Tietämisestä ja uskomisesta

Koko: px
Aloita esitys sivulta:

Download "Tietämisestä ja uskomisesta"

Transkriptio

1 Tietämisestä ja uskomisesta MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Kasper Apajalahti

2 Sisältö Johdanto Tietämys Arvoitus: mutaiset lapset Partitiomalli (partition model) Mutaiset lapset KDT45-aksiomatiikka Mutaiset lapset Yleinen tieto ja koordinoitu toiminta Mutaiset lapset Epävarmuus kommunikaatiossa Robottien välinen koordinoitu toiminta Tietämys ja uskomus Kevyt esittely Kotitehtävät

3 Johdanto Historiaa: Jo muinaiset kreikkalaiset pohtivat tietoa (tietoteoria filosofiassa) Filosofi CI Lewis kehitti pohjan modernille modaalilogiikalle (1910) ja mm KDT45-/S5- järjestelmälle (1932) 40- ja 50-luvuilla väiteltiin tietämyksen ja uskomuksen formaalista määrittämisestä Joukossa suomalainen GH von Wright kirjoituksellaan An Essay on Modal Logic Jaakko Hintikka laajensi von Wrightin ajatuksia ja loi filosofisen perustan tiedon logiikkajärjestelmille kirjallaan Knowledge and Belief: An Introduction to the Logic of the Two Notions, 1962 Saul Kripke kehitti 50- ja 60-luvulla modaalilogiikan perusteita ja mahdollisen maailmojen semantiikkaa

4 Johdanto Tieto on oikeutettu tosi uskomus (filosofia, tietoteoria): Agentti i tietää että φ, jos 1) φ on totta 2) i uskoo, että φ ja 3) i:llä on perusteet uskoa, että φ Tietämyksen formaali määrittäminen: episteeminen (epistemic) logiikka (modaalilogiikan osa-alue) Tietämisen mallintaminen perustuu (usein) mahdollisten maailmojen määrittämiseen Sovellukset tietämiselle Robottien koordinoitu toiminta Verkkoturvallisuus (protokollat) Taloustiede (hinnoittelu, tarjouskilpailu, yms)

5 Arvoitus: mutaiset lapset Kuvaus n-määrä lapsia saapuu mutaleikeistä kotiin ja k-määrällä on mutainen otsa Lapset eivät tiedä olevansa itse mutaisia Isä toteaa ainakin yhden olevan mutainen ja toistaa tätä kunnes syylliset myöntävät olleensa mutaleikeissä (lapsen pitää tunnustaa heti kun tietää olevansa mutainen) Montako kertaa isän pitää toistaa sanomansa ennen kuin mutaiset lapset tunnustavat? Vastaus: k-1:llä kerralla kukaan ei ole tunnustanut => mutainen lapsi siis tietää, että k-1:n mutaisen lisäksi myös hänen itsensä täytyy olla mutainen Siispä k:nnella kerralla kaikki mutaiset tunnustavat yhtä aikaa Tutkitaan jatkossa esimerkkiä, jossa n=2 ja k=2

6 Partitiomalli (partition model) Partitiomalli A = W, π, I 1,, I n, missä W on mahdollisten maailmojen joukko esim w 0 ={ m1, m2}, w 1 ={m1, m2}, w 2 ={ m1, m2}, w 3 ={m1, m2} m1 = agentti 1 on mutainen, m2 = agentti 2 on mutainen, π tulkintafunktio (interpretation function) esim π( yhdellä on mutaa naamassa )={w 1, w 2, w 3 } I i on agentin i näkemys mahdollisista maailmoista esim I 1 (w 0 )={w 1 } Maailmassa w, agentti tietää väitteen φ, joss φ on tosi kaikissa maailmoissa w ja w I i (w) Merkitään A, w K i φ tai ihan vaan K i φ esim Agentti 1 tietää, että agentti 2 on mutainen = K 1 m2

7 Mutaiset lapset ja partitiomalli (n=2 ja k=2) 1 Lapset näkevät toisensa: K 1 m2, K 1 K 2 m2 K 2 m1, K 2 K 1 m1

8 Mutaiset lapset ja partitiomalli (n=2 ja k=2) 1 Lapset näkevät toisensa: 2 Isä sanoo: ainakin yhdellä on mutaa naamassa K 1 m2, K 1 K 2 m2 K 2 m1, K 2 K 1 m1 K 1 m2, K 1 K 2 m2 K 2 m1, K 2 K 1 m1

9 Mutaiset lapset ja partitiomalli (n=2 ja k=2) 1 Lapset näkevät toisensa: 2 Isä sanoo: ainakin yhdellä on mutaa naamassa 3 Kumpikaan ei reagoi K 1 m2, K 1 K 2 m2 K 2 m1, K 2 K 1 m1 K 1 m2, K 1 K 2 m2 K 2 m1, K 2 K 1 m1 K 1 m2, K 1 K 2 m1, K 1 m1 K 2 m1, K 2 K 1 m2, K 2 m2

10 Partitiomallit vielä formaalimmin: Kripke-rakenne Kripke-rakenne (Kripke structure) on pari (W,R), missä W on mahdollisten maailmojen joukko R on maailmojen väliset suhteet M, w K i φ joss w W, R(w,w ) ja w φ Suomeksi: maailmassa w agentti i tietää väitteen φ todeksi, mikäli w:n naapurimaailmoissa w φ on totta Mutaiset lapset-esimerkki: merkitään totuusarvot 0/1 mutaisuudesta (m1,m2) mahdollisiin maailmoihin: w 3 : 11 2 w 2 : w 1 : 01 w 0 : 00

11 KDT45-aksioomajärjestelmä Tunnetaan myös S5-järjestelmänä Mallintaa tietämiseen liittyvät ominaisuudet: Järjestelmän heikkous: looginen kaikkitietävyys (logical omniscience) aksiooman K johdosta Onko agentilla resursseja tietää kaikki mikä loogisesti seuraa väitteestä φ?

12 Yleinen tieto (C G φ) w C G φ, joss w E G (φ C G ) Yleinen tieto C väitteestä φ on olemassa agenttien joukossa G, kun 1) kaikki tietävät φ 2) kaikki tietävät, että kaikki tietävät φ, 3) kaikki tietävät, että kaikki tietävät, että, ) Mutaiset lapset-arvoituksessa: Alkuehtona C G (agentti tunnustaa, jos tietää olevansa mutainen) Lapset näkevät toisensa: E G ( ainakin yksi on mutainen ) Isän puheenvuoron jälkeen: C G ( ainakin yksi on mutainen ) Yleisen tiedon olemassaolo mahdollistaa oman mutaisuuden päättelyn k:nnella kerralla

13 Yleinen tieto ja koordinoitu toiminta Yleinen tieto mahdollistaa koordinoidun toiminnan Yleisen tiedon puuttuminen taas tekee (deterministisen) koordinoidun toiminnan mahdottomaksi Esimerkki: A kysyy sähköpostilla ystäväänsä B:tä baariin klo 2000 Ongelmana on että sähköposti on epäluotettava viestin ja kummallekin olisi katastrofaalista saapua baariin yksin Siispä A haluaa vahvistuksen B:ltä että tietää saapua klo 2000 paikalle Propositiot (a0,b0,b1,a1) totuusarvoilla 0/1: a0= A lähettänyt viestin, b0= B saanut viestin b1= B lähettänyt vahvistuksen a1= A saanut vahvistuksen w 0 : 0000 B w 1 : 1000 A w 2 : 1100 A A w 3 : 1110 B w 4: 1111

14 Yleinen tieto ja koordinoitu toiminta Lopputulos: kaikki viestit menevät läpi, joten A lukee B:n vahvistuksen! Kun B on lähettänyt vahvistuksen, hän kuitenkin ryhtyy järkeilemään mahdollisia maailmoja: w 0 :ssä ja w 1 :ssa: K B a0 w 3 :ssa: K B a0, K A K B a0 w 4 :ssä: K B a0, K A K B a0, K B K A K B a0 B ei siis tiedä, että A tietää että, että B tietää, että baariin pitäisi mennä klo 20 w 0 : Vaikka lisättäisiin uusi vahvistusviesti A:lta B:lle 0000 (a2 ja b2), ei silti saada varmuutta viestien läpimenosta Tarvittaisiin yleistä tietoa C AB a0, mikä on mahdotonta esimerkinkaltaisessa epävarmassa viestinnässä B w 1 : 1000 A w 2 : 1100 A A w 3 : 1110 B w 4 : 1111

15 Robotti-esimerkki Robotit A ja B pelaavat jalkapalloa B syöttää A:lle kohdealueelle G>=2, jonne A kiitää origosta B:n syötön pitää lähteä mahdollisimman ripeästi kun A on kohdealueella ja ennen kuin A pysähtyy, muuten vastajoukkue ehtii väliin Molemmilla on identtiset sensorit R A ja R B, jotka kertovat robotin A reaaliaikaisen sijainnin ±1 yksikön tarkkuudella, siten että R A =R B Milloin syötön pitää lähteä? Vastaus: kun R A >= 3 ja kun R B >= 3 niin C AB ( A kohdealueella ) A:lla ja B:llä identtiset maailmat

16 Robotti-esimerkki 2 Robotit A ja B pelaavat taas jalkapalloa ja heillä on sama taktiikka kuin aiemmassa esimerkissä (B syöttää heti kun A on kohdealueella G>=2) Nyt B on päivittänyt sensorinsa R B+ :aan ja se kertoo täsmälleen, missä A liikkuu A:lla on vielä wanhanaikainen kalusto R A käytössä (±1:n tarkkuus) Milloin syötön pitää lähteä? Merkitään todellinen sijainti ja sensoreiden lukemat mahdollisiin maailmoihin: (p,r A,R B+ ), missä p=todellinen sijainti Esimerkki mahdollisesta tilanteesta: w 4 : (5,6,5) B w 3 : A w 2 : B w 1 : A (5,4,5) (3,4,3) (3,2,3) w 0 : (1,2,1)

17 Robotti-esimerkki 2 Robotit A ja B pelaavat taas jalkapalloa ja heillä on sama taktiikka kuin aiemmassa esimerkissä Nyt B on päivittänyt sensorinsa R B+ :aan ja se kertoo täsmälleen, missä A liikkuu, kun taas A:lla on vielä wanhanaikainen kalusto R A käytössä (±1:n tarkkuus) Milloin syötön pitää lähteä? Merkitään todellinen sijainti ja sensoreiden lukemat mahdollisiin maailmoihin: (p,r A,R B+ ), missä p=todellinen sijainti Esimerkki mahdollisesta tilanteesta: w 4 : (5,6,5) B w 3 : A w 2 : B w 1 : A (5,4,5) (3,4,3) (3,2,3) w 0 : (1,2,1) Tässä esimerkissä w 4 :ssä voi päätellä: K B K A K B K A ( A kohdealueella ) Vastaus: ei onnistu Tarinan opetus: tärkeämpää tietää, mitä toinen tietää kuin olla oikeassa

18 Tietämys ja uskomus Kuten sanottu, tietäminen on oikeutettua uskomusta, joka on totta Lisäksi, tieto on uskomus, joka on stabiili totuuden edessä Uskomisen mallintaminen tietämisen ohella on siis melko tärkeää Uskomisen eri tyypit: B ic kuvaa varmuudella uskomista ( luulee tietävänsä ) B i m kuvaa hypoteettista uskomista

19 Tietämys ja uskomus Tiedon ja uskomuksen mallintaminen ei ole helppoa Oletetaan aksioomat tietämiseen ja uskomiseen suhteet: K i φ B ic φ ja B ic φ B ic K i φ Lisäksi, muistetaan KDT45-järjestelmä ja sen 5 aksiooma: K i φ K i K i φ Esimerkki: B ic ( pankki on auki ) B ic K i φ( pankki on auki ) Todellisuudessa pankki on kiinni

20 Tietämys ja uskomus Tiedon ja uskomuksen mallintaminen ei ole helppoa Oletetaan aksioomat tietämiseen ja uskomiseen suhteet: K i φ B ic φ ja B ic φ B ic K i φ Lisäksi, muistetaan KDT45-järjestelmä ja sen 5 aksiooma: K i φ K i K i φ Esimerkki: B ic ( pankki on auki ) B ic K i φ( pankki on auki ) Todellisuudessa pankki on kiinni, joten K i ( pankki on auki ) K i K i ( pankki on auki ) B ic K i ( pankki on auki ) Täten: B ic K i ( pankki on auki ) ja B ic K i ( pankki on auki ), RISTIRIITA! Opetus: mallintaminen voi mennä pieleen ja syyttävä sormi osoittaa KDT45:n 5 aksioomaa KDT45 ei siis täysin kuvaakaan tietämistä filosofisessa mielessä?

21

22 Terminologia Partitiomalli = Jakaa tilat/maailmat ryhmiin siten etteivät agentit pysty erottamaan niitä toisistaan Kripke-rakenne = Sisältää mahdolliset maailmat ja relaatiot niiden välillä Looginen kaikkitietävyys = Jos tietää asian, tietää sen seuraukset

23 Kotitehtävät 1 Keksi kilpailu/yhteistyötilanne, jossa agentit hyödyntävät tietämistä Sanallinen selitys riittää +löytyykö yleistä tietoa tai uskomusta? 2 Robotit A ja B pelaavat taas jalkapalloa ja taas syötön pitää lähteä mahdollisimman ripeästi kun A on kohdealueella, mutta ennen kuin A pysähtyy, muuten vastajoukkue ehtii väliin Nyt kohdealueella ollaan, kun G >= 4 Robotilla A on sensori R A-, joka kertoo ±2:n tarkkuudella robotin A sijainnin B:llä on sensori R B+, joka kertoo täsmälleen robotin A sijainnin Nyt todellinen maailma on: p=8, R A- =7 ja R B+ =8, eli maailmassa (8,7,8) Osoita, ettei B tiedä että A tietää että B tietää että A tietää olevansa kohdealueella (kalvot s16 ja 17, kirjasta kolme viimeistä kappaletta luvusta 1352)

Tietoteoria. Tiedon käsite ja logiikan perusteita. Monday, January 12, 15

Tietoteoria. Tiedon käsite ja logiikan perusteita. Monday, January 12, 15 Tietoteoria Tiedon käsite ja logiikan perusteita Tietoteoria etsii vastauksia kysymyksiin Mitä tieto on? Miten tietoa hankitaan? Mitä on totuus? Minkälaiseen tietoon voi luottaa? Mitä voi tietää? Tieto?

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot

Esimerkkimodaalilogiikkoja

Esimerkkimodaalilogiikkoja / Kevät 2005 ML-4 1 Esimerkkimodaalilogiikkoja / Kevät 2005 ML-4 3 Käsitellään esimerkkeinä kehyslogiikkoja Valitaan joukko L kehyksiä S, R (tyypillisesti antamalla relaatiolle R jokin ominaisuus; esim.

Lisätiedot

Mahdollisten maailmojen. semantiikan synty ja kehitys. Aikataulu: Propositionaalisten asenteiden logiikasta 1. Mahdollisten maailmojen

Mahdollisten maailmojen. semantiikan synty ja kehitys. Aikataulu: Propositionaalisten asenteiden logiikasta 1. Mahdollisten maailmojen Mahdollisten maailmojen semantiikan synty ja kehitys (Fte264/265, Kf330n) FT Ilpo Halonen to klo 12-14 S20A sh 303 9. luento 7.4.2005 Aikataulu: VIIMEINEN LUENTO 14.4. Sovelluksista ja viimeaikaisesta

Lisätiedot

T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut

T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut T-79.5101 kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut 1. Jokaiselle toteutuvalle lauselogiikan lauseelle voidaan etsiä malli taulumenetelmällä merkitsemällä lause taulun juureen

Lisätiedot

Kommunikaatio Visa Linkiö. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Kommunikaatio Visa Linkiö. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Kommunikaatio MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 2.11.2016 Visa Linkiö The document can be stored and made available to the public on the open internet pages of Aalto University.

Lisätiedot

Mahdollisten maailmojen semantiikan synty ja kehitys

Mahdollisten maailmojen semantiikan synty ja kehitys Mahdollisten maailmojen semantiikan synty ja kehitys (Fte264/265, Kf330n) FT Ilpo Halonen to klo 12-14 S20A sh 303 3. luento 3.2.2005 Mottoja Wittgensteinilta 1 Lauseet osoittavat, mitä ne sanovat. Tautologia

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf

Lisätiedot

Lefkoe Uskomus Prosessin askeleet

Lefkoe Uskomus Prosessin askeleet Lefkoe Uskomus Prosessin askeleet 1. Kysy Asiakkaalta: Tunnista elämästäsi jokin toistuva malli, jota et ole onnistunut muuttamaan tai jokin ei-haluttu käyttäytymismalli tai tunne, tai joku epämiellyttävä

Lisätiedot

Mahdollisten maailmojen semantiikan synty ja kehitys

Mahdollisten maailmojen semantiikan synty ja kehitys Mahdollisten maailmojen semantiikan synty ja kehitys (Fte264/265, Kf330n) FT Ilpo Halonen, versio 2 Päivitetty 21.02.2005 Kurssin oheiskirjallisuutena käytetään mm. seuraavia artikkeleita, jotka myös tentitään

Lisätiedot

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

Mahdollisten maailmojen semantiikan synty ja kehitys

Mahdollisten maailmojen semantiikan synty ja kehitys Mahdollisten maailmojen semantiikan synty ja kehitys (Fte264/265, Kf330n) FT Ilpo Halonen to klo 12-14 S20A sh 303 2. luento 27.1.2005 Aikataulu (luennot: 10 x 2 t) (aiheet alustavia) 20.1. Luento 1 (johdanto)

Lisätiedot

Ilpo Halonen 2005. Luonnehdintoja logiikasta 11. Poikkeavista logiikoista. Poikkeavista logiikoista 2. Poikkeavista logiikoista 3. Johdatus logiikkaan

Ilpo Halonen 2005. Luonnehdintoja logiikasta 11. Poikkeavista logiikoista. Poikkeavista logiikoista 2. Poikkeavista logiikoista 3. Johdatus logiikkaan Luonnehdintoja logiikasta 11 Johdatus logiikkaan Ilpo Halonen Syksy 2005 ilpo.halonen@helsinki.fi Filosofian laitos Humanistinen tiedekunta Modaalilogiikan renessanssi ja sille sukua olevien loogisten

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Modus Ponens. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15. Modus Ponens. Ketjusääntö. Päättelyketju.

Modus Ponens. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15. Modus Ponens. Ketjusääntö. Päättelyketju. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15 JosAjaA B ovat tosia, niin välttämättä myösb on tosi (A (A B)) B on tautologia eli (A (A B)) B. 1 / 15 JosAjaA B ovat tosia, niin välttämättä

Lisätiedot

Mahdollisten maailmojen. semantiikan synty ja kehitys. Mahdollisten maailmojen KIRJALLISUUTTA 2 KIRJALLISUUTTA 1 KIRJALLISUUTTA 3 KIRJALLISUUTTA 4

Mahdollisten maailmojen. semantiikan synty ja kehitys. Mahdollisten maailmojen KIRJALLISUUTTA 2 KIRJALLISUUTTA 1 KIRJALLISUUTTA 3 KIRJALLISUUTTA 4 Mahdollisten maailmojen semantiikan synty ja kehitys (Fte264/265, Kf330n) FT Ilpo Halonen to klo 12-14 S20A sh 303 4. luento 10.2.2005 Mahdollisten maailmojen semantiikan synty ja kehitys Kurssimateriaali

Lisätiedot

Miina ja Ville etiikkaa etsimässä

Miina ja Ville etiikkaa etsimässä Miina ja Ville etiikkaa etsimässä Elämänkatsomustieto Satu Honkala, Antti Tukonen ja Ritva Tuominen Sisällys Opettajalle...4 Oppilaalle...5 Työtavoista...6 Elämänkatsomustieto oppiaineena...6 1. HYVÄ ELÄMÄ...8

Lisätiedot

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon

Lisätiedot

Logiikkaa Matematiikan mestariluokka, kevät 2010 Harjoitus 1a ( )

Logiikkaa Matematiikan mestariluokka, kevät 2010 Harjoitus 1a ( ) Logiikkaa Matematiikan mestariluokka, kevät 2010 Harjoitus 1a (23.1.2010) 1. Merkitään P := Elokuva on kiinnostava., Q := Käyn katsomassa elokuvan., R := Elokuvassa on avaruusolioita.. Kirjoita seuraavat

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos. TIE303 Formaalit menetelmät, kevät 2005 Logiikan kertausta Antti-Juhani Kaijanaho antkaij@mit.jyu.fi Jyväskylän yliopisto Tietotekniikan laitos TIE303 Formaalit mentetelmät, 2005-01-27 p. 1/17 Luento2Luentomoniste

Lisätiedot

ja muutamia muita siihen liittyviä termejä TIETEEN TERMIPANKKI Implikaation määritelmä termipankissa

ja muutamia muita siihen liittyviä termejä TIETEEN TERMIPANKKI Implikaation määritelmä termipankissa Implikaatio ja muutamia muita siihen liittyviä termejä TOMMI VEHKAVAARA TAMPEREEN YLIOPISTO TIETEEN TERMIPANKKI 1 Implikaation määritelmä termipankissa Määritelmä 1. väitteen seurauslause tai siitä tavallisen

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon

Lisätiedot

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 2 Ratkaisuehdotukset 1. Olkoon totuusjakauma v sellainen että v(p i ) = 1 kaikilla i N ja A propositiolause, jossa

Lisätiedot

1. HYVIN PERUSTELTU 2. TOSI 3. USKOMUS

1. HYVIN PERUSTELTU 2. TOSI 3. USKOMUS Tietoteoria klassinen tiedonmääritelmä tietoa on 1. HYVIN PERUSTELTU 2. TOSI 3. USKOMUS esim. väitteeni Ulkona sataa on tietoa joss: 1. Minulla on perusteluja sille (Olen katsonut ulos) 2. Se on tosi (Ulkona

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

Kieli merkitys ja logiikka

Kieli merkitys ja logiikka Luento 8 Kieli merkitys ja logiikka Luento 8: Merkitys ja logiikka Luku 10: Luennon 7 kertaus: propositiologiikka predikaattilogiikka Kvanttorit ja looginen muoto Määritelmät, analyyttisyys ja synteettisyys

Lisätiedot

Täydentäviä muistiinpanoja laskennan rajoista

Täydentäviä muistiinpanoja laskennan rajoista Täydentäviä muistiinpanoja laskennan rajoista Antti-Juhani Kaijanaho 10. joulukuuta 2015 1 Diagonaalikieli Diagonaalikieli on D = { k {0, 1} k L(M k ) }. Lause 1. Päätösongelma Onko k {0, 1} sellaisen

Lisätiedot

Mahdollisten maailmojen semantiikan synty ja kehitys

Mahdollisten maailmojen semantiikan synty ja kehitys Mahdollisten maailmojen semantiikan synty ja kehitys (Fte264/265, Kf330n) FT Ilpo Halonen to klo 12-14 S20A sh 303 1. luento 20.1.2005 Luento 1 20.1.2005 Motto 1 Voimmeko aina lähestyä aktuaalista maailmaamme

Lisätiedot

Ratkaisu: (b) A = x 0 (R(x 0 ) x 1 ( Q(x 1 ) (S(x 0, x 1 ) S(x 1, x 1 )))).

Ratkaisu: (b) A = x 0 (R(x 0 ) x 1 ( Q(x 1 ) (S(x 0, x 1 ) S(x 1, x 1 )))). HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 3 Ratkaisuehdotukset 1. Palataan Partakylään. Olkoon P partatietokanta ja M tästä saatu malli kuten Harjoitusten 1

Lisätiedot

Logiikka 1/5 Sisältö ESITIEDOT:

Logiikka 1/5 Sisältö ESITIEDOT: Logiikka 1/5 Sisältö Formaali logiikka Luonnollinen logiikka muodostaa perustan arkielämän päättelyille. Sen käyttö on intuitiivista ja usein tiedostamatonta. Mikäli logiikka halutaan täsmällistää esimerkiksi

Lisätiedot

Yleinen kielitutkinto, keskitaso, harjoituksia /

Yleinen kielitutkinto, keskitaso, harjoituksia / RUOKA LÄMMITTELY 1. Mitä teet aamulla ensimmäiseksi? Entä sen jälkeen? 2. Mihin aikaan syöt yleensä aamupalaa / lounasta / päivällistä / iltapalaa? 3. Mitä teet iltapäivällä? 4. Mitä sinä syöt usein? 5.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Onnistut yrittämässäsi, mutta jokin täysin epäolennainen. vikaan.

Onnistut yrittämässäsi, mutta jokin täysin epäolennainen. vikaan. KYLLÄ, JA Onnistut yrittämässäsi ja saavutat enemmän kuin odotit, enemmän kuin kukaan osasi odottaa. KYLLÄ, MUTTA Onnistut yrittämässäsi, mutta jokin täysin epäolennainen asia menee vikaan. EI, MUTTA Et

Lisätiedot

Agentit ja semanttinen web. Pekka Halonen

Agentit ja semanttinen web. Pekka Halonen Agentit ja semanttinen web Pekka Halonen Henkilökohtainen agentti Aika lääkäriin Agentti toteaa, että käyttäjä tarvitsee lääkäriä Pyytää lääkäriaikoja hoitavan agentin kautta pääsyä ko. vaivaa hoitavalle

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 3 Mikko Salo 1.9.2017 Sisältö 1. Logiikasta 2. Suora ja epäsuora todistus 3. Jaollisuus ja alkuluvut Todistus Tähän asti esitetyt todistukset ovat olleet esimerkinomaisia.

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Mahdollisten maailmojen. semantiikan synty ja kehitys

Mahdollisten maailmojen. semantiikan synty ja kehitys Mahdollisten maailmojen semantiikan synty ja kehitys (Fte264/265, Kf330n) FT Ilpo Halonen to klo 12-14 S20A sh 303 8. luento 17.3.2005 Aikataulu: SEURAAVAT LUENNOT 7.4. ja 14.4. Propositionaalisista asenteista

Lisätiedot

Hallitsevat uskomukset ja minäkuvan työstäminen Aija Paakkunainen 1

Hallitsevat uskomukset ja minäkuvan työstäminen Aija Paakkunainen 1 Hallitsevat uskomukset ja minäkuvan työstäminen 3.12.2015 Aija Paakkunainen 1 Tunnista hallitsevat uskomukset ja tunnelukkosi Väärät uskomukset: itsestä, työstä, parisuhteesta, onnellisuudesta Uskomus

Lisätiedot

Propositionaalinen dynaaminen logiikka

Propositionaalinen dynaaminen logiikka TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saana Isoaho Propositionaalinen dynaaminen logiikka Matematiikan ja tilastotieteen laitos Matematiikka Kesäkuu 2010 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Tietotekniikan valintakoe

Tietotekniikan valintakoe Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan

Lisätiedot

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun {A 1,A 2,...,A n,b } 0, jatkoa jatkoa 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

Äärellisen mallin ominaisuus filtraation kautta

Äärellisen mallin ominaisuus filtraation kautta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Johanna Savolainen Äärellisen mallin ominaisuus filtraation kautta Informaatiotieteiden yksikkö Matematiikka Huhtikuu 2012 Tampereen yliopisto Informaatiotieteiden

Lisätiedot

Signalointi: autonromujen markkinat

Signalointi: autonromujen markkinat Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 3. Logiikka 3.1 Logiikka tietojenkäsittelyssä Pyritään formalisoimaan terveeseen järkeen perustuva päättely Sovelletaan monella alueella tietojenkäsittelyssä, esim.

Lisätiedot

Haitallinen valikoituminen: Kahden tyypin malli

Haitallinen valikoituminen: Kahden tyypin malli Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

LOGIIKKA johdantoa

LOGIIKKA johdantoa LOGIIKKA johdantoa LUKUTEORIA JA TO- DISTAMINEN, MAA11 Logiikan tehtävä: Logiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat päättelyt

Lisätiedot

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä) Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä

Lisätiedot

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton. 3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä

Lisätiedot

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu. Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos

Lisätiedot

Bifurkaatiot dierentiaaliyhtälöissä. Systeemianalyysin. Antti Toppila laboratorio. Teknillinen korkeakoulu

Bifurkaatiot dierentiaaliyhtälöissä. Systeemianalyysin. Antti Toppila laboratorio. Teknillinen korkeakoulu Esitelmä 21 Antti Toppila sivu 1/18 Optimointiopin seminaari Kevät 2007 Bifurkaatiot dierentiaaliyhtälöissä Antti Toppila 18.04.2007 Esitelmä 21 Antti Toppila sivu 2/18 Optimointiopin seminaari Kevät 2007

Lisätiedot

a ord 13 (a)

a ord 13 (a) JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod

Lisätiedot

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,

Lisätiedot

1. Logiikan ja joukko-opin alkeet

1. Logiikan ja joukko-opin alkeet 1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka )

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka ) T-79.3001 Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka 2.1 3.4) 5.2. 9.2. 2009 Ratkaisuja demotehtäviin Tehtävä 2.1 Merkitään lausetta φ:llä, ja valitaan atomilauseiden

Lisätiedot

Propositionaalisten asenteiden logiikka

Propositionaalisten asenteiden logiikka Propositionaalisten asenteiden logiikka Tuomo Aho 1 Alkuperäinen modaalilogiikka oli nimenomaan välttämättömyyden ja mahdollisuuden logiikkaa. Niinpä edellä on annettu formaalisen operaattorin tulkinnaksi

Lisätiedot

Predikaattilogiikan malli-teoreettinen semantiikka

Predikaattilogiikan malli-teoreettinen semantiikka Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia

Lisätiedot

KIRJALLISUUTTA 1. Tieteen etiikka KIRJALLISUUTTA 3 KIRJALLISUUTTA 2 KIRJALLISUUTTA 4 KIRJALLISUUTTA 5

KIRJALLISUUTTA 1. Tieteen etiikka KIRJALLISUUTTA 3 KIRJALLISUUTTA 2 KIRJALLISUUTTA 4 KIRJALLISUUTTA 5 KIRJALLISUUTTA 1 Tieteen etiikka 11 Tieteellinen maailmankatsomus I: maailmankatsomusten aineksia Clarkeburn, Henriikka ja Arto Mustajoki, Tutkijan arkipäivän etiikka, Vastapaino, Tampere 2007. Hallamaa,

Lisätiedot

Topologia Syksy 2010 Harjoitus 11

Topologia Syksy 2010 Harjoitus 11 Topologia Syksy 2010 Harjoitus 11 (1) Tarkastellaan tason (a, )-topologiaa. (Tässä topologiassa A R 2 on avoin jos ja vain jos A =, A = R 2 tai A = {(x, y) R 2 x > a ja y > b} joillekin a, b R.) Jokaiselle

Lisätiedot

ja s S : ϕ Υ : M,s ϕ, mutta M,s Q. Erityisesti M, t P kaikilla t S, joten

ja s S : ϕ Υ : M,s ϕ, mutta M,s Q. Erityisesti M, t P kaikilla t S, joten T-79.50 kevät 007 Laskuharjoitus 4. Vastaesimerkiksi kelpaa malli M = S, R,v, missä S = {s}, R = { s,s }, ja v(s,p) = false. P s M = P P pätee (koska M,s P), ja M,s P pätee myös, koska s,s R, M,s P, eikä

Lisätiedot

Pikapaketti logiikkaan

Pikapaketti logiikkaan Pikapaketti logiikkaan Tämän oppimateriaalin tarkoituksena on tutustua pikaisesti matemaattiseen logiikkaan. Oppimateriaalin asioita tarvitaan projektin tekemisessä. Kiinnostuneet voivat lukea lisää myös

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

Modaalilogiikan täydellisyyslauseesta

Modaalilogiikan täydellisyyslauseesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Teemu Pitkänen Modaalilogiikan täydellisyyslauseesta Informaatiotieteiden yksikkö Matematiikka Toukokuu 2015 Sisältö 1 Johdanto 3 2 Peruskäsitteistö ja semantiikka

Lisätiedot

Sekastrategiat ja intensiiviyhteensopivuus

Sekastrategiat ja intensiiviyhteensopivuus Sekastrategiat ja intensiiviyhteensopivuus Petteri Räty 2010-03-14 God does not play dice with the universe Albert Einstein Agenda Intensiiviyhteensopivuuden käsite Yrittää vastata kysymykseen, mitä sekastrategiat

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka ) T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 opetusmoniste, lauselogiikka 2.1-3.5) 21 24.9.2004 1. Määrittele lauselogiikan konnektiivit a) aina epätoden lauseen ja implikaation

Lisätiedot

Loogiset konnektiivit

Loogiset konnektiivit Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi... jos ja vain jos... Sulkeita ( ) käytetään selkeyden vuoksi

Lisätiedot

Entscheidungsproblem

Entscheidungsproblem Entscheidungsproblem Antti-Juhani Kaijanaho 24. kesäkuuta 2013 Entscheidungsproblem eli ratkaisuongelma kysyy, millä mekaanisella menetelmällä voisi selvittää, onko mielivaltainen annettu ensimmäisen kertaluvun

Lisätiedot

on rekursiivisesti numeroituva, mutta ei rekursiivinen.

on rekursiivisesti numeroituva, mutta ei rekursiivinen. 6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti

Lisätiedot

Logiikka. Kurt Gödel ( )

Logiikka. Kurt Gödel ( ) Logiikka Tutustumme seuraavaksi propositio- eli lauselogiikkaan, jossa tarkastellaan formaalien lauseiden ominaisuuksia, ennenkaikkea niiden totuusarvoja. Formalisoimalla luonnollisen kielen lauseet propositiologiikan

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot

Entscheidungsproblem

Entscheidungsproblem Entscheidungsproblem Antti-Juhani Kaijanaho 10. joulukuuta 2015 Entscheidungsproblem eli ratkaisuongelma kysyy, millä mekaanisella menetelmällä voisi selvittää, onko mielivaltainen annettu ensimmäisen

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 7 ratkaisut (Hannu Niemistö) Tehtävä 1 Olkoot G ja H äärellisiä verkkoja, joilla kummallakin on l yhtenäistä komponenttia Olkoot G i, i {0,,l 1}, verkon G ja H i,

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

Luku 1 Johdatus yhtälöihin

Luku 1 Johdatus yhtälöihin Luku 1 Johdatus yhtälöihin 1.1 Mikä on yhtälö? Tunnin rakenne: - Yhtälön rakenne ja tunnistaminen (tehtävä 1) ja yhtälön ja lausekkeen vertailua (n. 10min) - Yhtälö väitteenä Jokeri 3 (n. 30 min) - Tunnin

Lisätiedot

T Kevät 2003 Logiikka tietotekniikassa: erityiskysymyksiä I Laskuharjoitus 11 Ratkaisut

T Kevät 2003 Logiikka tietotekniikassa: erityiskysymyksiä I Laskuharjoitus 11 Ratkaisut T-79.146 Kevät 2003 Logiikka tietotekniikassa: erityiskysymyksiä I Laskuharjoitus 11 Ratkaisut 1. M : a P P f Q, R Q e P a) M, a = A(P UQ), sillä (esim.) (a,,,,,...) on tilasta a alkava täysi polku, joka

Lisätiedot

Palveluverkkotyöryhmä. Viestintä

Palveluverkkotyöryhmä. Viestintä + Palveluverkkotyöryhmä Viestintä + Sisältö n Ymmärrämmekö sidosryhmiä? n Ymmärretäänkö meitä? n Mistä sidosryhmät saavat tietoa palveluverkkoasioista ja keneltä? n Mikä voi mennä pieleen jos viestintävastuu

Lisätiedot

T-79.144 Syksy 2003 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 28 31.10.2003

T-79.144 Syksy 2003 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 28 31.10.2003 T-79.144 Syksy 2003 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 28 31.10.2003 1. Olkoon R kaksipaikkainen predikaattisymboli, jonka tulkintana on relaatio R

Lisätiedot

Johdatus logiikkaan I Harjoitus 4 Vihjeet

Johdatus logiikkaan I Harjoitus 4 Vihjeet Johdatus logiikkaan I Harjoitus 4 Vihjeet 1. Etsi lauseen ((p 0 p 1 ) (p 0 p 1 )) kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa normaalimuodossa, (b) konjunktiivisessa normaalimuodossa.

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2018 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 3 1 of 23 Kertausta Määritelmä Predikaattilogiikan

Lisätiedot

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä

Lisätiedot

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos... 2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen

Lisätiedot

Mihin teoreettista filosofiaa tarvitaan?

Mihin teoreettista filosofiaa tarvitaan? Mihin teoreettista filosofiaa tarvitaan? Puhe virtaa virtaavassa maailmassa, puhe virtaa virtaavassa maailmassa ja sinun täytyy itse tietää miltei kaikki. Paavo Haavikko TIETÄMISEN HAASTEET TIETOYHTEISKUNNASSA

Lisätiedot

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Peliteoria Strategiapelit ja Nashin tasapaino Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Helsinki 11.09.2006 Peliteoria Tomi Pasanen HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö

Lisätiedot

DFA:n käyttäytyminen ja säännölliset kielet

DFA:n käyttäytyminen ja säännölliset kielet säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen

Lisätiedot

Todistusmenetelmiä Miksi pitää todistaa?

Todistusmenetelmiä Miksi pitää todistaa? Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2017-2018 Yhteenveto Yleistä kurssista Kurssin laajuus 5 op Luentoja 30h Harjoituksia 21h Itsenäistä työskentelyä n. 80h 811120P Diskreetit rakenteet, Yhteenveto 2 Kurssin

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E.

Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E. Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E. Perusaksioomat: Laki 1: Kukin totuusfunktio antaa kullekin propositiolle totuusarvoksi joko toden T tai epätoden

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus

Lisätiedot

Suhteellisuusteorian vajavuudesta

Suhteellisuusteorian vajavuudesta Suhteellisuusteorian vajavuudesta Isa-Av ain Totuuden talosta House of Truth http://www.houseoftruth.education Sisältö 1 Newtonin lait 2 2 Supermassiiviset mustat aukot 2 3 Suhteellisuusteorian perusta

Lisätiedot