti tunnistaa. Kyseinen määritelmä ja juuri annettu määritelmä ovat yhtäpitävät. Lause 5. Olkoon G säännöllinen kielioppi. Tällöin on olemassa äärellinen automaatti, joka tunnistaa kielen L(G) Lause 6. Olkoon L jonkin äärellisen automaatin tunnistama kieli. Tällöin on olemassa sekä oikealle lineaarinen kielioppi G että vasemmalle lineaarinen kielioppi G s.e. L(G) = L = L(G ). 3 Yhteydettömät kieliopit Chomskyn hierarkian seuraava taso on yhteydettömien kielioppien luokka. Määritelmä 7. Muodollinen kielioppi G on yhteydetön jos sen kaikki produktiot ovat muotoa A ω, missä A V ja ω (V Σ). Yhteydettömän kieliopin tuottamaa kieltä kutsutaan yhteydettömäksi kieleksi. Selvästi jokainen säännöllinen kielioppi on myös yhteydetön. Käänteinen ei kuitenkaan päde. Esimerkiksi kielelle L = {a n b n : n N} on olemassa yhteydetön kielioppi, mutta ei säännollistä kielioppia. Yhteydettömille kieliopeille on olemassa seuraava normaalimuoto. Lause 8. Olkoon L yhteydetön kieli, joka ei sisällä tyhjää merkkijonoa. Tällöin on olemassa yhteydetön kielioppi G, jonka kaikki produktiot ovat muotoa A BC tai A a, missä A, B, C V ja a Σ, s.e. L = L(G). Sanotaan, että kielioppi G on Chomskyn normaalimuodossa. Jokainen yhteydetön kielioppi on siis ekvivalentti Chomskyn normaalimuodossa olevan kieliopin kanssa. Seuraava lause on todistettu Laskennan mallien kurssilla. Lause 9. Kieli L on yhteydetön jos ja vain jos jokin epädeterministinen pinoautomaatti tunnistaa kielen. 3
4 4 Yhteysherkät kieliopit Chomskyn hierarkian toiseksi laajin luokka on yhteysherkkien kielioppien luokka. Määritelmä 10. Muodollinen kielioppi on yhteysherkkä, jos sen kaikilla produktioilla α β pätee α β, missä α tarkoittaa merkkijonon α pituutta. Yhteysherkän kieliopin tuottamaa kieltä kutsutaan yhteyherkäksi kieleksi. Chomskyn normaalimuodon olemassaolosta nähdään suoraan, että jokainen yhteydetön kieli, joka ei sisällä tyhjää merkkijonoa, on myös yhteysherkkä. Ylläolevalla määritelmällä yhteysherkkä kieli ei kuitenkaan voi sisältää tyhjää merkkijonoa. Tällöin yhteydettömät kielet eivät olisi yhteysherkkien kielien osajoukko. Tämä puute voidaan korjata sallimalla tyhjän merkkijonon ɛ lisääminen yhteysherkkään kieleen. Yhteysherkkää kielioppia muutetaan tällöin lisäämällä uusi alkumerkki S 0 ja sille produktiot S 0 ɛ S, missä S on alkuperäinen alkumerkki (samanlainen muutos voidaan tehdä Chomskyn normaalimuodon esitykseen). Nyt yhteydettömät kielet ovat yhteysherkkien kielien osajoukko. Seuraava esimerkki osoittaa, että sisältyvyys on aito. Esimerkki 11. Kieli L = {a n b n c n : n 1} on yhteysherkkä, mutta tunnetusti L ei ole yhteydetön. Seuraava yhteysherkkä kielioppi tuottaa kielen L. 1. S asbc 2. S abc 3. CB BC 4. ab ab 5. bb bb 6. bc bc 7. cc cc Nimitystä yhteysherkkä kielioppi selittää seuraava normaalimuoto yhteysherkille kieliopeille. Normaalimuodossa α ja β muodostavat yhteyden tai kontekstin, jossa produktiota voi soveltaa. 4
5 Lause 12. Olkoon L yhteysherkkä kieli, joka ei sisällä tyhjää merkkijonoa. Tällöin on olemassa muodollinen kielioppi G, jonka kaikki produktiot ovat muotoa αaβ αγβ, missä α, β, γ (V Σ), γ ɛ ja A V, s.e. L = L(G). 4.1 Lineaarisesti rajoitettu automaatti Yllä on esitetty säännöllisille ja yhteydettömille kielille tutut niitä vastaavat automaatit. Seuraavaksi esitellään yhteydettömien kielien karakterisaatio automaattien avulla. Määritelmä 13. Lineaarisesti rajoitettu automaatti on epädeterministinen Turingin kone, joka täyttää seuraavat kaksi ehtoa. 1. Syöteaakkosto sisältää kaksi erikoissymbolia, vasemman reunamerkin X L sekä oikean reunamerkin X R, X L X R. 2. Lukupää ei voi liikkua X L :n vasemmalle puolen tai X R :n oikealle puolen eikä kone voi kirjoittaa mitään kyseisten merkkien paikalle. Laskennan alussa nauhan sisältö on X L ωx R, missä ω on syöte. Lineaarisesti rajoitettu automaatti on siis Turingin kone, jonka käytettävissä oleva nauha on rajoitettu nauhan osalle, joka laskennan alussa sisältää syötteen sekä reunamerkit. Muuttamalla määritelmää siten, että käytettävissä olevan nauhan osan pituus olisi syötteen pituuden suhteen lineaarinen, saisimme mallin jonka laskennallinen kyky on yhtäläinen yllä annetun määritelmän kanssa. Tämä selittää nimen lineaarisesti rajoitettu automaatti. Yhteysherkkiä ovat täsmälleen ne kielet, jotka voidaan tunnistaa lineaarisesti rajoitetulla automaatilla. Intuitiivisesti lineaarisesti rajoitettu automaatti tunnistaa yhteysherkän kielen, sillä tarkistaakseen kuuluuko jokin merkkijono kieleen simuloimalla kielen kielioppia, automaatti ei tarvitse nauhaa enempää kuin merkkijonon pituuden verran. Tämä johtuu yhteysherkän kielen kieliopin produktioiden muodosta - ei ole tilannetta, jossa kieleen kuuluva merkkijono voitaisiin johtaa vain sitä pidemmän merkkijono avulla. Lause 14. Kieli L, joka ei sisällä tyhjää merkkijonoa, on yhteysherkkä jos ja vain jos jokin lineaarisesti rajoitettu automaatti tunnistaa kielen. 5
6 Yhteysherkkien kielien joukko on jo hyvin iso. Yllä on annettu yksinkertaiset esimerkit kielistä, jotka eivät ole säännöllisiä tai yhteydettömiä. Tällaisia simppeleitä esimerkkejä ei-yhteysherkistä kielistä ei ole. Kaikki esimerkit ei-yhteysherkistä kielistä perustuvat jonkunlaiselle diagonaaliargumentille. Seuraavaksi osoitamme, että jokainen yhteysherkkä kieli on rekursiivinen, ja että on olemassa myös rekursiivinen kieli joka ei ole yhteysherkkä. Lause 15. Jokainen yhteysherkkä kieli on rekursiivinen. Todistus. Olkoon L yhteysherkkä kieli ja LBA lineaarisesti rajoitettu automaatti, joka tunnistaa kielen L. Käytämme hyväksi tietoa, että lineaarisesti rajoitetulla automaatilla voi käytettävissä olevan nauhan äärellisen pituuden takia olla vain äärellisen monta eri konfiguraatiota. Olkoon k erilaisten konfiguraatioden lukumäärä. Nyt voidaan muodostaa kaikilla syötteillä pysähtyvä Turingin kone M, joka tunnistaa kielen L, siten että M simuloi LBA:n laskentaa maksimissaan k + 1:n askeleen verran. M pysähtyy ja hyväksyy/hylkää, jos LBA pysähtyy ja hyväksyy/hylkää, mutta jos laskenta on jatkunut k + 1 askeleen verran M pysähtyy ja hylkää. Tällöin tiedetään, että jokin konfiguraatio on toistunut ja LBA on loopissa. Sen todistamiseksi, että yhteysherkät kielet ovat rekursiivisten kielten aito osajoukko, tarvitaan seuraava aputulos. Lemma 16. Olkoon (M i ) i N numeroituva perhe kaikilla syötteillä pysähtyviä Turingin koneita. Tällöin on olemassa rekursiivinen kieli L, s.e L L(M i ) kaikilla i N. Todistus. Määritellään kieli L (0 1), ɛ / L seuraavasti. Kaikilla ω (0 1), ω L jos ja vain jos M i ei hyväksy syötettä ω, missä ω on i:n binääriesitys. L on rekursiivinen, sillä, annettuna epätyhjä merkkijono ω (0 1), voimme muodostaa koneen M i, ja tarkistaa hyväksyykö se merkkijonon. Nyt kaikilla M i, i N, L L(M i ). Korollaari 17. On olemassa rekursiivinen kieli, joka ei ole yhteysherkkä. Todistus. Tämä seuraa nyt siitä, että voimme numeroida yhteysherkät kieliopit, joiden päätemerkkien joukko on {0, 1}. 5 Rajoittamattomat kieliopit Chomskyn hierarkian laajin luokka on rajoittamattomien kielioppien luokka. 6
7 Määritelmä 18. Rajoittamaton kielioppi on muodollinen kielioppi, jonka produktiot voivat olla mitä muotoa tahansa. Seuraavat kaksi lausetta osoittavat, että rajoittamattomat kieliopit määrävät täsmälleen rekursiivisesti numeroituvien kielien joukon. Lause 19. Olkoon G rajoittamaton kielioppi. Tällöin on olemassa Turingin kone M s.e. L(G) = L(M). Lause 20. Olkoon M Turingin kone. Tällöin on olemassa rajoittamaton kielioppi G s.e. L(M) = L(G). Viitteet [1] John E. Hopcroft, Jeffrey D. Ullman: Introduction to Automata Theory, Languages and Computation. Addison-Wesley 1979 [2] Michael Sipser: Introduction to the Theory of Computation. Thomson Course Technology,
Rajoittamattomat kieliopit
Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet
Rajoittamattomat kieliopit (Unrestricted Grammars)
Rajoittamattomat kieliopit (Unrestricted Grammars) Laura Pesola Laskennanteorian opintopiiri 13.2.2013 Formaalit kieliopit Sisältävät aina Säännöt (esim. A -> B C abc) Muuttujat (A, B, C, S) Aloitussymboli
uv n, v 1, ja uv i w A kaikilla
2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko
(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3
T-79.48 Tietojenkäsittelyteorian perusteet Tentti 25..23 mallivastaukset. Tehtävä: Kuvaa seuraavat kielet sekä säännölisten lausekkeiden että determinististen äärellisten automaattien avulla: (a) L = {w
Yhteydettömän kieliopin jäsennysongelma
Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelmalla tarkoitetaan laskentaongelmaa Annettu: yhteydetön kielioppi G, merkkijono w Kysymys: päteekö w L(G). Ongelma voidaan periaatteessa
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli. H = {c M w M pysähtyy syötteellä w}
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = {c w pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti
Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin
Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.
4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:
T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone
TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. toukokuuta 2013 Sisällys Chomskyn hierarkia (ja muutakin) kieli LL(k) LR(1) kontekstiton kontekstinen rekursiivisesti
Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. kesäkuuta 2013 Sisällys Aikataulumuutos Tämänpäiväinen demotilaisuus on siirretty maanantaille klo 14:15 (Ag Delta).
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015
ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:
Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista
Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Antti-Juhani Kaijanaho 15. maaliskuuta 2012 1 Apumääritelmä Määritelmä 1. Olkoon Σ merkistö, jolla on olemassa täydellinen järjestys ( ) Σ 2.
ongelma A voidaan ratkaista ongelman B avulla, joten jossain mielessä
Edellä esitetyt kielten A TM ja HALT TM ratkeamattomuustodistukset ovat esimerkkejä palautuksesta (reduction). Intuitiivisesti ongelman A palauttaminen ongelmaan B tarkoittaa, että Oletetaan, että meillä
Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää
Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää S AB CA... A CB...... ja kutsua Derives(S, abcde), niin kutsu Derives(B,
Pinoautomaatit. Pois kontekstittomuudesta
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Pinoautomaatti NFA:n yleistys automaatilla on käytössään LIFO-muisti 1 eli pino Pino
Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä
Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,
T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut
T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama
Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. toukokuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. toukokuuta 2011 Sisällys engl. random-access machines, RAM yksinkertaistettu nykyaikaisen (ei-rinnakkaisen)
TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. maaliskuuta 2012 Sisällys Ongelma-analyysiä Sisällys Ongelma-analyysiä Hypoteettinen ongelma The Elite Bugbusters
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. marraskuuta 2015 Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4 a 5 00 k 11 i
Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen:
Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: S A S B Samaan jäsennyspuuhun päästään myös johdolla S AB Ab ab: S A S B Yhteen jäsennyspuuhun liittyy aina tasan yksi vasen
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4
Pysähtymisongelman ratkeavuus [Sipser luku 4.2]
Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,
on rekursiivisesti numeroituva, mutta ei rekursiivinen.
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti
T Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut
T-79.1001 Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut Lemma (Säännöllisten kielten pumppauslemma). Olkoon A säännöllinen kieli. Tällöin on olemassa n 1
Algoritmin määritelmä [Sipser luku 3.3]
Algoritmin määritelmä [Sipser luku 3.3] Mitä algoritmilla yleensä tarkoitetaan periaatteessa: yksiselitteisesti kuvattu jono (tietojenkäsittely)operaatioita, jotka voidaan toteuttaa mekaanisesti käytännössä:
Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. maaliskuuta 2012 Sisällys Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on
Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 20. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. kesäkuuta 2013 Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on muotoa Onko
ICS-C2000 Tietojenkäsittelyteoria
ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Alue ja aiheet: Orposen
Chomskyn hierarkia. tyyppi 0 on juuri esitelty (ja esitellään kohta lisää) tyypit 2 ja 3 kurssilla Ohjelmoinnin ja laskennan perusmallit
Chomskyn hierarkia Noam Chomskyn vuonna 1956 esittämä luokittelu kieliopeille niiden ilmaisuvoiman mukaan tyyppi kieli kielioppi tunnistaminen 0 rekurs. lueteltava rajoittamaton Turingin kone 1 kontekstinen
Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.
Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,
Olkoon G = (V,Σ,P,S) yhteydetön kielioppi. Välike A V Σ on tyhjentyvä, jos A. NULL := {A V Σ A ε on G:n produktio};
3.6 Cocke-Younger-Kasami -jäsennysalgoritmi Osittava jäsentäminen on selkeä ja tehokas jäsennysmenetelmä LL(1)-kieliopeille: n merkin mittaisen syötemerkkijonon käsittely sujuu ajassa O(n). LL(1)-kieliopit
Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja
582206 Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 1. Tarkastellaan yhteydetöntä kielioppia S SAB ε A aa a B bb ε Esitä merkkijonolle aa kaksi erilaista jäsennyspuuta ja kummallekin siitä vastaava
Säännöllisten kielten sulkeumaominaisuudet
Säännöllisten kielten sulkeumaominaisuudet Osoitamme nyt, että säännöllisten kielten joukko on suljettu yhdisteen, konkatenaation ja tähtioperaation suhteen. Toisin sanoen jos A ja B ovat säännöllisiä,
S BAB ABA A aas bba B bbs c
T-79.148 Kevät 2003 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S) tuottama
ICS-C2000 Tietojenkäsittelyteoria. Tähän mennessä: säännölliset kielet. Säännöllisten kielten pumppauslemma M :=
ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Alue ja aiheet: Orposen prujun
Säännöllisen kielen tunnistavat Turingin koneet
186 Säännöllisen kielen tunnistavat Turingin koneet Myös säännöllisen kielen hyväksyvien Turingin koneiden tunnistaminen voidaan osoittaa ratkeamattomaksi palauttamalla universaalikielen tunnistaminen
1. Universaaleja laskennan malleja
1. Universaaleja laskennan malleja Laskenta datan käsittely annettuja sääntöjä täsmällisesti seuraamalla kahden kokonaisluvun kertolasku tietokoneella, tai kynällä ja paperilla: selvästi laskentaa entä
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en
Rekursiiviset palautukset [HMU 9.3.1]
Rekursiiviset palautukset [HMU 9.3.1] Yleisesti sanomme, että ongelma P voidaan palauttaa ongelmaan Q, jos mistä tahansa ongelmalle Q annetusta ratkaisualgoritmista voidaan jotenkin muodostaa ongelmalle
M = (Q, Σ, Γ, δ, q 0, q acc, q rej )
6. LASKETTAVUUSTEORIAA Churchin Turingin teesi: Mielivaltainen (riittävän vahva) laskulaite Turingin kone. Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.
Äärellisten automaattien ja säännöllisten kielten ekvivalenssi
Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää
5.3 Ratkeavia ongelmia
153 5.3 Ratkeavia ongelmia Deterministisen äärellisten automaattien (DFA) hyväksymisongelma: hyväksyykö annettu automaatti B merkkijonon w? Ongelmaa vastaava formaali kieli on A DFA = { B, w B on DFA,
M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)
Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.
TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012
TIEA241 Automaatit ja, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 2. helmikuuta 2012 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti lueteltava
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.
Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.
Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen
Lisää pysähtymisaiheisia ongelmia
Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti
Turingin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton kontekstinen
vaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 13. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 13.10.2016 klo 9:42 passed waiting redo submitters
Täydentäviä muistiinpanoja laskennan rajoista
Täydentäviä muistiinpanoja laskennan rajoista Antti-Juhani Kaijanaho 10. joulukuuta 2015 1 Diagonaalikieli Diagonaalikieli on D = { k {0, 1} k L(M k ) }. Lause 1. Päätösongelma Onko k {0, 1} sellaisen
TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut
TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut Pisteytys on ilmoitettu välikoevaihtoehdon mukaan (joko tehtävät 1, 2 ja 3 välikokeen 1 uusintana tai tehtävät 4, 5 ja 6 välikokeen 2 uusintana).
Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja
582206 Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 1. Esitä tilakaaviona NFA N = (Q, Σ, δ, q 0, F ), missä Q = { q 0, q 1, q 2, q 3, q 4, q 5, q 6, q 7 }, Σ = { a, b, c }, F = { q 4 } ja δ on
Ei-yhteydettömät kielet [Sipser luku 2.3]
Ei-yhteydettömät kielet [Sipser luku 2.3] Yhteydettömille kielille pätee samantapainen pumppauslemma kuin säännöllisille kielille. Siinä kuitenkin pumpataan kahta osamerkkijonoa samaan tahtiin. Lause 2.25
Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman
Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja
581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen
Esimerkki 2.28: Tarkastellaan edellisen sivun ehdot (1) (3) toteuttavaa pinoautomaattia, jossa päätemerkit ovat a, b ja c ja pinoaakkoset d, e ja $:
Esimerkki 2.28: Tarkastellaan edellisen sivun ehdot (1) (3) toteuttavaa pinoautomaattia, jossa päätemerkit ovat a, b ja c ja pinoaakkoset d, e ja $: a, ε d b, d ε ε, ε $ b, d ε 1 2 3 6 c, ε e c, ε e c,
Pinoautomaatit. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 6. lokakuuta 2016 TIETOTEKNIIKAN LAITOS
.. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. lokakuuta 2016 Sisällys. Harjoitustehtävätilastoja Tilanne 6.10.2016 klo 8:28 passed potential redo submitters
Muita universaaleja laskennan malleja
Muita universaaleja laskennan malleja Tällä kurssilla Turingin kone on valittu algoritmikäsitteen formalisoinniksi. Toisin sanoen tulkitsemme, että laskentaongelmalle on olemassa algoritmi, jos ja vain
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja
582206 Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja 1. Seuraavissa laskennoissa tilat on numeroitu sarakkeittain ylhäältä alas jättäen kuitenkin hyväksyvä tila välistä. Turingin koneen laskenta
Laskennan rajoja. Sisällys. Meta. Palataan torstaihin. Ratkeavuus. Meta. Universaalikoneet. Palataan torstaihin. Ratkeavuus.
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 17.10.2016 klo 15:07 passed waiting redo submitters
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 20. lokakuuta 2016
.. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. lokakuuta 2016 Sisällys. Turingin koneiden pysähtymisongelma. Lause Päätösongelma Pysähtyykö standardimallinen
Turingin koneen laajennuksia
Turingin koneen laajennuksia Turingin koneen määritelmään voidaan tehdä erilaisia muutoksia siten että edelleen voidaan tunnistaa tasan sama luokka kieliä. Moniuraiset Turingin koneet: nauha jakautuu k
Yhteydettömät kieliopit [Sipser luku 2.1]
Yhteydettömät kieliopit [ipser luku 2.1] Johdantoesimerkkinä tarkastelemme kieltä L = { a n b m a n n > 0, m > 0 }, joka on yhteydetön (mutta ei säännöllinen). Vastaavan kieliopin ytimenä on säännöt eli
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys Harjoitustehtävät loppukurssilla luentojen 14 18 harjoitustehtävistä on tehtävä yksi
TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 26. kesäkuuta 2013
ja ja TIEA241 Automaatit ja kieliopit, kesä 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. kesäkuuta 2013 Sisällys ja ja on yksi vanhimmista tavoista yrittää mallittaa mekaanista laskentaa. Kurt
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016
ja ja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys ja ja Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/
TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013
TIEA241 Automaatit ja kieliopit, kesä 2013 etenevä Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. kesäkuuta 2013 Sisällys etenevä etenevä Chomskyn hierarkia (ja muutakin) kieli säännöllinen LL(k) LR(1)
9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko
9.5. Turingin kone Turingin kone on järjestetty seitsikko TM = (S, I, Γ, O, B, s 0, H), missä S on tilojen joukko, I on syöttöaakkosto, Γ on nauha-aakkosto, I Γ, O on äärellinen ohjeiden joukko, O S Γ
Muunnelmia Turingin koneista sekä muita vaihtoehtoisia malleja
sekä muita TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton
2. Yhteydettömät kielet
2. Yhteydettömät kielet Yhteydettömät eli kontekstittomat kielet (context-free language, CFL) ovat säännöllisiä kieliä laajempi luokka formaaleja kieliä. Ne voidaan esittää yhteydettömillä kieliopeilla
Kielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri }
135 4.3 Algoritmeista Churchin ja Turingin formuloinnit laskennalle syntyivät Hilbertin vuonna 1900 esittämän kymmenennen ongelman seurauksena Oleellisesti Hilbert pyysi algoritmia polynomin kokonaislukujuuren
Automaatit. Muodolliset kielet
Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten
Kertausta 1. kurssikokeeseen
Kertausta. kurssikokeeseen. kurssikoe on to 22.0. klo 9 2 salissa A (tai CK2). Koealueena johdanto ja säännölliset kielet luentokalvot 3 ja nämä kertauskalvot harjoitukset 6 Sipser, luvut 0 ja Edellisvuosien.
Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna
Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna. q 0 x solmuina laskennan mahdolliset tilanteet juurena alkutilanne lehtinä tilanteet joista ei siirtymää,
Osoitamme, että jotkut kielet eivät ole säännöllisiä eli niitä ei voi tunnistaa äärellisellä automaatilla.
Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että jotkut kielet eivät ole säännöllisiä eli niitä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen
Muodolliset kieliopit
Muodolliset kieliopit Luonnollisen kielen lauseenmuodostuksessa esiintyy luonnollisia säännönmukaisuuksia. Esimerkiksi, on jokseenkin mielekästä väittää, että luonnollisen kielen lauseet koostuvat nk.
jäsentäminen TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 26. marraskuuta 2015 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. marraskuuta 2015 Sisällys Tunnistamis- ja jäsennysongelma Olkoon G = (N, Σ, P, S) kontekstiton kielioppi ja
Hahmon etsiminen syotteesta (johdatteleva esimerkki)
Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 Kierros 7, 29. helmikuuta 4. maaliskuuta Demonstraatiotehtävien ratkaisut D1: Osoita, yhteydettömien kielten pumppauslemmaa käyttäen, että kieli {ww w {a,b}
DFA:n käyttäytyminen ja säännölliset kielet
säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen
ÄÄRELLISTEN AUTOMAATTIEN MINIMOINTI. 1. Äärelliset automaatit Äärellinen automaatti (DFA = deterministic finite automaton) on
ÄÄRELLISTEN AUTOMAATTIEN MINIMOINTI MIKKO KANGASMÄKI. Äärelliset automaatit Äärellinen automaatti (DFA = deterministic finite automaton) on viisikko (Q, Σ, s, δ, F ), missä Q on äärellinen joukko tiloja
TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013
TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen
Luonnollisen päättelyn luotettavuus
Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä
ICS-C2000 Tietojenkäsittelyteoria
ICS-C2000 Tietojenkäsittelyteoria Luento 10: Lisää ratkeamattomuudesta Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Aiheet: Pysähtymisongelma Epätyhjyysongelma Rekursiiviset
Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)).
Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Esimerkkejä: Σ koostuu kaikista aakkoston Σ merkkijonoista ja
Äärellisten automaattien ja säännöllisten lausekkeiden minimointi
Äärellisten automaattien ja säännöllisten lausekkeiden minimointi Timi Suominen, Riia Ohtamaa ja Pessi Moilanen Helsinki..01 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Äärellisten automaattien
Säännöllisten operaattoreiden täydentäviä muistiinpanoja
Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä
Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen
Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen suhteen, eli jos kielet A ja B ovat säännöllisiä, niin myös A B on. Tätä voi havainnollistaa seuraavalla kuvalla: P(Σ ) Säännölliset
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015
TIEA24 Automaatit ja kieliopit, syksy 205 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 5. marraskuuta 205 Sisällys Käsiteanalyysiä Tarkastellaan koodilukkoa äärellisenä automaattina. Deterministinen äärellinen
TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. tammikuuta 2012 Sisällys Sisällys Äärellisiä automaatteja PUSH ON PUSH OFF Q T Q J C C H S C,Q C,Q 0 50s 1e
TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. tammikuuta 2012 Sisällys Luennon pähkinä Millä tavalla voidaan rakentaa tietokoneohjelma (tai kirjasto), joka
2. Laskettavuusteoriaa
2. Laskettavuusteoriaa Käymme läpi ratkeamattomuuteen liittyviä ja perustuloksia ja -tekniikoita [HMU luku 9]. Tämän luvun jälkeen opiskelija tuntee joukon keskeisiä ratkeamattomuustuloksia osaa esittää
Täydentäviä muistiinpanoja jäsennysalgoritmeista
äydentäviä muistiinpanoja jäsennysalgoritmeista Antti-Juhani Kaijanaho 7. helmikuuta 2012 1 simerkki arleyn algoritmin soveltamisesta arkastellaan kielioppia G : + () c ja sovelletaan arleyn algoritmia
1. Universaaleja laskennan malleja
1. Universaaleja laskennan malleja Esimerkkinä universaalista laskennan mallista tarkastellaan Turingin konetta muunnelmineen. Lyhyesti esitellään myös muita malleja. Tämän luvun jälkeen opiskelija tuntee
Laskennan teoria
581336-0 Laskennan teoria luennot syyslukukaudella 2003 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa esitiedot käytännössä
!""# $%&'( ' )' (*' " '' '( "! ' *'&' "! ' '( "!! )& "! # "! & "! ' "! $''!! &'&' $' '! $ & "!!" #!$ %! & '()%%'!! '!! # '&' &'!! &'&' *('(' &'!*! +& &*%!! $ & #" !!" "!!!" $ " # ' '&& % & #! # ' '&&