Optimoinnin sovellukset

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Optimoinnin sovellukset"

Transkriptio

1 Optimoinnin sovellukset Timo Ranta Tutkijatohtori TTY Porin laitos OPTIMI

2 Mitä optimointi on? Parhaan ratkaisun systemaattinen etsintä kaikkien mahdollisten ratkaisujen joukosta Tieteellinen lähestymistapa päätöksentekoon Optimoinnin soveltamisessa yhdistyvät matematiikan, tietotekniikan ja sovelluskohteen tiedot 2 (43)

3 Optimointiprosessi 3 (43)

4 Optimointiprosessin vaiheet 1) Optimointitehtävän määrittely 2) Optimointimallin muodostaminen 3) Optimointimallin ratkaiseminen 4) Ratkaisun tarkastelu 5) Optimointiohjelman kehittäminen 4 (43)

5 Projektin valintatehtävä Toimit projektipäällikkönä ja tehtävänäsi on valita, mitkä projektit yritys aloittaa n mahdollisen projektin joukosta Kullakin projektilla i on kustannus a i euroa ja nykyrahassa mitattu tuotto c i euroa Käytettävissäsi oleva budjetti on b euroa ja se ei riitä kaikkien projektien aloittamiseen Mitkä projektit sinun tulisi valita, jotta yrityksen tuotot olisivat mahdollisimman suuret? 5 (43)

6 Optimointiprosessin vaiheet 1) Optimointitehtävän määrittely Optimointitehtävässä halutaan maksimoida tai minimoida jotain suuretta allokoimalla käytettävissä olevat resurssit mahdollisimman tehokkaasti vaihtoehtoisille aktiviteeteille Määritellään sanallisesti lähtötiedot, muuttujat, rajoitteet ja tavoite Projektin valintatehtävän tapauksessa lähtötiedot: projektien määrä (n), kunkin projektin kustannus (a i ), kunkin projektin tuotto (c i ), budjetti (b) muuttujat: valitaanko projekti i vai ei (x i = 1 tai 0) rajoitteet: valittujen projektien kustannukset eivät saa ylittää budjettia (b) tavoite: maksimoi tuotto (z) 6 (43)

7 Optimointiprosessin vaiheet 2) Optimointimallin muodostaminen Optimointimalli on matemaattinen kuvaus optimointitehtävästä Optimointimalli koostuu muuttujista, rajoitteista ja kohdefunktiosta Projektin valintatehtävän tapauksessa 7 (43)

8 Optimointiprosessin vaiheet 3) Optimointimallin ratkaiseminen Käytännön tehtävissä tyydytään usein approksimaatioratkaisuun Riittävän hyvän approksimaatioratkaisun löytäminen voi vaatia algoritmien ja heuristiikkojen kehittämistä 8 (43)

9 Optimointiprosessin vaiheet 4) Ratkaisun tarkastelu Verrataan ratkaisua olemassa olevaan ratkaisuun Suoritetaan entäs jos -tyyppisiä tarkasteluja Projektin valintatehtävän eräs instanssi Tuotot 35 k, kun valitaan projektit 2 ja 3 Millä budjetilla tuotot ovat vähintään 40 k? 13 k budjetilla tuotot 42 k, kun valitaan projektit 1 ja 3 9 (43)

10 Optimointiprosessin vaiheet 5) Optimointiohjelman kehittäminen Jatkuvaan optimointiin tarvitaan optimointiohjelma Usein tarvitaan yhteys toiminnanohjausjärjestelmään 10 (43)

11 Sovelluksia 11 (43)

12 Optimointia sovelletaan liiketoiminnassa mm. Tuotannon suunnittelussa ja aikataulutuksessa Logistiikan suunnittelussa ja aikataulutuksessa Toimitusketjun suunnittelussa ja aikataulutuksessa Työvuorojen suunnittelussa ja aikataulutuksessa Projektien suunnittelussa ja aikataulutuksessa 12 (43)

13 Toimipisteen sijoitusongelma Määrää, minne toimipisteet kannattaa perustaa ja mitä asiakkaita kustakin toimipisteestä kannattaa palvella, jotta yhteenlasketut kuljetus- ja perustamiskustannukset minimoituvat Yhden tuotteen kuljettaminen toimipisteestä i asiakkaalle j maksaa c ij Toimipisteen i perustamisesta aiheutuu kustannus f i Asiakas j tarvitsee tuotetta määrän b j Toimipisteen i kapasiteetti on u i 13 (43)

14 Toimipisteen sijoitusongelma Optimointimalli 14 (43)

15 Toimipisteen sijoitusongelma Instanssi c ij = toimipisteen i etäisyys asiakkaasta j, i M, j N f i = 100, b j = 1, i M j N u i = 100, i M 15 (43)

16 Toimipisteen sijoitusongelma Ratkaisu 16 (43)

17 Töidenjärjestely Määrää, missä järjestyksessä kukin kone ottaa suoritettavakseen töitä, jotta viimeinenkin työ on valmis mahdollisimman pian Kukin kone voi suorittaa vain yhtä työtä kerrallaan Työt koostuvat työvaiheista, jotka pitää suorittaa tietyssä järjestyksessä. Kukin työvaihe pitää suorittaa sille tarkoitetulla koneella kerralla valmiiksi Koneella i suoritettavan työn j työvaiheen kesto on p ij 17 (43)

18 Töidenjärjestely Optimointimalli 18 (43)

19 Töidenjärjestely Instanssi Töiden kestot Työ 1 Työ 2 Työ 3 Työ4 Kone Kone Kone Kone Kone (43)

20 Töidenjärjestely Ratkaisu 20 (43)

21 Leikkaustehtävä Määrää, miten halutun levyisiä kapeita rullia tulee leikata leveistä rullista, jotta hävikki on mahdollisimman pieni Kokoa j olevia kapeita rullia tarvitaan vähintään b j kappaletta Leikattaessa leveätä rullaa leikkauskuviolla i syntyy kokoa j olevia kapeita rullia a ij kappaletta 21 (43)

22 Leikkaustehtävä Optimointimalli 22 (43)

23 Leikkaustehtävä Instanssi 23 (43)

24 Leikkaustehtävä Ratkaisu 24 (43)

25 Teräsaihioiden suunnittelutehtävä terästehtaalla Tavoitteena minimoida käytettävien aihioiden lukumäärä sekä ylijäämä suunnittelemalla aihiot Säästöä 2.5 milj. $ vuodessa (aihion keskimääräinen massa kasvoi 1.3 t ja ylijäämä pieneni 3 %) 25 (43)

26 Minimikustannusvirtaus Määrää, miten kuljetukset tulee järjestää lähteiltä kauttakulkusolmujen kautta nieluille, jotta kuljetuskustannukset minimoituvat Solmuja i ja j yhdistävän kaaren kuljetuskustannus on c ij Solmuja i ja j yhdistävän kaaren virtauksen maksimimäärä on u ij Solmun k nettotarjonta on b k 26 (43)

27 Minimikustannusvirtaus Optimointimalli 27 (43)

28 Minimikustannusvirtaus Instanssi Insidenssimatriisi Kaari Solmu (1,3) (1,4) (1,9) (2,3) (2,4) (2,9) (3,5) (3,6) (3,7) (3,8) (4,5) (4,6) (4,7) (4,8) (43)

29 Minimikustannusvirtaus Ratkaisu 29 (43)

30 Muita verkkotehtäviä Lyhimmän polun tehtävä Maksimivirtausongelma Kuljetustehtävä Kohdistustehtävä Pienin virittävä puu Kriittinen polku Jne. 30 (43)

31 Työvuorosuunnittelu Määrää, miten paljon kuhunkin työvuoroon otetaan työntekijöitä, jotta kustannukset minimoituvat Työvuoron i kustannus on c i Aikavälin j työntekijätarve on b j a ij = 1, jos työvuoro i kattaa aikavälin j a ij = 0, muulloin 31 (43)

32 Työvuorosuunnittelu Optimointimalli 32 (43)

33 Työvuorosuunnittelu Instanssi Työvuoro Klo I II III IV V Tarve Hinta (43)

34 Työvuorosuunnittelu Ratkaisu Työntekijämäärä Työvuoro 1 Työvuoro 2 Työvuoro 3 Työvuoro 4 Työvuoro 5 Tarve Kellonaika 34 (43)

35 Sairaalan leikkaussaliajan allokointitehtävä Tavoitteena minimoida poikkeama sairaalan eri osastoille suunnitellun ja toteutuneen leikkaussaliajan välillä allokoimalla käytettävissä oleva leikkaussaliaika eri osastoille Aikataulut koettiin tasapuolisemmiksi ja aikataulujen laadinta nopeutui Sali 1 Sali 2 Sali 3 Ma Surgery Otolaryngology Ophthalmology 08:00-17:00 08:00-15:30 08:00-15:30 Ti Surgery Otolaryngology Oral Surgery 08:00-17:00 08:00-15:30 08:00-15:30 Ke Surgery Otolaryngology Gynecology 08:00-17:00 08:00-15:30 08:00-15:30 To Gynecology Gynecology Ophthalmology 08:00-17:00 08:00-15:30 08:00-15:30 Pe Surgery Otolaryngology Ophthalmology 09:00-17:00 09:00-15:30 09:00-15:30 35 (43)

36 Yleistetty kohdistustehtävä Määrää, miten työt jaetaan suoritettavaksi eri koneille, jotta kustannukset minimoituvat Kukin työ tulee tehdä jollakin koneella Kone i tekee työn j kustannuksella c ij Koneella i on käytettävissään resurssimäärä w i Koneelta i kuluu työn j tekemiseen resurssimäärä w ij 36 (43)

37 Yleistetty kohdistustehtävä Optimointimalli 37 (43)

38 Yleistetty kohdistustehtävä Instanssi Kustannukset Työ Kone Resurssinkulutus Työ Kone Käytettävissä (43)

39 Yleistetty kohdistustehtävä Ratkaisu 39 (43)

40 Optimointi käytetyn ydinpolttoaineen loppusijoituksessa 40 (43)

41 Käytetyn ydinpolttoaineen loppusijoitus 41 (43)

42 Tutkitut optimointitehtävät Kustannusten minimointi Polttoainenippujen kapselikohtainen valinta 42 (43)

43 Kiitos! Yhteydenotot 43 (43)

TTY Porin laitoksen optimointipalvelut yrityksille

TTY Porin laitoksen optimointipalvelut yrityksille TTY Porin laitoksen optimointipalvelut yrityksille Timo Ranta, TkT Frank Cameron, TkT timo.ranta@tut.fi frank.cameron@tut.fi Automaation aamukahvit 28.8.2013 Optimointi Tarkoittaa parhaan ratkaisun valintaa

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 4 3.4.017 Tehtävä 1 Tarkastellaan harjoituksen 1 nopeimman reitin ongelmaa ja etsitään sille lyhin virittävä puu käyttämällä kahta eri algoritmia. a) (Primin algoritmi) Lähtemällä

Lisätiedot

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).

Lisätiedot

Esimerkkejä kokonaislukuoptimointiongelmista

Esimerkkejä kokonaislukuoptimointiongelmista Esimerkkejä kokonaislukuoptimointiongelmista (eli mitä kaikkea kokonaisluvuilla voi mallintaa) 27. marraskuuta 2013 Pääoman budjetointiongelma Kulut Projekti Vuosi 1 Vuosi 2 Vuosi 3 Tuotto 1 5 1 8 20 2

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Optimointitehtävät, joissa muuttujat tai osa niistä voivat saada vain kokonaislukuarvoja Puhdas kokonaislukuoptimointitehtävä: Kaikki muuttujat kokonaislukuja Sekoitettu kokonaislukuoptimointitehtävä:

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Varastonhallinnan optimointi

Varastonhallinnan optimointi Varastonhallinnan optimointi Timo Ranta Tutkijatohtori TTY Porin laitos OPTIMI 4.6.215 Peruskysymykset Kuinka paljon tilataan? Milloin tilataan? 2 (46) Kustannuksia Tavaran hinta Varastointikustannukset

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 5 10.4.2017 Tehtävä 1 x 2 7 0,7 9,8 6 5 4 x 1 x 2 7 x 1 x 2 1 3 2 x 1 0 4,3 x 1 9 1 0,0 x 2 0 9,0 1 2 3 4 5 6 7 8 9 x 1 Kuva 1: Tehtävän 1 sallittu joukko S Optimointitehtävän sallittu

Lisätiedot

TIEA382 Lineaarinen ja diskreetti optimointi

TIEA382 Lineaarinen ja diskreetti optimointi TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut JYVÄSKYLÄN YLIOPISTO 14. Luennon sisältö Kuljetustehtävä esimerkki Verkkoteoria ja optimointi verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut kevät 2012 TIEA382 Lineaarinen ja diskreetti

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization 7.5.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Tausta Ilmavoimilla tärkeä rooli maanpuolustuksessa Rauhan aikana

Lisätiedot

Työvuorosuunnittelun optimointi (valmiin työn esittely)

Työvuorosuunnittelun optimointi (valmiin työn esittely) Työvuorosuunnittelun optimointi (valmiin työn esittely) Pekka Alli 1.12.2015 Ohjaaja: Tuuli Haahtela Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta

Lisätiedot

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento : Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli simerkki: Maalifirma Sateenkaari valmistaa ulko- ja sisämaalia raaka-aineista M ja M. Sisämaalin maksimikysyntä on tonnia/päivä.

Lisätiedot

Harjoitus 2 ( )

Harjoitus 2 ( ) Harjoitus 2 (27.3.214) Tehtävä 1 7 4 8 1 1 3 1 2 3 3 2 4 1 1 6 9 1 Kuva 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[] = v[p] d[p] l. max i p 1 {v[i] + a i (i, p) E} = v[l] +

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Tietotuen suunnittelu hoitolinjojen sairaalassa

Tietotuen suunnittelu hoitolinjojen sairaalassa Tietotuen suunnittelu hoitolinjojen sairaalassa Kaarina Tanttu, VSSHP, T- Pro hanke VARSINAIS-SUOMEN SAIRAANHOITOPIIRI kaarina.tanttu@tyks.fi HOSPITAL DISTRICT OF VARSINAIS-SUOMI Hoitolinjojen sairaalan

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Harjoitus 2 ( )

Harjoitus 2 ( ) Harjoitus 2 (24.3.2015) Tehtävä 1 Figure 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[0] = 0 v[p] max 0 i p 1 {v[i]+a i (i,p) E} = v[l]+a l d[p] l. Muodostetaan taulukko, jossa

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.40 Lineaarinen ohjelmointi 5..007 Luento 9 Verkkotehtävän erikoistapauksia (kirja 7., 7.5, 7.9, 7.0) Lineaarinen ohjelmointi - Syksy 007 / Luentorunko (/) Verkkotehtävän ominaisuuksia Kuljetustehtävä

Lisätiedot

Varastonhallinnan optimointi

Varastonhallinnan optimointi Varastonhallinnan optimointi Komponenttien ostojen optimointi OPTIMI-hanke Matti Säämäki tutkimusapulainen Nopea tiedonvälitys, kansainvälistyvä kilpailu ja konsulttien vaikutusvallan kasvu on tuonut vallitseviksi

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2. a m1 x 1 + a m2 x 2 + + a mn x n b m x 1, x 2,..., x n 0 1

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3 7.3.07 Tehtävä Olkoon tilamuuttujat Tällöin saadaan rekursioyhtälö f n (x n ) = max yn {0,} ynwn xn f 0 ( ) = 0. x n = vaiheessa n jäljellä oleva paino, n =,...,N, esine n pakataan

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

Kokonaislukuoptimointi hissiryhmän ohjauksessa

Kokonaislukuoptimointi hissiryhmän ohjauksessa Kokonaislukuoptimointi hissiryhmän ohjauksessa Systeemianalyysin laboratorio Teknillinen Korkeakoulu, TKK 3 Maaliskuuta 2008 Sisällys 1 Johdanto Taustaa Ongelman kuvaus 2 PACE-graafi Graafin muodostaminen

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lineaarinen ohjelmointi 8..7 Luento 8 Verkkotehtävät, simlex ja duaalisuus (kirja 7.-7., 7.6) Lineaarinen ohjelmointi - Syksy 7 / Motivointi Käsitteitä Verkkotehtävä Verkkosimlex Duaalitehtävä Yhteenveto

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin

Lisätiedot

Tuotannon jatkuva optimointi muutostilanteissa

Tuotannon jatkuva optimointi muutostilanteissa Tuotannon jatkuva optimointi muutostilanteissa 19.4.2012 Henri Tokola Henri Tokola Esityksen pitäjä 2009 Tohtorikoulutettava Aalto-yliopisto koneenrakennustekniikka Tutkimusaihe: Online-optimointi ja tuotannonohjaus

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 5..7 Luento Kertausta Lineaarinen ohjelmointi - Syksy 7 / LP ja Simplex Kurssin rakenne Duaalisuus ja herkkyysanalyysi Verkkotehtävät Kokonaislukutehtävät Lineaarinen ohjelmointi

Lisätiedot

Algoritmit 2. Luento 6 Ke Timo Männikkö

Algoritmit 2. Luento 6 Ke Timo Männikkö Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu

Lisätiedot

Optimoinnin mahdollisuudet tilaus- ja toimitusketjujen hallinnassa. Helsinki, 9.4.2013 Olli Bräysy

Optimoinnin mahdollisuudet tilaus- ja toimitusketjujen hallinnassa. Helsinki, 9.4.2013 Olli Bräysy Optimoinnin mahdollisuudet tilaus- ja toimitusketjujen hallinnassa Helsinki, 9.4.2013 Olli Bräysy Optimointi käsitteenä Optimoinnilla viitataan parhaimman mahdollisen ratkaisun etsimiseen annettujen kriteerien

Lisätiedot

Totaalisesti unimodulaariset matriisit voidaan osoittaa olevan rakennettavissa oleellisesti verkkomalleihin liittyvistä matriiseista

Totaalisesti unimodulaariset matriisit voidaan osoittaa olevan rakennettavissa oleellisesti verkkomalleihin liittyvistä matriiseista 8. Verkkomallit Totaalisesti unimodulaariset matriisit voidaan osoittaa olevan rakennettavissa oleellisesti verkkomalleihin liittyvistä matriiseista (P. D. Seymour, Journal of Combinatorial Theory (B),

Lisätiedot

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi.

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. 5..0 Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (c) (d) Arvostelu Kanta on degeneroitunut jos ja vain jos sitä vastaava kantamatriisi on singulaarinen. Optimissa muuttujan

Lisätiedot

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 9. marraskuuta 2009

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 9. marraskuuta 2009 TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe D tiistai 10.11. klo 10 välikielen generointi Vaihe E tiistai

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Skedulointi, kuormituksen tasaus, robotin navigaatio

Skedulointi, kuormituksen tasaus, robotin navigaatio Skedulointi, kuormituksen tasaus, robotin navigaatio Esitelmä algoritmiikan tutkimusseminaarissa 17.2.2003 Kimmo Palin Tietojenkäsittelytieteen laitos Helsingin Yliopisto Skedulointi, kuormituksen tasaus,

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.

Lisätiedot

PARITUS KAKSIJAKOISESSA

PARITUS KAKSIJAKOISESSA PARITUS KAKSIJAKOISESSA GRAAFISSA Informaatiotekniikan t iik seminaari i Pekka Rossi 4.3.2008 SISÄLTÖ Johdanto Kaksijakoinen graafi Sovituksen peruskäsitteet Sovitusongelma Lisäyspolku Bipartite matching-algoritmi

Lisätiedot

Search space traversal using metaheuristics

Search space traversal using metaheuristics Search space traversal using metaheuristics Mika Juuti 11.06.2012 Ohjaaja: Ville Mattila Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki

Lisätiedot

Harjoitus 9: Optimointi I (Matlab)

Harjoitus 9: Optimointi I (Matlab) Harjoitus 9: Optimointi I (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien

Lisätiedot

Osavuosikatsaus II/05

Osavuosikatsaus II/05 Osavuosikatsaus II/05 26.7.2005 Juha Rantanen, toimitusjohtaja www.outokumpu.com Toinen neljännes lyhyesti Hyvä tulos vaikeassa markkinatilanteessa. Toimitusmäärät laskivat, mutta tuotevalikoima ja myynnin

Lisätiedot

Algoritmit 2. Luento 12 Ke Timo Männikkö

Algoritmit 2. Luento 12 Ke Timo Männikkö Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

Silmukkaoptimoinnista

Silmukkaoptimoinnista sta TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. joulukuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe F maanantai 14.12. klo 12 rekisteriallokaatio Arvostelukappale

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 6 24.4.2017 Tehtävä 1 Määritelmän (ks. luentomonisteen s. 107) mukaan yleisen muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on min θ(u,v)

Lisätiedot

Harjoitus 5 ( )

Harjoitus 5 ( ) Harjoitus 5 (14.4.2015) Tehtävä 1 Figure 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan

Lisätiedot

Verkon värittämistä hajautetuilla algoritmeilla

Verkon värittämistä hajautetuilla algoritmeilla Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)

Lisätiedot

HARJOITUS- PAKETTI E

HARJOITUS- PAKETTI E Logistiikka A35A00310 Tuotantotalouden perusteet HARJOITUS- PAKETTI E (6 pistettä) TUTA 17 Luento 18 Jonojen hallinta Hamburger Restaurant Pinball Wizard 1 piste Benny s Arcade 1/4 Luento 19 Projektin

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot.. Tehtävä Edellinen tehtävä voidaan ratkaista mm. Bellman-Fordin, Floyd-Warshallin tai Dikstran algoritmilla. Kyseessä on syklitön suunnattu verkko, oten algoritmi. (lyhimmät tiet

Lisätiedot

66 päivää ma ma

66 päivää ma ma Tunnus Tehtän nimi Kesto Aloitus Valmis Edeltäjät 1 Natura Mobile Projekti 587 päivää la 1.1.2011 su 31.3.2013 2 Natura Mobile automaatio 566 päivää la 1.1.2011 pe 1.3.2013 3 hankinnat 132 päivää ti 1.3.2011

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasan yliopisto, kevät 2017 Talousmatematiikan perusteet, ORMS1030 6. harjoitus, viikko 6 (27.2. 3.3.2017) R1 ma 12 14 F249 R5 ti 14 16 F453 R2 ma 14 16 F453 R6 to 12 14 F104 R3 ti 08 10 F140 R7 pe 08

Lisätiedot

Harjoitus 5 ( )

Harjoitus 5 ( ) Harjoitus 5 (24.4.2014) Tehtävä 1 Kuva 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan

Lisätiedot

1 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina

1 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina Taloustieteen mat.menetelmät syksy27 materiaali II-2 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina. Tuotanto Yritys valmistaa yhtä tuotetta n:stä tuotannontekijästä/panoksesta

Lisätiedot

Etelä-Savon luomulogistiikan nykyinen malli. 6.3.2014 Suvi Leinonen

Etelä-Savon luomulogistiikan nykyinen malli. 6.3.2014 Suvi Leinonen Etelä-Savon luomulogistiikan nykyinen malli 6.3.2014 Suvi Leinonen S Etelä-Savon luomulogistiikan nykyinen malli - Lihantuottajat S Hankkeen lihantuottajat, naudat ja lampaat http://maps.yandex.com/? um=o3klinp0z0xkjxbusmk89pix_o1hipgq&l=map

Lisätiedot

Harjoitus 1 (17.3.2015)

Harjoitus 1 (17.3.2015) Harjoitus 1 (17.3.2015) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Helsinki 4 = Kuopio 5 = Joensuu. a) Tehtävänä on ratkaista Bellman

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

Tarkkuutta tuotannon suunnitteluun ennustamisen kehittämisestä Jaakko Takala RELEX Tammiseminaari 22.1.2014

Tarkkuutta tuotannon suunnitteluun ennustamisen kehittämisestä Jaakko Takala RELEX Tammiseminaari 22.1.2014 Tarkkuutta tuotannon suunnitteluun ennustamisen kehittämisestä Jaakko Takala RELEX Tammiseminaari 22.1.2014 Konsernin rakenne 2012 Atria Oyj Liikevaihto 1 344 milj. Henkilöstö 4 898 (keskimäärin) Suomi

Lisätiedot

Harjoitus 10: Optimointi II (Matlab / Excel)

Harjoitus 10: Optimointi II (Matlab / Excel) Harjoitus 10: Optimointi II (Matlab / Excel) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen ja ratkaiseminen

Lisätiedot

Porkkanaa possuille, naurista naudoille?

Porkkanaa possuille, naurista naudoille? Porkkanaa possuille, naurista naudoille? Arja Seppälä, Vanhempi tutkija, Luonnonvarakeskus Mitä kotieläintuottaja haluaa tietää rehusta? Pysyyhän eläin terveenä syötyään rehua? Täyttyväthän viranomaisvaatimukset

Lisätiedot

OPERAATIOANALYYSI ORMS.1020

OPERAATIOANALYYSI ORMS.1020 VAASAN YLIOPISTO Talousmatematiikka Prof. Ilkka Virtanen OPERAATIOANALYYSI ORMS.1020 Tentti 2.2.2008 1. Yrityksen tavoitteena on minimoida tuotannosta ja varastoinnista aiheutuvat kustannukset 4 viikon

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= P, missä

1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= P, missä A31C00100 Mikrotaloustiede Kevät 2017 1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= 18 1.5P, missä q on käyntejä kuukaudessa keskimäärin. Yhden käyntikerran rajakustannus

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

213a. MS-A0503 Todennäköisyyslaskenna n ja tilastotieteen per; M (vkot 3-7)

213a. MS-A0503 Todennäköisyyslaskenna n ja tilastotieteen per; M (vkot 3-7) Energia- ja ympäristötekniikan mallilukujärjestys kevät-2014 III periodi 1. vuoden opiskelijalle viikot 2-8 (2-7) Ma Ti Ke To Pe 8.00 MS-A0206 Differentiaalija integraalilaskenta 2; 213a MS-A0206 Differentiaalija

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

j n j a b a c a d b c c d m j b a c a d a c b d c c j

j n j a b a c a d b c c d m j b a c a d a c b d c c j TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-38.115 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 12 29.2.2008 D12/1 Tarkastellaan verkkoa, jossa on solmua ja linkkiä.

Lisätiedot

1 KAUPALLISIA SOVELLUKSIA 7. 1.1 Tulovero 8

1 KAUPALLISIA SOVELLUKSIA 7. 1.1 Tulovero 8 SISÄLTÖ 1 KAUPALLISIA SOVELLUKSIA 7 1.1 Tulovero 8 1.2 Hintaan vaikuttavia tekijöitä 13 - Arvonlisävero 13 - Myyntipalkkio ja myyntikate 15 - Alennus ja hävikki 17 1.3 Indeksit 22 - Indeksin käsite 22

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

ENSIHOITOMALLINNUS. Malli laskee asemapaikkojen määrän ja sijainnin, ambulanssien määrän, palvelun peittoprosentin ja kustannukset

ENSIHOITOMALLINNUS. Malli laskee asemapaikkojen määrän ja sijainnin, ambulanssien määrän, palvelun peittoprosentin ja kustannukset ENSIHOITOMALLINNUS Malli laskee asemapaikkojen määrän ja sijainnin, ambulanssien määrän, palvelun peittoprosentin ja kustannukset ENSIHOITO: taustaa Ensihoito on sairastuneen tai vammautuneen potilaan

Lisätiedot

Ohjelmistoprojektien hallinta Tuloksen arvo menetelmä ja toimintoverkkotekniikka

Ohjelmistoprojektien hallinta Tuloksen arvo menetelmä ja toimintoverkkotekniikka Ohjelmistoprojektien hallinta Tuloksen arvo menetelmä ja toimintoverkkotekniikka Tuloksen arvo - menetelmä TAVOITE: YMMÄRTÄÄ menetelmän hyödyt projektin seurannassa Tähän mennessä on rahaa projektiin mennyt

Lisätiedot

Harjoitus 9: Optimointi I (Matlab)

Harjoitus 9: Optimointi I (Matlab) Harjoitus 9: Optimointi I (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien

Lisätiedot

INFO / Matemaattinen Analyysi, k2016, L0

INFO / Matemaattinen Analyysi, k2016, L0 INFO / Matemaattinen Analyysi, k2016, L0 orms1010, Aikataulu 1 kevät 2016 ORMS1010 Matemaattinen analyysi, luennot Ke 14-16 Viikot 09-10 salissa F119 Ke 14-16 Viikot 11 salissa F140 Ke 14-16 Viikot 13-18

Lisätiedot

Demo 1: Excelin Solver -liitännäinen

Demo 1: Excelin Solver -liitännäinen MS-C2105 Optimoinnin perusteet Malliratkaisut 1 Ehtamo Demo 1: Excelin Solver -liitännäinen Ratkaise tehtävä käyttäen Excelin Solveria. max 3x 1 + x 2 s.e. 2x 1 + 5x 2 8 4x 1 + 2x 2 5 x 1, x 2 0 Ratkaisu

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta

Lisätiedot

Katkonnanohjaus evoluutiolaskennan keinoin

Katkonnanohjaus evoluutiolaskennan keinoin Katkonnanohjaus evoluutiolaskennan keinoin Askel kohti optimaalista tavaralajijakoa Veli-Pekka Kivinen HY, Metsävarojen käytön laitos Katkonnanohjauksen problematiikkaa Miten arvo-/tavoitematriisit tulisi

Lisätiedot

Matemaattinen optimointi I -kurssin johdantoluento Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos

Matemaattinen optimointi I -kurssin johdantoluento Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos Matemaattinen optimointi I -kurssin johdantoluento 10.1.2017 Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos Optimointi: Parhaan mahdollisen ratkaisun etsimistä sallituissa

Lisätiedot

LAATUA RAAKA-AINEIDEN JALOSTAMISEEN

LAATUA RAAKA-AINEIDEN JALOSTAMISEEN LAATUA RAAKA-AINEIDEN JALOSTAMISEEN Elintarvike- ja poroalan koulutushanke PORONLIHAN SUORAMYYNTI KOULUTUS HINNOITTELU Erkki Viero HINNOITTELU TAVOITTEET SISÄLTÖ OPETTAA KUSTANNUS- VASTAAVAA HINNOITTELUA

Lisätiedot

KOTIHOIDON OPTIMOINTI JA DIGIROADIN HYÖDYNTÄMINEN

KOTIHOIDON OPTIMOINTI JA DIGIROADIN HYÖDYNTÄMINEN KOTIHOIDON OPTIMOINTI JA DIGIROADIN HYÖDYNTÄMINEN Procomp Solutions Oy Älykkäiden suunnitteluja optimointiratkaisujen asiantuntijayritys. Erikoisosaamista on henkilöresurssien ja logistiikan optimointi.

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten

Lisätiedot

Laboratorioprosessien optimointi palvelulaboratoriossa

Laboratorioprosessien optimointi palvelulaboratoriossa Laboratorioprosessien optimointi palvelulaboratoriossa SKKY:n ja Sairaalakemistit ry:n kevätkoulutuspäivät 15. - 16.4.2010 Maarit Heinänen, palvelujohtaja Yhtyneet Medix Laboratoriot Oy Yhtyneet Medix

Lisätiedot

Luento 7: Kokonaislukuoptimointi

Luento 7: Kokonaislukuoptimointi Luento 7: Kokonaislukuoptimointi Lineaarisessa optimointitehtävässä (LP) kaikki muuttujat ovat jatkuvia. Kokonaislukuoptimoinnin (ILP = Integer LP) tehtävässä kaikilla muuttujilla on kokonaislukurajoitus

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) () = 2+1. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että minimoinnin suhteen. Funktio on konveksi ja konkaavi. b) () = (suurin kokonaisluku

Lisätiedot