TTY Porin laitoksen optimointipalvelut yrityksille

Koko: px
Aloita esitys sivulta:

Download "TTY Porin laitoksen optimointipalvelut yrityksille"

Transkriptio

1 TTY Porin laitoksen optimointipalvelut yrityksille Timo Ranta, TkT Frank Cameron, TkT Automaation aamukahvit

2 Optimointi Tarkoittaa parhaan ratkaisun valintaa kaikkien mahdollisten ratkaisujen joukosta Tukee yrityksen päätöksentekoa Lopullisen päätöksen tekee ihminen käyttäen lisäksi apuna kokemusta ja intuitiota 2(18)

3 Projektin valintatehtävä Toimit projektipäällikkönä ja tehtävänäsi on valita, mitkä projektit yritys aloittaa n mahdollisen projektin joukosta Kullakin projektilla i on kustannus a i euroa ja nykyrahassa mitattu tuotto c i euroa Käytettävissäsi oleva budjetti on b euroa ja se ei riitä kaikkien projektien aloittamiseen Mitkä projektit sinun tulisi valita, jotta yrityksen tuotot olisivat mahdollisimman suuret? 3(18)

4 Palvelumme yrityksille 1) Optimointitehtävän määrittely 2) Optimointimallin muodostaminen 3) Optimointimallin ratkaiseminen 4) Ratkaisun tarkastelu 5) Ohjelmiston kehittäminen 4(18)

5 Palvelumme yrityksille 1) Optimointitehtävän määrittely Optimointitehtävässä halutaan maksimoida tai minimoida jotain suuretta allokoimalla käytettävissä olevat resurssit mahdollisimman tehokkaasti vaihtoehtoisille aktiviteeteille Määritellään sanallisesti lähtötiedot, muuttujat, rajoitteet ja tavoite Projektin valintatehtävän tapauksessa lähtötiedot: projektien määrä (n), kunkin projektin kustannus (a i ), kunkin projektin tuotto (c i ), budjetti (b) muuttujat: valitaanko projekti i vai ei (x i =1 tai 0) rajoitteet: valittujen projektien kustannukset eivät saa ylittää budjettia (b) tavoite: maksimoi tuotto (z) 5(18)

6 Palvelumme yrityksille 2) Optimointimallin muodostaminen Optimointimalli on matemaattinen kuvaus optimointitehtävästä Optimointimalli koostuu muuttujista, rajoitteista ja kohdefunktiosta Projektin valintatehtävän tapauksessa 6(18)

7 Palvelumme yrityksille 3) Optimointimallin ratkaiseminen Mallin muuttujille etsitään sellaiset arvot, että kaikki mallin rajoitteet täytetään ja mallin kohdefunktion arvo on mahdollisimman hyvä Käytännön tehtävissä tyydytään usein hyvään approksimaatioratkaisuun Ratkaisun löytäminen edellyttää usein algoritmien ja heuristiikkojen kehittämistä 7(18)

8 Palvelumme yrityksille 4) Ratkaisun tarkastelu Verrataan ratkaisua yrityksen tämänhetkiseen ratkaisuun Suoritetaan entäs jos -tyyppisiä tarkasteluja Eräs projektin valintatehtävän instanssi Tuotot 35 k, kun valitaan projektit 2 ja 3 Millä budjetilla tuotot ovat vähintään 40 k? 13 k budjetilla tuotot 42 k, kun valitaan projektit 1 ja 3 8(18)

9 Palvelumme yrityksille 5) Ohjelmiston kehittäminen Kehitetään yrityksen käyttöön optimointiohjelmisto 9(18)

10 Optimoinnilla on käytännön sovelluksia mm. Tuotannon suunnittelussa ja aikataulutuksessa Logistiikan suunnittelussa ja aikataulutuksessa Toimitusketjun suunnittelussa ja aikataulutuksessa Työvuorojen suunnittelussa ja aikataulutuksessa Projektien suunnittelussa ja aikataulutuksessa 10 (18)

11 Käytännön sovelluksia Teräsaihioiden suunnittelutehtävä terästehtaalla Tavoitteena minimoida käytettävien aihioiden lukumäärä sekä ylijäämä suunnittelemalla aihiot Säästöä 2.5 milj. $ vuodessa (aihion keskimääräinen massa kasvoi 1.3 t ja ylijäämä pieneni 3 %) 11 (18)

12 Käytännön sovelluksia Tukkuliikkeen varaston suunnittelutehtävä Tavoitteena minimoida noutoon kuluva aika suunnittelemalla tavaroiden paikat ja noutoreitti Säästöä 140 k vuodessa (noutoreitin keskimääräinen pituus lyheni 31 %) 12 (18)

13 Käytännön sovelluksia Sairaalan leikkaussaliajan allokointitehtävä Tavoitteena minimoida poikkeama sairaalan eri osastoille suunnitellun ja toteutuneen leikkaussaliajan välillä allokoimalla käytettävissä oleva leikkaussaliaika eri osastoille Aikataulut koettiin tasapuolisemmiksi ja aikataulujen laadinta nopeutui Sali 1 Sali 2 Sali 3 Ma Surgery Otolaryngology Ophthalmology 08:00-17:00 08:00-15:30 08:00-15:30 Ti Surgery Otolaryngology Oral Surgery 08:00-17:00 08:00-15:30 08:00-15:30 Ke Surgery Otolaryngology Gynecology 08:00-17:00 08:00-15:30 08:00-15:30 To Gynecology Gynecology Ophthalmology 08:00-17:00 08:00-15:30 08:00-15:30 Pe Surgery Otolaryngology Ophthalmology 09:00-17:00 09:00-15:30 09:00-15:30 13 (18)

14 Suomen käytetyn ydinpolttoaineen loppusijoituksen optimointi 14 (18)

15 Suomen käytetyn ydinpolttoaineen loppusijoitus 15 (18)

16 Suomen käytetyn ydinpolttoaineen loppusijoituksen optimointi Optimoimme loppusijoituksen aikataulun, maanalaisen loppusijoitustilan etäisyydet sekä polttoainenippujen kapselikohtaisen valinnan Optimoimalla löysimme aikatauluja, jotka olivat kustannuksiltaan merkittävästi referenssiaikataulua edullisempia 16 (18)

17 Julkaisuja Ranta. Optimization in the Final Disposal of Spent Nuclear Fuel, Doctoral thesis, 2012 Ranta & Cameron. Heuristic Methods for Assigning Spent Nuclear Fuel Assemblies to Canisters for Final Disposal, Nuclear Science and Engineering, 171, (2012) 17 (18)

18 Kiitos mielenkiinnosta! Jos kiinnostuit TTY Porin laitoksen tarjoamista optimointipalveluista, toivomme yhteydenottoasi 18 (18)

Optimoinnin sovellukset

Optimoinnin sovellukset Optimoinnin sovellukset Timo Ranta Tutkijatohtori TTY Porin laitos OPTIMI 4.12.2014 Mitä optimointi on? Parhaan ratkaisun systemaattinen etsintä kaikkien mahdollisten ratkaisujen joukosta Tieteellinen

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

TIEA382 Lineaarinen ja diskreetti optimointi

TIEA382 Lineaarinen ja diskreetti optimointi TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien

Lineaaristen monitavoiteoptimointitehtävien Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento : Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli simerkki: Maalifirma Sateenkaari valmistaa ulko- ja sisämaalia raaka-aineista M ja M. Sisämaalin maksimikysyntä on tonnia/päivä.

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Varastonhallinnan optimointi

Varastonhallinnan optimointi Varastonhallinnan optimointi Komponenttien ostojen optimointi OPTIMI-hanke Matti Säämäki tutkimusapulainen Nopea tiedonvälitys, kansainvälistyvä kilpailu ja konsulttien vaikutusvallan kasvu on tuonut vallitseviksi

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin

Lisätiedot

Työvuorosuunnittelun optimointi (valmiin työn esittely)

Työvuorosuunnittelun optimointi (valmiin työn esittely) Työvuorosuunnittelun optimointi (valmiin työn esittely) Pekka Alli 1.12.2015 Ohjaaja: Tuuli Haahtela Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta

Lisätiedot

Varastonhallinnan optimointi

Varastonhallinnan optimointi Varastonhallinnan optimointi Timo Ranta Tutkijatohtori TTY Porin laitos OPTIMI 4.6.215 Peruskysymykset Kuinka paljon tilataan? Milloin tilataan? 2 (46) Kustannuksia Tavaran hinta Varastointikustannukset

Lisätiedot

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization 7.5.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Tausta Ilmavoimilla tärkeä rooli maanpuolustuksessa Rauhan aikana

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Tasaväliset PO pisteet? Painokerroinmenetelmä: muutetaan painoja systemaattisesti

Lisätiedot

TIES483 Epälineaarinen optimointi

TIES483 Epälineaarinen optimointi TIES483 Epälineaarinen optimointi Käytännön optimointiongelmien ratkaiseminen jussi.hakanen@jyu.fi Syksy 2012 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

INFO / Matemaattinen Analyysi, k2016, L0

INFO / Matemaattinen Analyysi, k2016, L0 INFO / Matemaattinen Analyysi, k2016, L0 orms1010, Aikataulu 1 kevät 2016 ORMS1010 Matemaattinen analyysi, luennot Ke 14-16 Viikot 09-10 salissa F119 Ke 14-16 Viikot 11 salissa F140 Ke 14-16 Viikot 13-18

Lisätiedot

Harjoitus 9: Optimointi I (Matlab)

Harjoitus 9: Optimointi I (Matlab) Harjoitus 9: Optimointi I (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien

Lisätiedot

Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely)

Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Jari Hast xx.12.2013 Ohjaaja: Harri Ehtamo Valvoja: Hari Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Monitavoiteoptimointi Mitä monitavoitteisuus tarkoittaa? Halutaan saavuttaa

Lisätiedot

Optimization of Duties in Railway Traffic (valmiin työn esittely)

Optimization of Duties in Railway Traffic (valmiin työn esittely) Optimization of Duties in Railway Traffic (valmiin työn esittely) Teemu Kinnunen 03.03.2014 Ohjaaja: Mikko Alanko Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Optimoinnin mahdollisuudet tilaus- ja toimitusketjujen hallinnassa. Helsinki, 9.4.2013 Olli Bräysy

Optimoinnin mahdollisuudet tilaus- ja toimitusketjujen hallinnassa. Helsinki, 9.4.2013 Olli Bräysy Optimoinnin mahdollisuudet tilaus- ja toimitusketjujen hallinnassa Helsinki, 9.4.2013 Olli Bräysy Optimointi käsitteenä Optimoinnilla viitataan parhaimman mahdollisen ratkaisun etsimiseen annettujen kriteerien

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 4 3.4.017 Tehtävä 1 Tarkastellaan harjoituksen 1 nopeimman reitin ongelmaa ja etsitään sille lyhin virittävä puu käyttämällä kahta eri algoritmia. a) (Primin algoritmi) Lähtemällä

Lisätiedot

Otteluohjelmien tekeminen. a) optimoimalla b) manuaalisesti siirtämällä

Otteluohjelmien tekeminen. a) optimoimalla b) manuaalisesti siirtämällä Otteluohjelmien tekeminen a) optimoimalla b) manuaalisesti siirtämällä Otteluohjelmien tekeminen tietokoneella optimoimalla käyttämällä CI:n PEAST-algoritmia (soveltuu ammattilaissarjoihin) Otteluohjelman

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) () = 2+1. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että minimoinnin suhteen. Funktio on konveksi ja konkaavi. b) () = (suurin kokonaisluku

Lisätiedot

Alkeisryhmä Ke 18-19, 20-21 Jatkoryhmä 1 Ti 18-19 Jatkoryhmä 2 Ke 19-20

Alkeisryhmä Ke 18-19, 20-21 Jatkoryhmä 1 Ti 18-19 Jatkoryhmä 2 Ke 19-20 Alkeisryhmä Ke 18-19, 21 Jatkoryhmä 1 Ti 18-19 Jatkoryhmä 2 Ke 19-20 Alkeisryhmä Ke 18-19, 21 Jatkoryhmä 1 Ti 18-19 Jatkoryhmä 2 Ke 19-20 Alkeisryhmä Ke 18-19, 21 Jatkoryhmä 1 Ti 18-19 Jatkoryhmä 2 Ke

Lisätiedot

Demo 1: Excelin Solver -liitännäinen

Demo 1: Excelin Solver -liitännäinen MS-C2105 Optimoinnin perusteet Malliratkaisut 1 Ehtamo Demo 1: Excelin Solver -liitännäinen Ratkaise tehtävä käyttäen Excelin Solveria. max 3x 1 + x 2 s.e. 2x 1 + 5x 2 8 4x 1 + 2x 2 5 x 1, x 2 0 Ratkaisu

Lisätiedot

Katkonnanohjaus evoluutiolaskennan keinoin

Katkonnanohjaus evoluutiolaskennan keinoin Katkonnanohjaus evoluutiolaskennan keinoin Askel kohti optimaalista tavaralajijakoa Veli-Pekka Kivinen HY, Metsävarojen käytön laitos Katkonnanohjauksen problematiikkaa Miten arvo-/tavoitematriisit tulisi

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla

Lisätiedot

KOULUKULJETUKSET Tarjouspyynnön LIITE 1

KOULUKULJETUKSET Tarjouspyynnön LIITE 1 Sivu 1/8 Tällä liitteellä määritellään kohteen nro 1 aikataulut ja reitit ja mahdollinen ostajan Aikataulu: Kaukjärven koulu alkaa klo 8.30. Iltapäiväkuljetuksia on seuraavasti: ma klo 12.30 ja 14.30,

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely)

Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely) Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely) Esitelmöijä Olli Rentola päivämäärä 21.1.2013 Ohjaaja: TkL Anssi Käki Valvoja: Prof. Ahti Salo Työn saa tallentaa

Lisätiedot

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Erkki Heikkola Numerola Oy, Jyväskylä Laskennallisten tieteiden päivä 29.9.2010, Itä-Suomen yliopisto, Kuopio Putkistojen äänenvaimentimien suunnittelu

Lisätiedot

Tuotannon jatkuva optimointi muutostilanteissa

Tuotannon jatkuva optimointi muutostilanteissa Tuotannon jatkuva optimointi muutostilanteissa 19.4.2012 Henri Tokola Henri Tokola Esityksen pitäjä 2009 Tohtorikoulutettava Aalto-yliopisto koneenrakennustekniikka Tutkimusaihe: Online-optimointi ja tuotannonohjaus

Lisätiedot

Tarkkuutta tuotannon suunnitteluun ennustamisen kehittämisestä Jaakko Takala RELEX Tammiseminaari 22.1.2014

Tarkkuutta tuotannon suunnitteluun ennustamisen kehittämisestä Jaakko Takala RELEX Tammiseminaari 22.1.2014 Tarkkuutta tuotannon suunnitteluun ennustamisen kehittämisestä Jaakko Takala RELEX Tammiseminaari 22.1.2014 Konsernin rakenne 2012 Atria Oyj Liikevaihto 1 344 milj. Henkilöstö 4 898 (keskimäärin) Suomi

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2. a m1 x 1 + a m2 x 2 + + a mn x n b m x 1, x 2,..., x n 0 1

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden

Lisätiedot

Uusi jaksotyö 1.6.2015 alkaen Muutosseminaarit 2015

Uusi jaksotyö 1.6.2015 alkaen Muutosseminaarit 2015 Uusi jaksotyö 1.6.2015 alkaen Muutosseminaarit 2015 Tehy, Edunvalvontatoimiala Muutoksia säännölliseen työaikaan Tasoittumisjakso Säännöllisen työajan tulee tasoittua kahden, kolmen taikka neljän viikon

Lisätiedot

Osavuosikatsaus II/05

Osavuosikatsaus II/05 Osavuosikatsaus II/05 26.7.2005 Juha Rantanen, toimitusjohtaja www.outokumpu.com Toinen neljännes lyhyesti Hyvä tulos vaikeassa markkinatilanteessa. Toimitusmäärät laskivat, mutta tuotevalikoima ja myynnin

Lisätiedot

Harjoitus 10: Optimointi II (Matlab / Excel)

Harjoitus 10: Optimointi II (Matlab / Excel) Harjoitus 10: Optimointi II (Matlab / Excel) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen ja ratkaiseminen

Lisätiedot

Harjoitus 9: Optimointi I (Matlab)

Harjoitus 9: Optimointi I (Matlab) Harjoitus 9: Optimointi I (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.01.2013 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen

Lisätiedot

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset 30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset Mitä on lineaarinen optimointi (LP)? LP= lineaarinen optimointiongelma (Linear Programming) Menetelmä, jolla etsitään

Lisätiedot

Tietotuen suunnittelu hoitolinjojen sairaalassa

Tietotuen suunnittelu hoitolinjojen sairaalassa Tietotuen suunnittelu hoitolinjojen sairaalassa Kaarina Tanttu, VSSHP, T- Pro hanke VARSINAIS-SUOMEN SAIRAANHOITOPIIRI kaarina.tanttu@tyks.fi HOSPITAL DISTRICT OF VARSINAIS-SUOMI Hoitolinjojen sairaalan

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 4

MS-C2105 Optimoinnin perusteet Malliratkaisut 4 MS-C2105 Optimoinnin perusteet Malliratkaisut 4 Ehtamo Duaalin muodostamisen muistisäännöt Duaalin muodostamisessa voidaan käyttää muistisääntötaulukkoa, jota voidaan lukea vasemmalta oikealle tai oikealta

Lisätiedot

Monitavoiteoptimointi

Monitavoiteoptimointi Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 PO pisteiden määräämismenetelmät Idea: tuotetaan erilaisia PO ratkaisuita, joista

Lisätiedot

Matemaattinen optimointi I -kurssin johdantoluento Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos

Matemaattinen optimointi I -kurssin johdantoluento Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos Matemaattinen optimointi I -kurssin johdantoluento 10.1.2017 Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos Optimointi: Parhaan mahdollisen ratkaisun etsimistä sallituissa

Lisätiedot

Luento 6: Monitavoiteoptimointi

Luento 6: Monitavoiteoptimointi Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman

Lisätiedot

Logistiikan optimointi- ja ohjausjärjestelmä TCS-Opti

Logistiikan optimointi- ja ohjausjärjestelmä TCS-Opti Logistiikan optimointi- ja ohjausjärjestelmä TCS-Opti Taustaa.. Logistiikan ohjaus on fyysisten toimintojen ja koko logistiikan suunnittelua, kehitystä ja valvontaa. Siihen liittyvät järjestelmät voidaan

Lisätiedot

12. luento: Simplexin implementointi Mallinnusjärjestelmät. Simplexin implementointiin liittyviä asioita

12. luento: Simplexin implementointi Mallinnusjärjestelmät. Simplexin implementointiin liittyviä asioita Simplex-menetelm menetelmän laskennalliset tekniikat 12. luento: Simplexin implementointi Mallinnusjärjestelmät Matemaattisten algoritmien ohjelmointi Kevät 2008 / 1 Simplexin implementointiin liittyviä

Lisätiedot

Seurantahanke käytetyn ydinpolttoaineen loppusijoituslaitoksen sosioekonomisista

Seurantahanke käytetyn ydinpolttoaineen loppusijoituslaitoksen sosioekonomisista Seurantahanke käytetyn ydinpolttoaineen loppusijoituslaitoksen sosioekonomisista vaikutuksista ja tiedonvälityksestä Eurajoen ja sen naapurikuntien asukkaiden näkökulmasta (SEURA) Tutkijat Professori Tapio

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 orms.1030 Vaasan yliopisto / kevät 2015 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet, Vaasan yliopisto Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi

Lisätiedot

Kuvioton metsäsuunnittelu Paikkatietomarkkinat, Helsinki Tero Heinonen

Kuvioton metsäsuunnittelu Paikkatietomarkkinat, Helsinki Tero Heinonen Paikkatietomarkkinat, Helsinki 3.11.2009 Tero Heinonen Sisältö Kuvioton metsäsuunnittelu Optimointi leimikon suunnittelumenetelmänä Verrataan optimointi lähestymistapaa diffuusiomenetelmään Muuttuvat käsittely-yksiköt

Lisätiedot

Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa

Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa Mat-2.4142 Optimointiopin seminaari kevät 2011 Kleinmuntz ja Kleinmuntz1999 TEHTÄVÄ Sairaalan strategisen investointibudjetin

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

Ohjelmistotekniikan menetelmät, kesä 2008

Ohjelmistotekniikan menetelmät, kesä 2008 582101 - Ohjelmistotekniikan menetelmät, kesä 2008 1 Ohjelmistotekniikan menetelmät Methods for Software Engineering Perusopintojen pakollinen opintojakso, 4 op Esitietoina edellytetään oliokäsitteistön

Lisätiedot

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI 2008-2009 Muutokset on hyväksytty teknillisen tiedekunnan tiedekuntaneuvostossa 13.2.2008 ja 19.3.2008. POISTUVAT OPINTOJAKSOT:

Lisätiedot

Betonin pitkät käyttöiät todellisissa olosuhteissa

Betonin pitkät käyttöiät todellisissa olosuhteissa Betonin pitkät käyttöiät todellisissa olosuhteissa Projektipäällikkö, TkT Olli-Pekka Kari Rakennustieto Oy Betonitutkimusseminaari 2.11.2016 Tutkimuksen tausta > Betonirakenteiden käyttöiät ovat pidentymässä

Lisätiedot

Ohjelmistoprosessit ja ohjelmistojen laatu Kevät Ohjelmistoprosessit ja ohjelmistojen laatu. Projektinhallinnan laadunvarmistus

Ohjelmistoprosessit ja ohjelmistojen laatu Kevät Ohjelmistoprosessit ja ohjelmistojen laatu. Projektinhallinnan laadunvarmistus LAADUNVARMISTUS 135 Projektinhallinnan laadunvarmistus Projektinhallinnan laadunvarmistus tukee ohjelmistoprojektien ohjaus- ja ylläpitotehtäviä. Projektinhallinnan laadunvarmistustehtäviin kuuluvat seuraavat:

Lisätiedot

Varikko Ruokala Elokuu 2014

Varikko Ruokala Elokuu 2014 Varikko Ruokala Elokuu 2014 Viikko: 31 Kello ma 28.7. ti 29.7. ke 30.7. to 31.7. pe 1.8. la 2.8. 9-10 10-11 Eläkeläiset Ikonikerho 11-12 Eläkeläiset Ikonikerho 12-13 Eläkeläiset Ikonikerho 13-14 Eläkeläiset

Lisätiedot

Kimppu-suodatus-menetelmä

Kimppu-suodatus-menetelmä Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.

Lisätiedot

Sijainnin merkitys Itellassa GIS. Jakelun kehittämisen ajankohtaispäivä

Sijainnin merkitys Itellassa GIS. Jakelun kehittämisen ajankohtaispäivä Jakelun kehittämisen ajankohtaispäivä Karttajärjestelmällä havainnollisuutta, tehokkuutta ja parempaa asiakaspalvelua Käytännön kokemuksia pilotoinneista ja käytössä olevista karttajärjestelmistä Juha

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku

Lisätiedot

Tuotekehityskustannusten hallintaa laadukkaalla suunnittelulla Teemu Launis

Tuotekehityskustannusten hallintaa laadukkaalla suunnittelulla Teemu Launis Tuotekehityskustannusten hallintaa laadukkaalla suunnittelulla Teemu Launis Suunnittelun laatu? Suunnittelu on onnistunut kun Tuote tulee asiakkaalle aikataulussa Tuotteessa on sille määritellyt ominaisuudet

Lisätiedot

Logistiikkajärjestelmien mallintaminen - käytännön sovelluksia

Logistiikkajärjestelmien mallintaminen - käytännön sovelluksia FORS-seminaari 2005 - Infrastruktuuri ja logistiikka Logistiikkajärjestelmien mallintaminen - käytännön sovelluksia Ville Hyvönen EP-Logistics Oy Taustaa Ville Hyvönen DI (TKK, teollisuustalous, tuotannon

Lisätiedot

Projektiportfolion valinta

Projektiportfolion valinta Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille

Lisätiedot

Algoritmit 2. Luento 6 Ke Timo Männikkö

Algoritmit 2. Luento 6 Ke Timo Männikkö Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu

Lisätiedot

Raahen koulutuskuntayhtymän talousarvio 2016 ja -suunnitelma KH 41 Raahen koulutuskuntayhtymän yhtymävaltuusto

Raahen koulutuskuntayhtymän talousarvio 2016 ja -suunnitelma KH 41 Raahen koulutuskuntayhtymän yhtymävaltuusto KAUPUNGINHALLITUS 41 01.02.2016 KAUPUNGINVALTUUSTO 17 22.02.2016 Raahen koulutuskuntayhtymän talousarvio 2016 ja -suunnitelma 2017-2018 802/02.0202.020200/2016 KH 41 Raahen koulutuskuntayhtymän yhtymävaltuusto

Lisätiedot

ONNISTUNEEN KORJAUSHANKKEEN AVAINASIAT. Kiinteistöpostin Juhlaseminaari 20 vuotta Finlandiatalo 10.4.2013 Mikko Tarri

ONNISTUNEEN KORJAUSHANKKEEN AVAINASIAT. Kiinteistöpostin Juhlaseminaari 20 vuotta Finlandiatalo 10.4.2013 Mikko Tarri ONNISTUNEEN KORJAUSHANKKEEN AVAINASIAT Kiinteistöpostin Juhlaseminaari 20 vuotta Finlandiatalo 10.4.2013 Mikko Tarri Lähes 400 A-Insinöörin ratkaiseva asiantuntemus odottaa haasteitasi Talonrakentaminen

Lisätiedot

Tietotekniikan kandidaattiseminaari

Tietotekniikan kandidaattiseminaari Tietotekniikan kandidaattiseminaari Luento 1 14.9.2011 1 Luennon sisältö Seminaarin tavoitteet Seminaarin suoritus (tehtävät) Kandidaatintutkielman aiheen valinta Seminaarin aikataulu 2 2011 Timo Männikkö

Lisätiedot

Harjoitus 1 (17.3.2015)

Harjoitus 1 (17.3.2015) Harjoitus 1 (17.3.2015) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Helsinki 4 = Kuopio 5 = Joensuu. a) Tehtävänä on ratkaista Bellman

Lisätiedot

www.ruukki.fi/flex RUOSTUMATONTA TERÄSTÄ

www.ruukki.fi/flex RUOSTUMATONTA TERÄSTÄ www.ruukki.fi/flex RUOSTUMATONTA TERÄSTÄ JA ALUMIINIA TOIVEIDESI MUKAAN Ruukki FLEX Ruostumaton teräs ja alumiini juuri sinun mittojesi mukaan Ajattele ratkaisua, jossa saat yhden kontaktin palveluna juuri

Lisätiedot

Helsingin kaupunki Pöytäkirja 11/2013 1 (8) Pelastuslautakunta PEK/6 15.10.2013

Helsingin kaupunki Pöytäkirja 11/2013 1 (8) Pelastuslautakunta PEK/6 15.10.2013 Helsingin kaupunki Pöytäkirja 11/2013 1 (8) 119 Pelastuslaitos, talousarvion toteutumisennuste III-2013 ja ylitysesitys HEL 2013-012527 T 02 02 01 Päätös Käyttötalousennuste Investoinnit Lautakunta päätti

Lisätiedot

SIMO-pilotointi Metsähallituksessa. SIMO-seminaari

SIMO-pilotointi Metsähallituksessa. SIMO-seminaari SIMO-pilotointi Metsähallituksessa SIMO-seminaari Hakkuiden optimointi tiimitasolla Metsähallituksen metsissä Heli Virtasen Pro gradu -tutkielma Tutkimusalue ja aineisto Metsätalouden Kainuun alue Kuhmon

Lisätiedot

66 päivää ma ma

66 päivää ma ma Tunnus Tehtän nimi Kesto Aloitus Valmis Edeltäjät 1 Natura Mobile Projekti 587 päivää la 1.1.2011 su 31.3.2013 2 Natura Mobile automaatio 566 päivää la 1.1.2011 pe 1.3.2013 3 hankinnat 132 päivää ti 1.3.2011

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

Tietotekniikan Sovellusprojektit

Tietotekniikan Sovellusprojektit Tietotekniikan Sovellusprojektit Jukka-Pekka Santanen Tietotekniikan laitos 16.2.2010 Tavoitteena taitoja ja kokemusta projektimuotoisesta työtavasta ja ryhmätyöstä, projektin hallinnasta ja johtamisesta,

Lisätiedot

73125 MATEMAATTINEN OPTIMOINTITEORIA 2

73125 MATEMAATTINEN OPTIMOINTITEORIA 2 73125 MATEMAATTINEN OPTIMOINTITEORIA 2 Risto Silvennoinen Tampereen teknillinen yliopisto, kevät 2004 1. Peruskäsitteet Optimointiteoria on sovelletun matematiikan osa-alue, jossa tutkitaan funktioiden

Lisätiedot

Resurssitehokas puutavaran autokuljetus

Resurssitehokas puutavaran autokuljetus Resurssitehokas puutavaran autokuljetus Metsätieteen päivä 2012 Sessio 4. Tulevaisuuden puunhankinnan olosuhteet Antti Korpilahti Erikoistutkija, MML, Metsäteho Oy Esityksen kohdat Puutavarakuljetukset

Lisätiedot

Järjestelmäarkkitehtuuri (TK081702) Lähtökohta. Integroinnin tavoitteet

Järjestelmäarkkitehtuuri (TK081702) Lähtökohta. Integroinnin tavoitteet Järjestelmäarkkitehtuuri (TK081702) Integraation tavoitteita Lähtökohta Web-palvelut Asiakasrekisteri ERP, Tuotannon ohjaus Tuotanto Myynti Intranet Extranet? CRM Johdon tuki Henkilöstö Kirjanpito Palkanlaskenta

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Pv Pvm Aika Kurssin koodi ja nimi Sali Tentti/Vk Viikko

Pv Pvm Aika Kurssin koodi ja nimi Sali Tentti/Vk Viikko Pv Pvm Aika Kurssin koodi ja nimi Sali Tentti/Vk Viikko Ma 24.08.15 13:00-16:00 Kon-15.3122 Laatujohtaminen ja mittaustekniikka 216 T01 35 Ma 24.08.15 13:00-16:00 Kon-15.3342 Työstökoneet ja oheislaitteet

Lisätiedot

Lukujärjestysanalyysi

Lukujärjestysanalyysi Lukujärjestysanalyysi Ari Nevalainen a.nevalainen@kolumbus.fi Lukujärjestysanalyysi 1/15 Lukujärjestyssuunnittelu Miksi lukujärjestyssuunnittelua tarvitaan? Tuhansia oppilaita. Rajalliset resurssit. Opetuksen

Lisätiedot

Tehostamiskannustimeen tehdyt muutokset

Tehostamiskannustimeen tehdyt muutokset Tehostamiskannustimeen tehdyt muutokset Sähköverkkotoiminnan Keskustelupäivä Kalastajatorppa Helsinki 18.11.2013 Matti Ilonen Esityksen sisältö KAH kustannusten rajaaminen tehostamiskannustimessa ja vahvistuspäätösten

Lisätiedot

Epälineaarinen hinnoittelu: Diskreetin ja jatkuvan mallin vertailu

Epälineaarinen hinnoittelu: Diskreetin ja jatkuvan mallin vertailu Epälineaarinen hinnoittelu: Diskreetin ja jatkuvan mallin vertailu 11.4.2011 Ohjaaja: TkT Kimmo Berg Valvoja: Prof. Harri Ehtamo Esityksen sisältö: Hinnoittelumallien esittely Menetelmät Esimerkkitehtävän

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

Web sovelluksen kehittäminen sähkönjakeluverkon suojareleisiin

Web sovelluksen kehittäminen sähkönjakeluverkon suojareleisiin TEKNILLINEN KORKEAKOULU / VAASAN YLIOPISTO Diplomityöesitelmä Web sovelluksen kehittäminen sähkönjakeluverkon suojareleisiin Timo Ahola 2006 Web sovellus Web palvelut joiden avulla laite voidaan liittää

Lisätiedot

OPERAATIOANALYYSI ORMS.1020

OPERAATIOANALYYSI ORMS.1020 VAASAN YLIOPISTO Talousmatematiikka Prof. Ilkka Virtanen OPERAATIOANALYYSI ORMS.1020 Tentti 2.2.2008 1. Yrityksen tavoitteena on minimoida tuotannosta ja varastoinnista aiheutuvat kustannukset 4 viikon

Lisätiedot

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala Simplex-algoritmi T-6.5 Informaatiotekniikan seminaari..8, Susanna Moisala Sisältö Simplex-algoritmi Lähtökohdat Miten ongelmasta muodostetaan ns. Simplextaulukko Miten haetaan käypä aloitusratkaisu Mitä

Lisätiedot

Asian valmistelija: sivistysjohtaja Jyrki Lumiainen

Asian valmistelija: sivistysjohtaja Jyrki Lumiainen Koulutuslautakunta 116 07.08.2012 Koulutuslautakunta 141 02.10.2012 Koulukuljetusten optimointi 193/04/046/2012 152/04/041/2012 KOULTK 116 Asian valmistelija: sivistysjohtaja Jyrki Lumiainen Vuoden 2012

Lisätiedot