Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014

Koko: px
Aloita esitys sivulta:

Download "Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014"

Transkriptio

1 Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014 MFKA-Kustannus Oy Rautatieläisenkatu 6, 0020 HELSINKI, puh. (09)

2 Peruskoulun 6. luokan valtakunnallinen matematiikan koe Yleiset ohjeet Ohjeet opettajalle Kokeen aikataulu Koe suositellaan pidettäväksi ti 29. ke Kokeessa on kaksi osiota, jotka voidaan tehdä eri aikoina joko samana tai peräkkäisinä päivinä. Jos koe pidetään kahdessa osassa, osiot monistetaan erillisinä. Kokeen tekemiseen varataan kokonaisuudessaan kaksi oppituntia. Valtakunnallinen koe on tarkoitettu yleisen opetussuunnitelman mukaan opiskeleville oppilaille. Mikäli koe pidetään myös erityisoppilaille ja maahanmuuttajaoppilaille suositellaan käytettäväksi apuna avustajaa ja lisäaikaa kokeen tekemiseen. Erityisoppilaille kokeesta voidaan tarvittaessa pitää vain perustehtävät sisältävä osa (OSIO 1). Kokeeseen valmistautuminen On suositeltavaa, että kokeen rakenne käydään etukäteen läpi sekä oppilaiden että koetta valvovien opettajien kanssa. Opettaja voi halutessaan ilmoittaa oppilaille kokeesta etukäteen. Kokeeseen voi harjoitella kertaamalla oppivuoden asioita valtakunnallisen opetussuunnitelman mukaisesti. Kokeen sisältöä ei saa käyttää hyväksi harjoitteluvaiheessa. Oppilas tarvitsee kokeessa kynän, kumin, piirtokolmion sekä tyhjän ruutupaperin lisätilaksi laskuja varten. Koetilanne Laskimen (myös kännykän) käyttö kokeessa on kielletty. Oppilaita on hyvä muistuttaa kokeen alkaessa, että välivaiheet, laskut tai muut perustelut on kirjoitettava näkyviin. OSIO 1 Kokeen ensimmäinen osio koostuu päässälaskuista ja perustehtävistä. Osio kestää 4 minuuttia. Opettaja lukee tavalliseen tapaan päässälaskut lasku kerrallaan kahteen kertaan ja merkitsee lihavoidut kohdat taululle tehtävän suorituksen ajaksi. Päässälaskuihin käytetään aikaa enintään 10 min. OSIO 2 Toinen osio koostuu soveltavista tehtävistä. Osio kestää 4 minuuttia. Koetulos ja tehtävien pisteytys Kokeen maksimipistemäärä on 48 pistettä. Pisteytystaulukko on tehty pisteen tarkkuudella. Kokonaispistemäärän puolikkaat pisteet korotetaan ylöspäin. Palaute kokeesta Palautelomakkeiden tulee olla MFKA:n toimistolla viimeistään pe

3 Arvosanataulukko ja palautelomake Kuudennen luokan valtakunnallisen matematiikan kokeen arvosanataulukko pisteet arvosana kpl ½ 44 9½ ½ 36 8½ ½ 28 7½ ½ 20 6½ ½ 12 ½ ½ 3 4½ Palautelomake: Muistathan palauttaa tämän opettajan lomakkeen mahdollisimman pian, viimeistään pe Näin autat meitä tekemään yhteenvedon ajoissa. Koulun postinumero Palautteesi on meille tärkeää! Mitkä tehtävät olivat oppilaille helppoja, mitkä vaikeita? Millaisia tehtäviä olisit kaivannut lisää? Mitkä tehtävät olivat mielestäsi hyviä? Miksi? Mitä mieltä olit opettajalle annetuista yleisistä ja arviointiohjeista? Muuta palautetta kokeen laatijoille: Palautus: Fax Postitse osoitteeseen: MAOL ry, Rautatieläisenkatu 6, 0020 Helsinki Voit myös täyttää kysely- ja palautelomakkeen osoitteessa

4 Koetehtävät 1. Päässälaskut a) Euroopan valtioista 34 on tasavaltoja, 9 kuningaskuntia ja loput 7 jotain muita. Kuinka monta valtiota Euroopassa on yhteensä? b) Maailman korkein vuori Mount Everest on 8848 m korkea. Euroopan korkein vuori Elbrus on 642 m. Kuinka monta metriä matalampi Elbrus on Mount Everestiin verrattuna? c) Euroopan asukastiheys on keskimäärin 70 asukasta neliökilometriä kohti. Mikä olisi tämän mukaan San Marinon asukasluku, kun sen pinta-ala on 61 km 2? d) Euroopan väestöstä on kristittyjä 7 %, muslimeja 8 % ja juutalaisia 1 %. Loput eivät tunnusta mitään uskontoa. Kuinka monta prosenttia (%) heitä on? e) Veera lentää lomalla EU:n pääkaupunkiin Brysseliin. Lento lähtee Helsingistä klo 10. ja on perillä klo 13.2 Suomen aikaa. Kuinka kauan lento kestää?

5 Koetehtävät NIMI: ARVOSANA: PISTEET OSIO 1: OSIO 2: YHTEENSÄ: OSIO 1: PERUSTEHTÄVÄT (1 OPPITUNTI) 1. Päässälaskut a) b) c) d) e) / a) 7,6 + 2,8 = e) b) 98,71 8,81 = f) c) 0,4 0,8 = g) 4 6 d) 1,83 : 3 = h) : Kuinka suuri osa kuviosta on tummennettu? Ilmoita vastaus supistettuna murtolukuna. a) b) c) 2 dl 1 litra = = = 4. Kännykän alkuperäinen hinta oli 240. Hintaa alennettiin 1 %. Laske kännykän alennettu hinta. Vastaus:

6 Koetehtävät. Laske kuvioiden pinta-alat. Merkitse laskulauseke näkyviin. a) b) c) cm 6 cm cm 6, m m cm 8 cm 7 m Lauseke: Lauseke: Lauseke: Vastaus: Vastaus: Vastaus: 6. Yhdistä viivalla desimaaliluku yhtä suureen murtolukuun ja murtoluku prosenttilukuun. Prosenttiluku Murtoluku Desimaaliluku 7 % 7, % 70 % Päättele puuttuvat pituudet ja merkitse ne kuvioon. Laske sitten kuvion piiri. 4, m 1,2 m 2,3 m 0,07 0,7 7, 2,3 m Lauseke: 4, m Vastaus:

7 Koetehtävät NIMI: PISTEET: OSIO 2: SOVELTAVA OSIO (1 OPPITUNTI) Merkitse seuraavissa tehtävissä tarvittavat laskut ja välivaiheet näkyviin! 8. Jaakko oli matkalla Englannissa ja vaihtoi rahaa. Hän sai yhdellä eurolla 0,834 Englannin puntaa. Laske, kuinka monta puntaa hän sai 7 eurolla. Lauseke: Vastaus: /2 9. Pylväsdiagrammi kuvaa, kuinka paljon eri sarjakuvilla oli lukijoita Puistolan koulussa. a) Laske diagrammin tietojen avulla kolmen suosituimman sarjakuvan lukijoiden määrä yhteensä. b) Minkä kahden sarjakuvalehden lukijamäärät poikkeavat vähiten toisistaan? c) Kuinka paljon enemmän on lukijoita eniten luetulla sarjakuvalla verrattuna vähiten luettuun sarjakuvaan?

8 Koetehtävät 10. Laatikossa on 1 punaista, 12 keltaista ja 3 sinistä samanlaista palloa. Laatikosta nostetaan sattumanvaraisesti yksi pallo. Millä todennäköisyydellä nostettu pallo on keltainen? Vastaus: 11. Teemun luokka osallistui liikuntatempaukseen. Luokan 24 oppilaasta puolet käveli 6,4 km:n lenkin. 9 oppilasta käveli kukin 2 kertaa 2, km:n lenkin. Loput 3 oppilasta juoksi 70 metrin radan kukin 10 kertaa. Kuinka monta kilometriä luokan oppilaat liikkuivat yhteensä? Lauseke: /2 12. Peilaa kuvio a) y-akselin suhteen. b) origon eli pisteen (0,0) suhteen. y Vastaus: Piirrä tarkasti viivoittimen avulla! x

9 Koetehtävät 13. Annin luokan oppilaat keräsivät 600 euroa leirikouluretkeä varten. Rahoista 2 hankittiin myyntityöllä, 2 % rahoista ansaittiin keräämällä pulloja. Loput saatiin säästämällä. Kuinka paljon rahaa (euroa) oli säästetty? Vastaus: 14. Olet saanut salaperäisen reittikartan. Piirrä seuraavien ohjeiden mukainen reitti. 1. Kulje lähtöpisteestä A vaakasuoraan vasemmalle 4,0 cm. 2. Käänny kulkusuuntaasi nähden 90 vasemmalle ja kulje 3,0 cm. 3. Käänny jälleen 90 vasemmalle ja kulje 8,0 cm. 4. Kulje sieltä lyhintä reittiä takaisin lähtöpisteeseen A. A Kuinka pitkän matkan olet kulkenut yhteensä? Lauseke: Vastaus:

10 Ratkaisut ja pisteytysohjeet OSIO 1: PERUSTEHTÄVÄT (1 OPPITUNTI) 1. a) 0 b) 3206 m c) 4270 d) 16 % e) 2 h 30 min tai 2, h tai 2½ h 1 p jokaisesta oikeasta vastauksesta ½ p jos yksikkö puuttuu / a) 7,6 + 2,8 = 10,4 e) 1 2 b) 98,71 8,81 = 89,90 (myös 89,9) f) c) 0,4 0,8 = 0,32 g) d) 1,83 : 3 = 0,61 h) : ½ p oikea vastaus ei osapisteitä 3. Kuinka suuri osa kuviosta on tummennettu? Ilmoita vastaus supistettuna murtolukuna. a) b) c) 1 litra 2 dl ½ p oikea murtoluku muodostettu ½ p oikein supistettu vastaus 4. Kännykän alkuperäinen hinta oli 240. Hintaa alennettiin 1 %. Laske kännykän alennettu hinta. 240 : = = p alennus (36 ) laskettu oikein 1 p vähennyslasku laskettu oikein -½ p pieni laskuvirhe / vastauksesta puuttuu yksikkö

11 Ratkaisut ja pisteytysohjeet. Laske kuvioiden pinta-alat. Merkitse laskulauseke näkyviin. a) b) c) cm cm 6 cm cm 8 cm 6, m m cm cm 8 cm cm : 2 7 m m = 2 cm 2 = 20 cm 2 = 3 m 2 7 m ½ p oikea lauseke (myös ilman yksiköitä) ½ p oikea vastaus jos vastauksista puuttuu yksiköt, -½ p yhden kerran 6. Yhdistä viivalla desimaaliluku yhtä suureen murtolukuun ja murtoluku prosenttilukuun. Prosenttiluku Murtoluku Desimaaliluku 7 % 7, % 70 % ,07 0,7 ½ p jokainen oikea yhdistäminen 7, 7. Päättele puuttuvat pituudet ja merkitse ne kuvioon. Laske sitten kuvion piiri. 4, m 4, m 1,2 m 2,3 m 4, m 2,3 m 2,3 m + 2,3 m 1,2 m = 3,4 m Lauseke: 4, m 4 4, m + 2 2,3 m + 3,4 m + 1,2 m (tai muu oikea lauseke) = 27,2 m ½ p jokaisesta oikeasta, puuttuvasta pituudesta, yht. 1½ p 1 p oikein kirjoitettu lauseke 1½ p oikea vastaus -½ p yksikkö puuttuu vastauksesta osapisteitä harkinnan mukaan

12 Ratkaisut ja pisteytysohjeet OSIO 2: SOVELTAVA OSIO (1 OPPITUNTI) Merkitse seuraavissa tehtävissä tarvittavat laskut ja välivaiheet näkyviin! 8. Jaakko oli matkalla Englannissa ja vaihtoi rahaa. Hän sai yhdellä eurolla 0,834 Englannin puntaa. Laske, kuinka monta puntaa hän sai 7 eurolla. Lauseke: 7 0,834 = 62, Vastaus: 62, puntaa (tai ) /2 1 p lauseke oikein 1 p oikea vastaus -½ p pieni laskuvirhe tai yksikkö puuttuu vastauksesta 9. Pylväsdiagrammi kuvaa, kuinka paljon eri sarjakuvilla oli lukijoita Puistolan koulussa. a) Laske diagrammin tietojen avulla kolmen suosituimman sarjakuvan lukijoiden määrä yhteensä = 13 (Aku Ankka, Muumit, Lassi ja Leevi) ½ p lauseke oikein ½ p oikea vastaus b) Minkä kahden sarjakuvalehden lukijamäärät poikkeavat vähiten toisistaan? Karvinen ja Viivi ja Wagner 1 p oikea vastaus c) Kuinka paljon enemmän on lukijoita eniten luetulla sarjakuvalla verrattuna vähiten luettuun sarjakuvaan? 60 = ½ p lauseke oikein ½ p oikea vastaus

13 Ratkaisut ja pisteytysohjeet 10. Laatikossa on 1 punaista, 12 keltaista ja 3 sinistä samanlaista palloa. Laatikosta nostetaan sattumanvaraisesti yksi pallo. Millä todennäköisyydellä nostettu pallo on keltainen? = (myös 40 %) / p laskettu kaikkien pallojen määrä oikein 12 ½ p muodostettu oikein 30 ½ p oikea vastaus joko 2 tai 40 % 11. Teemun luokka osallistui liikuntatempaukseen. Luokan 24 oppilaasta puolet käveli 6,4 km:n lenkin. 9 oppilasta käveli kukin 2 kertaa 2, km:n lenkin. Loput 3 oppilasta juoksi 70 metrin radan kukin 10 kertaa. Kuinka monta kilometriä luokan oppilaat liikkuivat yhteensä? Lauseke: 12 6,4 km , km m ½ p ½ p ½ p = 76,8 km + 4,0 km + 22, km = 144,3 km ½ p ½ p ½ p 3 p oikea lauseke ja sen laskut 1 p oikea vastaus -½ p jos yksikkö puuttuu osapisteitä harkinnan mukaan; ei vähennystä jos laskettu osissa 12. Peilaa kuvio a) y-akselin suhteen. b) origon eli pisteen (0,0) suhteen. y a) b) x 2 p kummastakin oikein peilatusta kuviosta osapisteitä harkinnan mukaan

14 Ratkaisut ja pisteytysohjeet 13. Annin luokan oppilaat keräsivät 600 euroa leirikouluretkeä varten. Rahoista 2 hankittiin myyntityöllä ja 2 % ansaittiin keräämällä pulloja. Loput saatiin säästämällä. Kuinka paljon rahaa oli säästetty? Lauseke: : : Tai laskettu osissa: Myyntityö: 600 : 2 = 2240 Pullojen keruu: 600 : = 1400 Yhteensä: = 3640 Säästöt: = p jokaisesta oikein lasketusta vaiheesta oikea vastaus 1 p osapisteitä harkinnan mukaan -½ p pieni laskuvirhe 14. Olet saanut salaperäisen reittikartan. Piirrä ohjeiden mukainen reitti. 1. Kulje lähtöpisteestä A vaakasuoraan vasemmalle 4,0 cm. 2. Käänny kulkusuuntaasi nähden 90 vasemmalle ja kulje 3,0 cm. 3. Käänny jälleen 90 vasemmalle ja kulje 8,0 cm. 4. Kulje sieltä lyhintä reittiä takaisin lähtöpisteeseen A. Kuinka pitkän matkan olet kulkenut yhteensä? Oikea reitti: 1) 4,0 cm A 2) 3,0 cm 4),0 cm 3) 8,0 cm Matkan lauseke: 4,0 cm + 3,0 cm + 8,0 cm +,0 cm = 20,0 cm (myös 20 cm) vaiheet 1-3 (yht. 1½ p): ½ p oikea suunta ja pituus vaihe 4: ½ p oikea suunta ½ p pituus mitattu oikein ±2 mm 1 p lauseke oikein ½ p oikea vastaus -½ p pieni laskuvirhe tai yksikkö puuttuu vastauksesta

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo?

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 4.2.2011 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Esitä myös lasku, kuvio, päätelmä tai muu lyhyt perustelu.

Lisätiedot

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:... MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. Sarjat: LAITA MERKKI OMAAN SARJAASI. Tekniikka ja liikenne:..

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää.

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. MAA Kurssikoe 9..0 Arto Hekkanen ja Jussi Tyni A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. Nimi:. Kaikki kohdat ½ pisteen arvoisia. a) x x x (x ) b) 0

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

Kenguru 2015 Benjamin (6. ja 7. luokka)

Kenguru 2015 Benjamin (6. ja 7. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01 KOKEITA KURSSI kurssi (A). Laske. Kirjoita ainakin yksi vдlivaihe. 9 a) :. Merkitse ja laske. a) Lukujen ja tulosta vдhennetддn. Luvusta vдhennetддn lukujen ja erotus. Lukujen ja summan kolmasosa kerrotaan

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,

Lisätiedot

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + = Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?

Lisätiedot

PERUSKOULUSTA PITKÄLLE

PERUSKOULUSTA PITKÄLLE Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET Pisteytys on pyritty tekemään pelkistetyksi, jotta kaikki korjaajat päätyisivät samaan arvosteluun.

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Kenguru Benjamin (6. ja 7. luokka) sivu 1 / 5

Kenguru Benjamin (6. ja 7. luokka) sivu 1 / 5 Kenguru Benjamin (6. ja 7. luokka) sivu 1 / 5 3 pisteen tehtävät 1) Mikä on pienin? A) 2 + 0 + 0 + 8 B) 200 : 8 C) 2 0 0 8 D) 200 8 E) 8 + 0 + 0 2 2) Millä voidaan korvata, jotta seuraava yhtälö olisi

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

ESPOONLAHDEN LUKIO OHJEITA SYKSYN 2014 YLIOPPILASKOKELAILLE

ESPOONLAHDEN LUKIO OHJEITA SYKSYN 2014 YLIOPPILASKOKELAILLE ESPOONLAHDEN LUKIO OHJEITA SYKSYN 2014 YLIOPPILASKOKELAILLE Ole ajoissa paikalla, takakansi s.4 Liikenne-este, myöhästyminen s.2 Sairastuminen s.2 816 46560, 046-8771433, 046-8771398 ESPOONLAHDEN LUKIO

Lisätiedot

MIKKELIN ETÄ- JA AIKUISLUKIO

MIKKELIN ETÄ- JA AIKUISLUKIO MIKKELIN ETÄ- JA AIKUISLUKIO OPAS kahden tutkinnon opiskelijoille 2015 2016 Mikkelin etä- ja aikuislukio Päämajankuja 4 50100 Mikkeli Toimisto ma-to klo 9-17 ja pe 8-14.45 Päämajankuja 4, 3. krs. puh.

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Valmistelut: Aseta kartiot numerojärjestykseen pienimmästä suurimpaan (alkeisopiskelu) tai sekalaiseen järjestykseen (pidemmälle edenneet oppilaat).

Valmistelut: Aseta kartiot numerojärjestykseen pienimmästä suurimpaan (alkeisopiskelu) tai sekalaiseen järjestykseen (pidemmälle edenneet oppilaat). Laske kymmeneen Tavoite: Oppilaat osaavat laskea yhdestä kymmeneen ja kymmenestä yhteen. Osallistujamäärä: Vähintään 10 oppilasta kartioita, joissa on numerot yhdestä kymmeneen. (Käytä 0-numeroidun kartion

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka

Lisätiedot

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 797 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava 24 Ongelmanratkaisu yhtälön avulla Yhtälön

Lisätiedot

O L A R I N K O U L U

O L A R I N K O U L U Tervetuloa! Olarin koulun matematiikka- ja luonnontiedeluokan tiedotustilaisuuteen Olarin koulu Olarin lukion ja Olarin matematiikkaja luonnontiede lukion yhteydessä luokat 7-9 yksi pienluokka 8lk:lla

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 14.11.2013 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Matematiikan didaktiikka, osa II Estimointi

Matematiikan didaktiikka, osa II Estimointi Matematiikan didaktiikka, osa II Estimointi Sarenius Kasvatustieteiden tiedekunta, Oulun yksikkö Arviointi Arvionti voidaan jakaa kahteen osaan; laskutoimitusten lopputulosten arviointiin ja arviontiin

Lisätiedot

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja - 26 - - mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline - yksiköien avulla voiaan verrata mitattujen suureien arvoja - suure on jonkin esineen tai asian mitattava ominaisuus, jonka arvo

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Kenguru 2011 Ecolier RATKAISUT (4. ja 5. luokka)

Kenguru 2011 Ecolier RATKAISUT (4. ja 5. luokka) sivu 1 / 7 OIKEAT VASTAUSVAIHTOEHDOT ON ALLEVIIVATTU. JOISSAKIN TEHTÄVISSÄ ON MYÖS RATKAISUN SELITYS TAI PERUSTELU. 3 pistettä 1. Pasi haluaa maalata sanan KENGURU. Hän maalaa yhden kirjaimen joka päivä

Lisätiedot

Kenguru 2015 Cadet (8. ja 9. luokka)

Kenguru 2015 Cadet (8. ja 9. luokka) sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

A. Desimaalilukuja kymmenjärjestelmän avulla

A. Desimaalilukuja kymmenjärjestelmän avulla 1(8) Kymmenjärjestelmä desimaalilukujen ja mittayksiköiden muunnosten pohjana A. Miten saadaan desimaalilukuihin ymmärrystä 10-järjestelmän avulla? B. Miten saadaan mittayksiköiden muunnoksiin ymmärrystä

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2010 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 13.11.2014 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Näyte. Peruslaskutoimitukset. Perustehtävät. Alkulämmittely. A Laske a) 1 + 2 3 35 b) 7 c) 2 7 + 8 7 d) 32 + 75 + 68

Näyte. Peruslaskutoimitukset. Perustehtävät. Alkulämmittely. A Laske a) 1 + 2 3 35 b) 7 c) 2 7 + 8 7 d) 32 + 75 + 68 LUKKPIRUETTEJ Peruslaskutoimitukset Perustehtävät Laske a) 1 + 2 5 b) 7 c) 2 7 + 8 7 d) 2 + 75 + 68 Muunna sekunneiksi a) 8 min b) 4,5 min Muunna minuuteiksi. a) 120 s b) 150 s c) 1 h 1. Jalkapallo-ottelun

Lisätiedot

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Mittakaava Avainsanat: yhdenmuotoisuus, suurennos, pienennös, mittakaava, mittaaminen, pinta-ala, tilavuus, suhde Luokkataso: 3-9 Välineet: kynä,

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

Tärkeitä termejä. Perjantai 9.30-11.30

Tärkeitä termejä. Perjantai 9.30-11.30 Tärkeitä termejä Perjantai 9.30-11.30 Oppitunti: 75 minuuttia 1. 8.00-9.15 2. 9.30-10.45 3. 4. oppitunti alkuosa klo 10.55 11.40 ruokailu klo 11.40 12.25 oppitunti jälkiosa klo 12.25 12.55 oppitunti klo

Lisätiedot

Kenguru 2015 Benjamin (6. ja 7. luokka)

Kenguru 2015 Benjamin (6. ja 7. luokka) sivu 1 / 12 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms.

Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms. OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms. 1. Mikä on suurin kokonaisluku, joka toteuttaa

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka kevät Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Yksi kerrallaan palauttaa vastaukset. Rehtori ilmoittaa kokeen päättymisestä, sen jälkeen ei saa tehdä mitään merkintöjä.

Yksi kerrallaan palauttaa vastaukset. Rehtori ilmoittaa kokeen päättymisestä, sen jälkeen ei saa tehdä mitään merkintöjä. Ylioppilastutkinto Muista tuoda henkilöllisyystodistus kokeeseen. Kokeeseen saavutaan ajoissa viimeistään klo 8.00, nimenhuuto alkaa klo 8.30. Eväät tarkistetaan ennen saliin menoa. Rehtori ilmoittaa ennen

Lisätiedot

YO-info K2016 25.1.2016. rehtori Mika Strömberg

YO-info K2016 25.1.2016. rehtori Mika Strömberg YO-info K2016 25.1.2016 rehtori Mika Strömberg LUKION PÄÄTTÖTODISTUS AMMATILLINEN PERUSTUTKINTO YLIOPPILASTODISTUS KEVÄT 2016? LUKION PÄÄTTÖTODISTUS LUKIO-OPINNOT YHTEENSÄ VÄHINTÄÄN 75 KRS - opiskelijan

Lisätiedot

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan!

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan! Aiemmin opittu Perusopetuksen opetussuunnitelman mukaan seuraavat lukuihin ja laskutoimituksiin liittyvät sisällöt on käsitelty vuosiluokilla 3 5: kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen

Lisätiedot

Yksilöllinen oppiminen ja ohjattu itsearviointi

Yksilöllinen oppiminen ja ohjattu itsearviointi Yksilöllinen oppiminen ja ohjattu itsearviointi eduhakkeri Pekka Peura Martinlaakson lukio pekka.peura@eduvantaa.fi blogi: www.maot.fi www.facebook.com/eduhakkerit 12.4.2014 Aiheet 1) Oppimispotentiaali

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

(1) Desimaaliluvut ja lukujen pyöristäminen

(1) Desimaaliluvut ja lukujen pyöristäminen (1) Desimaaliluvut ja lukujen pyöristäminen Luvun pyöristäminen Mikäli ensimmäinen pois jäävä numero on 5 tai suurempi, korotetaan sen vasemmalla puolella olevan numeron arvoa yhdellä. Luku 123, 3476 yhden

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2016 Nimi: Henkilötunnus: VASTAUSOHJEET 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan klo

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 Merkintäohjeita alustavaan arvosteluun

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 Merkintäohjeita alustavaan arvosteluun MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 Merkintäohjeita alustavaan arvosteluun YTL Hyvän vastauksen piirteitä: Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty. Ratkaisussa on oltava tarvittavat

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Abien vanhempainilta 29.1.2013. Kauhajoen lukio

Abien vanhempainilta 29.1.2013. Kauhajoen lukio Abien vanhempainilta 29.1.2013 Kauhajoen lukio Opettajien esittäytyminen Rehtorin puheenvuoro Ylioppilaskirjoitukset (ryhmänohjaajat) Opinto-ohjaajan puheenvuoro Kyselytuokio Tammi- maaliskuun aikana:

Lisätiedot

Äidinkielen valtakunnallinen koe 9.luokka

Äidinkielen valtakunnallinen koe 9.luokka Keväällä 2013 Puumalan yhtenäiskoulussa järjestettiin valtakunnalliset kokeet englannista ja matematiikasta 6.luokkalaisille ja heille tehtiin myös äidinkielen lukemisen ja kirjoittamisen testit. 9.luokkalaisille

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 798 matematiikka E Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Otavan asiakaspalvelu Puh. 0800 17117

Lisätiedot

10. Kerto- ja jakolaskuja

10. Kerto- ja jakolaskuja 10. Kerto- ja jakolaskuja * Kerto- ja jakolaskun käsitteistä * Multiplikare * Kertolaatikot * Lyhyet kertotaulut * Laskujärjestys Aiheesta muualla: Luku 14: Algoritmien konkretisointia s. 87 Luku 15: Ajan

Lisätiedot

Reaalikoe Fysiikan ja kemian yo-ohjeita

Reaalikoe Fysiikan ja kemian yo-ohjeita Reaalikoe Fysiikan ja kemian yo-ohjeita Yleisohjeita Laskimet ja taulukot on tuotava tarkastettaviksi vähintään vuorokautta (24h) ennen kirjoituspäivää kansliaan. Laskimien muisti on tyhjennettävä. Jos

Lisätiedot

Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6

Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 3 pisteen tehtävät 1) Mikä on pienin? A) 2 + 0 + 0 + 8 B) 200 : 8 C) 2 0 0 8 D) 200 8 E) 8 + 0 + 0 2 2) Millä voidaan korvata, jotta seuraava yhtälö

Lisätiedot

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen?

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen? LASKUTOIMITUKSET Nimi: ) Muista laskutoimituksissa käytettävät nimet. a) Mikä on lukujen 650 ja 70 summa erotus b) Kun vähenevä on 000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava

Lisätiedot

AMMATIKKA top 16.11.2006

AMMATIKKA top 16.11.2006 AMMATIKKA top 16.11.2006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA 1. Tekniikka ja liikenne: O 2.

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka kevät Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

TEHTÄVÄVINKKEJÄ MATEMATIKKAAN

TEHTÄVÄVINKKEJÄ MATEMATIKKAAN Viinikankatu 49a, 33800 TAMPERE Puh (03) 380 5300, Fax (03) 380 5353 E-mail: myynti@tevella.fi, www.tevella.fi TEHTÄVÄVINKKEJÄ MATEMATIKKAAN I LOOGISET PALAT 1) Laita kaikki LOOGISET PALAT eteesi työpöydälle.

Lisätiedot

Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009

Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009 Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009 Anastasia Vlasova Peruskoulun matematiikkakilpailutyöryhmä Tämän työn tarkoituksena oli saada käsitys siitä,

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et).

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). MAA1 päässälaskut Nimi: Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). 1. 4 (-5) + (-3) (-6) 2. 1 3 2 5 3 2 3. 5 8 6 7 4. 3 2 3 2 : 3 3 5. 1 0 1 1 1 2 1 3 2 2 2 6. 2 3 3 7. 2 1203 8 400

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

1. Jaa blini kolmella suoralla a) neljään, b) viiteen, c) kuuteen ja d) seitsemään osaan. Osien ei tarvitse olla samanlaisia. Piirrä suorat kuviin.

1. Jaa blini kolmella suoralla a) neljään, b) viiteen, c) kuuteen ja d) seitsemään osaan. Osien ei tarvitse olla samanlaisia. Piirrä suorat kuviin. Peruskoulun matematiikkakilpailu 2015 2016 alkukilpailu 29.10.2015. Ratkaisut 1. Jaa blini kolmella suoralla a) neljään, b) viiteen, c) kuuteen ja d) seitsemään osaan. Osien ei tarvitse olla samanlaisia.

Lisätiedot

Matematiikka- ja luonnontiedeluokkien

Matematiikka- ja luonnontiedeluokkien Matematiikka- ja luonnontiedeluokkien oppilasvalinta Painotuskoulut, vuosiluokat 7.-9. Espoonlahden koulu Järvenperän koulu Mankkaan koulu Nöykkiön koulu Olarin koulu Ilmoittaudu sähköisesti Wilma-järjestelmän

Lisätiedot

Suhteellisia osuuksia ilmaistaessa käytetään prosenttilukujen ohella myös murtolukuja.

Suhteellisia osuuksia ilmaistaessa käytetään prosenttilukujen ohella myös murtolukuja. PROSENTTILASKUT Prosenttilaskuun ja sen sovelluksiin, jotka ovat kerto- ja jakolaskun sovelluksia, perustuu suuri osa kaikesta laskennasta, jonka avulla talousyksikön toimintaa suunnitellaan ja seurataan.

Lisätiedot

Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti

Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti Tehtävä 1. Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti a) 1 4 b) 1 4 a) - kuvio, annetaan 1,5 p - ympyrä täyttyy neljänneksen kerrallaan, annetaan 1,5 p b) -

Lisätiedot

YO-INFO K2016 ILMOITTAUTUMINEN 2.11.2015. Rehtori Mika Strömberg

YO-INFO K2016 ILMOITTAUTUMINEN 2.11.2015. Rehtori Mika Strömberg YO-INFO K2016 ILMOITTAUTUMINEN 2.11.2015 Rehtori Mika Strömberg LUKION PÄÄTTÖTODISTUS AMMATILLINEN PERUSTUTKINTO YLIOPPILASTODISTUS KEVÄT 2016? LUKION PÄÄTTÖTODISTUS Lukio-opinnot yhteensä vähintään 75

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

Valtakunnallinnen 5 luokan matematiikan koe kevät 2010

Valtakunnallinnen 5 luokan matematiikan koe kevät 2010 Pistejakauma 6 luokan matematiikan kokeessa keväällä 2010 70 Valtakunnallinnen 5 luokan matematiikan koe kevät 2010 60 61 62 63 59 50 50 48 51 48 52 50 48 53 46 49 Oppilasmäärä 40 30 34 34 30 42 35 41

Lisätiedot

Fiktion käsitteet tutuiksi. Oppitunnit 1 4

Fiktion käsitteet tutuiksi. Oppitunnit 1 4 Oppitunnit 1 4 Oppituntien kulku 1. oppitunti 2. oppitunti 3. oppitunti 4. oppitunti Fiktion käsitteet tutuiksi 1. Oppia fiktion käsitteiden hyödyntämistä kaunokirjallisten tekstien avaamisessa. 2. Oppia

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 15.11.2012 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Puzzle SM 2005 15. 25.7.2005. Pistelasku

Puzzle SM 2005 15. 25.7.2005. Pistelasku Puzzle SM 005 5. 5.7.005 Pistelasku Jokaisesta oikein ratkotusta tehtävästä saa yhden () pisteen, minkä lisäksi saa yhden () bonuspisteen jokaisesta muusta ratkojasta, joka ei ole osannut ratkoa tehtävää.

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MTEMTIIKN KOE mmatiisen kouutuksen kaikkien aojen yhteinen matematiikan vamiuksien kipaiu Nimi: Oppiaitos:.. Kouutusaa:... Luokka:.. Sarjat: LIT MERKKI OMN SRJSI. Tekniikka ja iikenne:... Matkaiu-,ravitsemus-

Lisätiedot

TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn

TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN Katri Währn 2013 JOHDANTO Myyntityön koulutusohjelman matematiikan valintakoe perustuu koulumatematiikkaan riippumatta siitä, onko hakijan

Lisätiedot

9. lk vanhempainilta. Ti 8.9.2015 klo 18.00

9. lk vanhempainilta. Ti 8.9.2015 klo 18.00 9. lk vanhempainilta Ti 8.9.2015 klo 18.00 TET eli työelämään tutustuminen Linnainmaan TET 7.-18.9.2015 Päivittäinen työaika 6 h, viikottainen työaika enintään 30 h Työaika mielellään klo 8-14 tai 9-15

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti MAA8 Ko 5..04 T konsptiin pisttsruudukko! Muista kirjata nimsi ja rhmäsi. Lu ohjt huolllissti A-Osio: Ei saa kättää laskinta. MAOL saa olla alusta asti kätössä. Maksimissaan h aikaa suorittaa A- Osio.

Lisätiedot

Matematiikka- ja luonnontiedeluokkien. Olarin koulu 13.1.2014

Matematiikka- ja luonnontiedeluokkien. Olarin koulu 13.1.2014 Matematiikka- ja luonnontiedeluokkien oppilasvalinta Olarin koulu 13.1.2014 Painotuskoulut, vuosiluokat 7.-9. Espoonlahden koulu Järvenperän koulu Mankkaan koulu Nöykkiön koulu Olarin koulu Ilmoittaudu

Lisätiedot

MAA7 HARJOITUSTEHTÄVIÄ

MAA7 HARJOITUSTEHTÄVIÄ MAA7 HARJOITUSTEHTÄVIÄ Selvitä, mitä -akselin väliä tarkoittavat merkinnät: a) < b) U(, ) c) 4 < 0 0 Ilmoita väli a) 4 < < b) ] 5, 765[ tavalla 7 tehtävän a)-kohdan mukaisella kana, kana 0 Palautetaan

Lisätiedot

Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla

Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla 1. Tehtävänanto Pohdi kuinka opettaisit yläasteen oppilaille murtolukujen peruslaskutoimitukset { +, -, *, / } Cuisenairen lukusauvoja apuna

Lisätiedot

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp Taso T1 Matematiikka 3 osp OSA 1: Laskennan perusteet 1 osp Tämän kolmiosaisen materiaalin avulla opiskelija voi suorittaa itsenäisesti tai ohjatusta matematiikan pakollisen osa-alueen tasolla T1. Osa

Lisätiedot

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26

Lisätiedot

VIISIPALLO PELI JOKA KEHITTÄÄ YHTENÄISYYTTÄ YHTEISTYÖTÄ YHTEISÖÄ

VIISIPALLO PELI JOKA KEHITTÄÄ YHTENÄISYYTTÄ YHTEISTYÖTÄ YHTEISÖÄ VIISIPALLO PELI JOKA KEHITTÄÄ YHTENÄISYYTTÄ YHTEISTYÖTÄ YHTEISÖÄ LYHYESTI VIISIPALLOSTA Viisipallo muistuttaa pohjimmiltaan paljon polttopalloa: Siinä on sisäjoukkue ja ulkojoukkue. Sisäjoukkue lyö pallon

Lisätiedot

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka)

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka) sivu / 2 IKET VSTUSVIHTEHDT N LLEVIIVTTU. 3 pistettä. Minkä laskun tulos on suurin? () 20 (B) 20 (C) 20 (D) + 20 (E) : 20 20 20, 20, 20 20 20 202 ( suurin ) ja : 20 0,0005 2. Hamsteri Fridolin suuntaa

Lisätiedot

Tehtävä 1. Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä.

Tehtävä 1. Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä. Tehtävä 1 Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä Ei Hypoteesi ei ole hyvä tutkimushypoteesi, koska se on liian epämääräinen.

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka 3 pisteen tehtävät Kenguru Ecolier, ratkaisut (1 / 5) 1. Missä kenguru on? (A) Ympyrässä ja kolmiossa, mutta ei neliössä. (B) Ympyrässä ja neliössä, mutta ei kolmiossa. (C) Kolmiossa ja neliössä, mutta

Lisätiedot

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla 7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen

Lisätiedot

Tuen tarpeen tunnistaminen. Matematiikan arviointi toinen luokka

Tuen tarpeen tunnistaminen. Matematiikan arviointi toinen luokka Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka Sisältö Käsikirja Käyttäjän opas Tekninen opas Syksy Esitysohjeet opettajalle Lapsen tehtävälomake Tarkistuslomake Talvi Esitysohjeet opettajalle

Lisätiedot

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: 9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti

Lisätiedot

Kieliohjelma Atalan koulussa

Kieliohjelma Atalan koulussa Kieliohjelma Atalan koulussa Vaihtoehto 1, A1-kieli englanti, B1- kieli ruotsi 6.luokalla 1 lk - 2 lk - 3 lk englanti 2h/vko 4 lk englanti 2h/vko 5 lk englanti 2-3h/vko 6 lk englanti 2-3h/vko, ruotsi 2h/vko

Lisätiedot