Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat

Koko: px
Aloita esitys sivulta:

Download "Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat"

Transkriptio

1 1 Tukivektoriluokittelija Tukivektorikoneeseen (support vector machine) perustuva luoikittelija on tilastollisen koneoppimisen teoriaan perustuva lineaarinen luokittelija. Perusajatus on sovittaa kahden näytejoukon väliin sellainen taso, että sen kanssa yhdensuuntaisten marginaalitasojen välimatka on mahdollisimman suuri eikä yksikään näyte jää marginaalitasojen väliin. Marginaalitasojen välimatkaa rajoittavia näytevektoreita kutsutaan tukivektoreiksi. Luokittelun tulos riippuu ainoastaan näistä tukivektoreista (kuvassa ympyröity). Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat Olkoon data (xx ii, yy ii ) xx ii RR dd, yy ii { 1, +1}, ii = 1,,. x i on näytteen piirrevektori ja y i sen luokka. Luokkia erottavan hypertason (päätöstaso) yhtälö on ww TT xx + bb = 0, jossa siis w on tason normaalivektori. Haluamme valita parametrit w ja b siten, että luokkien väliin jäävä marginaali eli rinnakkaisten hypertasojen välinen etäisyys on maksimaalinen. Rinnakkaisten hypertasojen yhtälöt ovat: ww TT xx + bb = +1 ja ww TT xx + bb = 1. 2 Tasojen etäisyys on, jonka siis haluamme maksimoida. Tämä on sama kuin että ww minimoisimme lausekkeen ww.

2 2 Lisäksi vaaditaan, etteivät datanäytteet jää marginaalitasojen väliin, eli: ww TT xx ii + bb +1, luokan (+1) näytteille, ja ww TT xx ii + bb 1, luokan (-1) näytteille. Nämä voidaan yhdistää kätevästi: yy ii (ww TT xx ii + bb) 1, kaikille näytteille x i. Nyt käsillä on minimointiongelma: Minimoi ww, ehdolla että yy ii (ww TT xx ii + bb) 1, kaikille näytteille x i. Helpompaa on kuitenkin minimoida 1 2 ww 2, joka on neliöllinen lauseke ja konveksi omaten vain yhden minimikohdan. Tällöin voidaan käyttää neliöllisen ongelmoinnin menetelmiä ratkaisun löytämiseksi. Formuloidaan siis uudestaan: Minimoi 1 2 ww 2, ehdolla että yy ii (ww TT xx ii + bb) 1, kaikille näytteille x i. Tämä voidaan kirjoittaa Lagrangen menetelmän mukaisesti seuraavaan muotoon: Minimoi: LL(ww, bb) = 1 2 ww 2 αα ii [yy ii (ww TT xx ii + bb) 1] ehdolla αα ii 0 Ratkaisemalla lausekkeesta ääriarvokohdat parametrien w ja b suhteen ja sijoittamalla takaisin saadaan lopulta Wolfin duaalimuoto: Maksimoi: WW(αα) = αα ii 1 αα 2 ii,jj =1 iiαα jj yy ii yy jj xx ii TT xx jj ehdolla αα ii 0 ja αα ii yy ii 0 α i -parametrit voidaan ratkaista numeerisesti neliöllisen ohjelmoinnin periaatteilla. Seuraavaksi parametri w voidaan laskea seuraavasti: ww = αα ii yy ii xx ii Tämän jälkeen parametri b voidaan laskea Karush-Kuhn-Tucker-ehtolausekkeesta

3 3 αα ii (yy ii (ww TT xx ii + bb) 1) = 0 jollakin näytteellä jolla α i >0. Kannattaa keskiarvoistaa niiden näytteiden (M kpl) yli, joilla α i >0: MM bb = 1 MM (yy ii ww TT xx ii ) Tukivektoriluokittelija saa nyt seuraavan muodon: DD(zz) = ssssssss αα ii yy ii zz TT xx ii + bb Lausekkeeseen sijoitetaan luokiteltava uuden näytteen piirrevektori z ja painotetun summan etumerkki määrää luokan +1 tai -1. Luokittelija siis hyödyntää jokaista opetusnäytettä tehdessään luokittelupäätöstä. Opetusvaiheessa jokaiselle opetusnäytteelle x i määrätään painokerroin α i. Ne näytteet x i, joille tulee α i > 0, sijaitsevat marginaalitasoilla (tukivektorit). Loput näytteet sijaitsevat joko marginaalitasoilla tai marginaalialueen ulkopuolella. Tukivektoriluokittelija siis huomioi luokittelupäätöksiä tehdessään vain tukivektorit, ei muita opetusaineiston näytteitä. Vertaa AdaBoost-algoritmiin, jonka kanssa tukivektorikone on sukulainen! Lineaarisesti erottumattomat luokat, joustava marginaali Kun opetusjoukot eivät ole lineaarisesti erottuvia, käytetään tukivektorikonetoteutusta, jota kutsutaan joustavan marginaalin (soft margin) luokittimeksi. Keskeinen näytekohtainen ehtolauseke formuloidaan slack-vakioiden γ i avulla seuraavasti: yy ii (ww TT xx ii + bb) 1 γγ ii Slack-vakiot mahdollistavat sen, että osa näytteistä jää marginaalin sisälle. Optimoitava funktio voidaan kirjoittaa kuten edellä ja ratkaista neliöllisellä ohjelmoinnilla. Yksityiskohdat ohitetaan tässä.

4 4 Lineaarisesti erottumattomat luokat, epälineaarinen tukivektorikone Edellä datanäytteet esiintyvät lausekkeessa pistetulon muodossa. Tämä voidaan yleistää epälineaariseen muotoon tekemällä piirrevektoreille epälineaarinen muunnos korkeampiulotteiseen piirreavaruuteen (joka on oltava välttämättä Hilbert-avaruus): xx ii TT xx jj θθ(xx ii ) TT θθ(xx jj ) Funktioiden θ(x) pistetuloa sanotaan kerneliksi. Usein käytettyjä kerneleitä ovat: Radial Basis Function: KK xx ii, xx jj = ee xx ii xx jj 2 /2σσ 2 Polynomial Function: KK xx ii, xx jj = (xx ii TT xx jj + 1) pp Tällöin päätöspinta on epälineaarinen (alkuperäisessä piirreavaruudessa), mikä mahdollistaa aiempaa monimutkaisempien aineistojen erottamisen toisistaan. Tukivektorikoneen käyttöönotto 1. Valitse sopiva kernelifunktio K(x i, x j ). 2. Maksimoi (käyttäen neliöllisen ohjelmoinnin periaatetta): 3. Laske b-parametri: WW(αα) = αα ii 1 αα 2 ii,jj =1 iiαα jj yy ii yy jj KK(xx ii, xx jj ) ehdolla αα ii 0 ja αα ii yy ii 0 bb = 1 2 min jj yy jj =1 αα iiyy ii KK(xx ii, xx jj ) + max {kk yykk = 1} αα ii yy ii KK(xx ii, xx kk ) 4. Tukivektoriluokittelija: DD(zz) = sign {ii yy ii =1} {ii yy ii = 1} αα ii yy ii KK(xx ii, zz) + bb

5 5 Laajennus monen luokan ongelmaan Tyypillisesti monen luokan ongelma ratkaistaan jakamalla ongelma useaksi kaksiluokkaiseksi ongelmaksi ja suunnittelemalla jokaiselle oma tukivektoriluokittelija sekä yhdistämällä tulokset. Seuraavat kaksi menetelmää ovat suosituimpia: 1) Suunnitellaan L kaksiluokkaista SVM-luokittelijaa yllä esitetyllä tavalla: luokka C i vastaan muut luokat (i=1,...,l). Eli muut luokat muodostavat yhden luokan yhdistämällä aineistot. Tunnistettaessa uutta näytettä z: (i) lasketaan kunkin luokittelijan osalta lauseke: DD(zz) = αα ii yy ii KK(xx ii, zz) + bb (ii) valitaan voittajaksi se, jolla on suurin D(z)-lausekkeen arvo. 2) Suunnitellaan L(L-1)/2 kaksiluokkaista SVM-luokittelijaa yllä esitetyllä tavalla: luokka C i vastaan luokka C j (i,j=1,...,l; i j). Eli suunnitellaan luokittelija jokaiselle luokkaparille erikseen (jättämällä kulloinkin ulos muiden luokkien aineistot). Tunnistettaessa uutta näytettä z: (i) syötetään näyte kuhunkin luokittelijaan ja kirjataan ylös kuinka monta kertaa kukin luokka C i voitti. (ii) valitaan voittajaksi se luokka C j, joka voitti useimmiten (enemmistöpäätös). Lähteitä: Hofmann T, Schölkopf B, Smola A. Kernel methods in machine learning. The Annals of Statistics, 2008, Vol. 36, No. 3, pp Vapnik V, Lerner A. Pattern recognition using generalized portrait method. Autom. Remote Control, 1963, 24, pp

4. Tukivektorikoneet

4. Tukivektorikoneet 4. Tukivektorikoneet Tukivektorikoneen (Support Vector Machine, SVM) keskeiset piirteet: Tehdään lineaarista luokittelua (tai regressiota) korkeaulotteisessa piirreavaruudessa. Laskentaa tehostetaan käyttämällä

Lisätiedot

1. LINEAARISET LUOKITTIMET (jatkoa)

1. LINEAARISET LUOKITTIMET (jatkoa) 1. LINEAARISET LUOKITTIMET (jatkoa) 1.1 Tukivektorikone ( A Tutorial on Support Vector Machines for Pattern Recognition, http://www.kernel-machines.org/papers/burges98.ps.gz) Tukivektorikoneen ( Support

Lisätiedot

4. Lineaariset diskriminanttifunktiot

4. Lineaariset diskriminanttifunktiot 75 / 99 4. Lineaariset diskriminanttifunktiot Piirrevektorin x komponenttien suhteen lineaarinen diskriminanttifunktio voidaan kirjoittaa muotoon: g( x) = w t x + w 0, jossa w on painokerroinvektori ja

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

Lineaariset luokittelumallit: regressio ja erotteluanalyysi

Lineaariset luokittelumallit: regressio ja erotteluanalyysi Lineaariset luokittelumallit: regressio ja erotteluanalyysi Aira Hast Johdanto Tarkastellaan menetelmiä, joissa luokittelu tehdään lineaaristen menetelmien avulla. Avaruus jaetaan päätösrajojen avulla

Lisätiedot

1. TILASTOLLINEN HAHMONTUNNISTUS

1. TILASTOLLINEN HAHMONTUNNISTUS 1. TILASTOLLINEN HAHMONTUNNISTUS Tilastollisissa hahmontunnistusmenetelmissä piirteitä tarkastellaan tilastollisina muuttujina Luokittelussa käytetään hyväksi seuraavia tietoja: luokkien a priori tn:iä,

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Logistinen regressio, separoivat hypertasot

Logistinen regressio, separoivat hypertasot Logistinen regressio, separoivat hypertasot Topi Sikanen Logistinen regressio Aineisto jakautunut K luokkaan K=2 tärkeä erikoistapaus Halutaan mallintaa luokkien vedonlyöntikertoimia (odds) havaintojen

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Viikko 3: Lineaarista regressiota ja luokittelua Matti Kääriäinen

Viikko 3: Lineaarista regressiota ja luokittelua Matti Kääriäinen Viikko 3: Lineaarista regressiota ja luokittelua Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum D122, 30-31.1.2008. 1 Tällä viikolla Sisältösuunnitelma: Lineaarinen regressio Pienimmän neliösumman

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 8 To 29.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 8 To 29.9.2011 p. 1/36 p. 1/36 Interpolointi kuutiosplinillä Osavälit: I i = [t i 1,t i ], i = 1,2,...,n

Lisätiedot

Tässä luvussa käsitellään optimaalisten piirteiden valintaa, luokittelijan optimointia ja luokittelijan suorituskyvyn arviointia.

Tässä luvussa käsitellään optimaalisten piirteiden valintaa, luokittelijan optimointia ja luokittelijan suorituskyvyn arviointia. 1 Luokittelijan suorituskyvyn optimointi Tässä luvussa käsitellään optimaalisten piirteiden valintaa, luokittelijan optimointia ja luokittelijan suorituskyvyn arviointia. A. Piirteen valinnan menetelmiä

Lisätiedot

Lineaarisen ohjelman määritelmä. Joonas Vanninen

Lineaarisen ohjelman määritelmä. Joonas Vanninen Lineaarisen ohjelman määritelmä Joonas Vanninen Sisältö Yleinen optimointitehtävä Kombinatorinen tehtävä Optimointiongelman tapaus Naapurusto Paikallinen ja globaali optimi Konveksi optimointitehtävä Lineaarinen

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Diskriminanttianalyysi I

Diskriminanttianalyysi I Diskriminanttianalyysi I 12.4-12.5 Aira Hast 24.11.2010 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen Johdanto Lineaarinen diskriminanttianalyysi

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun

Lisätiedot

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Luento 11: Rajoitusehdot. Ulkopistemenetelmät Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja

Lisätiedot

1 Komparatiivinen statiikka ja implisiittifunktiolause

1 Komparatiivinen statiikka ja implisiittifunktiolause Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla

Lisätiedot

SGN-2500 Johdatus hahmontunnistukseen 2007 Luennot 4 ja 5

SGN-2500 Johdatus hahmontunnistukseen 2007 Luennot 4 ja 5 SGN-2500 Johdatus hahmontunnistukseen 2007 Luennot 4 ja 5 Jussi Tohka jussi.tohka@tut.fi Signaalinkäsittelyn laitos Tampereen teknillinen yliopisto SGN-2500 Johdatus hahmontunnistukseen 2007Luennot 4 ja

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.

Lisätiedot

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Duaalisuus kokonaislukuoptimoinnissa Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Duaalisuus binäärisissä optimointitehtävissä Lagrangen duaalisuus Lagrangen

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

2.2.1 Ratkaiseminen arvausta sovittamalla

2.2.1 Ratkaiseminen arvausta sovittamalla 2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu

Lisätiedot

VILLE SIRKIÄ VÄRÄHTELYPERUSTAINEN VAURIONTUNNISTUSKOMPO- NENTTI JA MITTALAITEKOHTAINEN KALIBROINTI. Diplomityö

VILLE SIRKIÄ VÄRÄHTELYPERUSTAINEN VAURIONTUNNISTUSKOMPO- NENTTI JA MITTALAITEKOHTAINEN KALIBROINTI. Diplomityö VILLE SIRKIÄ VÄRÄHTELYPERUSTAINEN VAURIONTUNNISTUSKOMPO- NENTTI JA MITTALAITEKOHTAINEN KALIBROINTI Diplomityö Tarkastaja: Prof. Tommi Mikkonen Tarkastaja ja aihe hyväksytty Tieto- ja sähkötekniikan tiedekuntaneuvoston

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

Kasvilajien tunnistaminen tukivektorikoneen avulla

Kasvilajien tunnistaminen tukivektorikoneen avulla Kasvilajien tunnistaminen tukivektorikoneen avulla TURUN YLIOPISTO Informaatioteknologian laitos Tietojenkäsittelytiede Pro gradu -tutkielma Joulukuu 2006 Jussi Toivonen TURUN YLIOPISTO Informaatioteknologian

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Monitavoiteoptimointi

Monitavoiteoptimointi Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Luento 6: Monitavoiteoptimointi

Luento 6: Monitavoiteoptimointi Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 406 6 laskuharjoituksien esimerkkiratkaisut Ratkaistaan differentiaaliyhtälö y = y () Tässä = d dy eli kyseessä on lineaarinen kertaluvun differentiaaliyhtälö: Yhtälön () homogenisoidulle

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Harjoitus 7: vastausvihjeet

Harjoitus 7: vastausvihjeet Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. marraskuuta 2007 Antti Rasila () TodB 30. marraskuuta 2007 1 / 19 1 Lineaarinen regressiomalli ja suurimman uskottavuuden menetelmä Minimin löytäminen

Lisätiedot

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n. TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

EETU KUUSISTO PÄÄN ASENNON TUNNISTUS KUVASTA. Kandidaatintyö

EETU KUUSISTO PÄÄN ASENNON TUNNISTUS KUVASTA. Kandidaatintyö EETU KUUSISTO PÄÄN ASENNON TUNNISTUS KUVASTA Kandidaatintyö Tarkastaja: Yliopistonlehtori Heikki Huttunen Jätetty tarkastettavaksi 17.5.2015 i TIIVISTELMÄ EETU KUUSISTO: Pään asennon tunnistus kuvasta

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100 HARJOITUS, RATKAISUEHDOTUKSET, YLE 07.. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 0x +0xy +5y (b.) f(x,y) = 4x y xy +x+y +00 (a.) Funktion kriittiset pisteet ratkaisevat

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä

Lisätiedot

1 Rajoitettu optimointi I

1 Rajoitettu optimointi I Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause

Lisätiedot

Referenssipiste- ja referenssisuuntamenetelmät

Referenssipiste- ja referenssisuuntamenetelmät Referenssipiste- ja referenssisuuntamenetelmät Optimointiopin seminaari - Kevät 2000 / 1 Esitelmän sisältö Menetelmien ideat Menetelmien soveltaminen Menetelmien ominaisuuksia Optimointiopin seminaari

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Alkuviikolla harjoitustehtäviä lasketaan harjoitustilaisuudessa. Loppuviikolla näiden harjoitustehtävien tulee olla ratkaistuina harjoituksiin

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

1. NEUROVERKKOMENETELMÄT

1. NEUROVERKKOMENETELMÄT 1. NEUROVERKKOMENETELMÄT Ihmisten ja eläinten loistava hahmontunnistuskyky perustuu lukuisiin yksinkertaisiin aivosoluihin ja niiden välisiin kytkentöihin. Mm. edellisen innoittamana on kehitelty laskennallisia

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle.

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle. Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 9 1. Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle. Tilayhtälö on x k+1 = f k (x k, u k ), k = 1,..., N 1 alkuehdolla

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento : Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli simerkki: Maalifirma Sateenkaari valmistaa ulko- ja sisämaalia raaka-aineista M ja M. Sisämaalin maksimikysyntä on tonnia/päivä.

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017 MATEMATIIKKA Matematiikkaa pintakäsittelijöille Ongelmanratkaisu Isto Jokinen 2017 SISÄLTÖ 1. Matemaattisten ongelmien ratkaisu laskukaavoilla 2. Tekijäyhtälöt 3. Laskukaavojen yhdistäminen 4. Yhtälöiden

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot

Avainsanojen poimiminen Eeva Ahonen

Avainsanojen poimiminen Eeva Ahonen Avainsanojen poimiminen 5.10.2004 Eeva Ahonen Sisältö Avainsanat Menetelmät C4.5 päätöspuut GenEx algoritmi Bayes malli Testit Tulokset Avainsanat Tiivistä tietoa dokumentin sisällöstä ihmislukijalle hakukoneelle

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 5 Paraabeli Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 13..017 ENNAKKOTEHTÄVÄT 1. a) Jos a > 0, paraabeli aukeaa oikealle. Jos a < 0, paraabeli aukeaa vasemmalle. Jos a = 0, paraabeli

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

1 Bayesin teoreeman käyttö luokittelijana

1 Bayesin teoreeman käyttö luokittelijana 1 Bayesin teoreeman käyttö luokittelijana Bayesin kaavan mukaan merkityksen kontekstille c ehdollistettu todennäkköisyys voidaan määrittää alla olevan yhtälön perusteella: P ( c) = P (c )P ( ) P (c) (1)

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

1. LINEAARISET LUOKITTIMET

1. LINEAARISET LUOKITTIMET 1. LINEAARISET LUOKITTIMET Edellisillä luennoilla tarkasteltiin luokitteluongelmaa tnjakaumien avulla ja esiteltiin menetelmiä, miten tarvittavat tnjakaumat voidaan estimoida. Tavoitteena oli löytää päätössääntö,

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 5 10.4.2017 Tehtävä 1 x 2 7 0,7 9,8 6 5 4 x 1 x 2 7 x 1 x 2 1 3 2 x 1 0 4,3 x 1 9 1 0,0 x 2 0 9,0 1 2 3 4 5 6 7 8 9 x 1 Kuva 1: Tehtävän 1 sallittu joukko S Optimointitehtävän sallittu

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 2. luento 10.11.2017 Keinotekoiset neuroverkot Neuroverkko koostuu syöte- ja ulostulokerroksesta

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

1. NEUROVERKKOMENETELMÄT

1. NEUROVERKKOMENETELMÄT 1. NEUROVERKKOMENETELMÄT Ihmisten ja eläinten loistava hahmontunnistuskyky perustuu lukuisiin yksinkertaisiin aivosoluihin ja niiden välisiin kytkentöihin. Mm. edellisen innoittamana on kehitelty laskennallisia

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ydin-Haskell Tiivismoniste

Ydin-Haskell Tiivismoniste Ydin-Haskell Tiivismoniste Antti-Juhani Kaijanaho 8. joulukuuta 2005 1 Abstrakti syntaksi Päätesymbolit: Muuttujat a, b, c,..., x, y, z,... Tyyppimuuttujat α, β, γ,... Koostimet (data- ja tyyppi-) C, D,...,

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) () = 2+1. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että minimoinnin suhteen. Funktio on konveksi ja konkaavi. b) () = (suurin kokonaisluku

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

Tekstuurintunnistuksen lyhyt oppimäärä. Ts. pari tapaa erottaa tiiliseinä pensaasta.

Tekstuurintunnistuksen lyhyt oppimäärä. Ts. pari tapaa erottaa tiiliseinä pensaasta. Tekstuurintunnistuksen lyhyt oppimäärä Ts. pari tapaa erottaa tiiliseinä pensaasta. Mitä on tekstuuri? Vaikea määritellä, mutta: Pintakuvio Ornamentti tuntu kuviointi Miksi tämän pitäisi kiinnostaa? (Maantienmerkkausrobotti)

Lisätiedot

Derivointiesimerkkejä 2

Derivointiesimerkkejä 2 Derivointiesimerkkejä 2 (2.10.2008 versio 2.0) Parametrimuotoisen funktion erivointi Esimerkki 1 Kappale kulkee pitkin rataa { x(t) = sin 2 t y(t) = cos t. Määritetään raan suuntakulma positiiviseen x-akseliin

Lisätiedot