Katkonnanohjaus evoluutiolaskennan keinoin

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Katkonnanohjaus evoluutiolaskennan keinoin"

Transkriptio

1 Katkonnanohjaus evoluutiolaskennan keinoin Askel kohti optimaalista tavaralajijakoa Veli-Pekka Kivinen HY, Metsävarojen käytön laitos

2 Katkonnanohjauksen problematiikkaa Miten arvo-/tavoitematriisit tulisi asettaa? - Samat matriisit jokaiseen leimikkoon vai leimikkokohtaisesti säädetyt matriisit? - Miten säätää/optimoida tavoitejakaumia? Miten tavoitejakauman ja toteutuneen tukkijakauman välistä yhteensopivuutta (goodness-of-fit) tulisi mitata? Tavaralajien optimaalinen allokointi?

3 Evoluutiolaskenta - Heikot sortuu elon tiellä... Evoluutiostrategiat Rechenberg, Schwefel 196 Evoluutio-ohjelmointi Fogel, Owens,Walsh 1965 Geneettiset algoritmit (GA) Holland 196

4 Geneettinen algoritmi (GA) Luo joukko aloitusratkaisuja Arvioi jokaisen ratkaisuehdotuksen hyvyys eli optimaalisuus Lopeta Kyllä Riittävän hyvä ratkaisu löytynyt tai aika loppunut Ei Luo uusi joukko ratkaisuyritteitä Valinta Yhdistely Mutaatio

5 Geneettinen algoritmi (GA) arvoja/tai tavoitematriisien optimointiin Yksitavoiteoptimointia - Tavoitteena maksimoida toteutuneen tukkijakauman ja tavoitejakauman välinen yhteensopivuus etsimällä optimaalisia matriisikombinaatioita Kokonaisoptimointia (forest level) - Usean leimikon rinnakkainen käsittely - Usean tukkitavaralajin rinnakkainen käsittely tavaralajiallokointi mukana Rajoittamatonta optimointia - Ei määrä tms. rajoitteita

6 Ratkaisuyritteiden koodaus LEIMIKKO 1 LEIMIKKO 2... LEIMIKKO n 1 Arvomatriismatriisi 111 Arvo- Arvomatriisi k Arvomatriismatriisi 121 Arvo- Arvomatriisi k... Arvomatriismatriisi 1n1 Arvo- Arvomatriisi 1n2 1nk 2 Arvomatriismatriisi 211 Arvo- Arvomatriisi k Arvomatriismatriisi 221 Arvo- Arvomatriisi k... Arvomatriismatriisi 2n1 Arvo- Arvomatriisi 2n2 2nk M M M M m Arvomatriismatriisi m11 Arvo- Arvomatriisi m12 m1k... Arvomatriismatriisi m21 Arvo- Arvomatriisi m22 m2k Arvomatriismatriisi mn1 Arvo- Arvomatriisi mn2 mnk Tukkilaji 1 Tukkilaji 2 Tukkilaji k

7 Stem data stand 1 Price matrix Log type 1 string 1 Log type 2 Stem data stand 2 M Stem data stand n-1 BUCKING PROCEDURE Price matrix string 2 M Price matrix string m-1 Log type k Apply mutation Stem data stand n Price matrix string m Log output matrix 1 Log output matrix 2... Log output matrix m-1 Log output matrix m Apply crossover Global target matrix Log type 1 Calculate the fitness of each price matrix string Log type k Log type 2 Has the maximum iteration number been reached? Yes End No Apply selection

8 Geneettinen optimointialgoritmi Lähtötiedot 1. Leimikoiden runkotiedot - Runkokäyrät STM-formaatissa - Valmius lukea laaturajat (mänty); ei vielä mukana optimoinnissa - Optimointitesteissä sekä todelliset (moto) että estimoidut (ennakkomittaus) puustotiedot 2. Tavaralajeittaiset tavoitejakaumat - Tavoite yli koko matriisin tai - Läpimittaluokittainen pituustavoite

9 Geneettinen optimointialgoritmi Lähtöpopulaation ratkaisuyritteet - Generoidaan satunnaisesti annetulta lukualueelta Ratkaisuyritteiden hyvyyden mittaaminen - Tavoitejakaumien ja toteutuneiden tukkijakaumien vertailu summatasolla: Tukki 1: Tav.jak. Tot.Kok.Jak. Hyv.arvo 1 Tukki 2: Tav.jak. Tot.Kok.Jak. Hyv.arvo 2 Tukki k: Tav.jak. Tot.Kok.Jak. Hyv.arvo k Kokonaishyvyysarvo

10 Katkontatuloksen hyvyyden mittaaminen Jakauma-aste Tavoitejakauma (%) Toteutunut jakauma (%) Lpm Tukin pituus (cm) Lpm Tukin pituus (cm) (mm) (mm) Jakauma-aste = min(.2,.) + min(.5,.) + min(.1,.) + min(.15,.) =.2 (2%)

11 Katkontatuloksen hyvyyden mittaaminen Khi-toiseen (χ2) testistatistiikka 2 χ = m n ( o ) ij e ij i= 1 j= 1 2 /e ij o ij = Havaittu frekvenssi (tukkien lkm) tukkiluokassa (i,j) e ij = Odotettu (tavoite) frekvenssi tukkiluokassa (i,j). - Hyvä yhteensopivuus: χ 2 - Huono yhteensopivuus: χ 2 Tulkinta? Skaalaus välille [,1] kontingenssikertoilla (C): 1 C = 1 [χ2/(χ2+n)]1/2

12 Katkontatuloksen hyvyyden mittaaminen Khi-toiseen (χ2) testistatistiikka Tavoitejakauma (%) Toteutunut jakauma (kpl) Lpm Tukin pituus (cm) Lpm Tukin pituus (cm) (mm) (mm) χ 2 = (-2) 2 /2 + (-2) 2 / (-15) 2 /15 + (-15) 2 /15 = Kontingenssikerroin (C) = [ /( )].5 =.9 1 C =.97

13 Katkontatuloksen hyvyyden mittaaminen Indeksiteoria: Laspeyresin volyymi-indeksi - Aggregoitu, painotettu määränmuutoksen mittari -- painoina perus- tai vertailuajankohdan hinnat Q L m n i= 1 j= 1 = m n i= 1 j= 1 p p ij ij o e ij ij - Hyvä yhteensopivuus: Q L 1 ( 1) - Huono yhteensopivuus: Q L o ij = Havaittu frekvenssi (tukkien lkm) tukkiluokassa (i,j) e ij = Odotettu (tavoite) frekvenssi tukkiluokalle (i,j) p ij = Tukin (suht.) (jalostus)arvo tukkiluokassa (i, j)

14 Katkontatuloksen hyvyyden mittaaminen Laspeyresin volyymi-indeksi Toteutunut jakauma (o ij ) Jalostusarvomatriisi (P ij ) Lpm Tukin pituus (cm) Lpm Tukin pituus (cm) (mm) (mm) pij x oij = 1x + 128x + 164x + 17x = 14 1 pij x eij = Q L =.919

15 Geneettinen optimointialgoritmi Ratkaisuyritteiden hyvyyden mittaus - Khi-toiseen statistiikka Seuraavan yritesukupolven muodostaminen 1. Valinta: Elitismi - Hyvyysarvoltaan parhaimmat jatkoon 2. Risteytys: Uniform crossover - Matriisien satunnainen rekombinaatio leimikoittain ja tavaralajeittain. Mutaatio: Korvaus satunnaisluvulla - Kunkin matriisin jokaisella solulla mahdollisuus mutatoitua

16 Geneettinen optimointialgoritmi Uniform crossover Vanhempi 1 Jälkeläinen Vanhempi 2 lpm/pit lpm/pit lpm/pit Crossover maski lpm/pit

17 Tavoitejakauman optimointi GA:lla Miten säätää/optimoida tavoitejakaumia? - Tavallisesti epäsuorasti arvomatriisien kautta: GA:lla toteutuneet pölkytykset tavoitteiksi Tavoitejakauma on prioriteettilista - Tulkitaan tukkiluokkien prioriteetit hintoina Ohjataan pölkytystä pelkällä tavoitejakaumalla ns. greedy algorithm (ahne algoritmi): Eniten puutetta suurin prioriteetti

18 Tavoitejakauman optimointi GA:lla Pölkytysalgoritmi: 1. Valitse katkontavaihtoehto, joka maksimoi rungon arvon (arvoapteeraus) 2. Päivitä prioriteetti(tavoite)matriisi vertaamalla toteutunutta kumulatiivista tukkijakaumaa tavoitejakaumaan: ( 1+ n) p(priority) = m n ( 1+ m) missä m = Tukkien tavoitemäärä tukkiluokassa (i, j) n = Tukkien todellinen kumulatiivinen lukumäärä tukkiluokassa (i, j). Palaa kohtaan 1

19 Kantoja riittää kaskessa... Rajoitevapaa optimointi ei vastaa todellisuutta - Tavaralajeilla määrätavoitteita/-rajoitteita - Pieniä tavaralajieriä kallista keräillä ja kuljettaa Yksitavoiteoptimointi vain osaoptimointia - Katkontatulos vain yksi kriteeri muiden joukossa - Esim. kuljetusetäisyys keskeinen tekijä tavaralajivalinnassa Rajoitettu monitavoitteinen optimointiongelma Miten saada luotettavaa ennakkotietoa? - Totaalimittaus ilmakuvilta?

Katkonta - ensimmäinen jalostuspäätös vai raaka-aineen hinnan määritystä?

Katkonta - ensimmäinen jalostuspäätös vai raaka-aineen hinnan määritystä? Katkonta - ensimmäinen jalostuspäätös vai raaka-aineen hinnan määritystä? Puupäivä, torstaina 27.10.2011 Jukka Malinen Metla / Joensuu Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Evoluutiopohjainen monitavoiteoptimointi MCDM ja EMO Monitavoiteoptimointi kuuluu

Lisätiedot

Leimikoiden apteerausvaihtoehtojen optimointi esitutkimus. Vesa Imponen. Metsätehon raportti 48 24.2.1998

Leimikoiden apteerausvaihtoehtojen optimointi esitutkimus. Vesa Imponen. Metsätehon raportti 48 24.2.1998 Leimikoiden apteerausvaihtoehtojen optimointi esitutkimus Vesa Imponen Metsätehon raportti 48 24.2.1998 Konsortiohanke: A.Ahlström Osakeyhtiö, Aureskoski Oy, Enso Oy, Koskitukki Oy, Kuhmo Oy, Metsähallitus,

Lisätiedot

Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu

Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu (Valmiin työn esittely) 11.4.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Työn tavoite Tutkia evoluutioalgoritmia (Lee

Lisätiedot

Tilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen. Pekka Leskinen ja Tuomo Kainulainen Metla

Tilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen. Pekka Leskinen ja Tuomo Kainulainen Metla \esitelm\hki0506.ppt 18.5.2006 Tilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen Pekka Leskinen ja Tuomo Kainulainen Metla FORS-iltapäiväseminaari 24.5.2006: Operaatiotutkimus

Lisätiedot

Petri Hannuksela. Tukkien tavoite- ja toteutuneiden jakaumien vertailua

Petri Hannuksela. Tukkien tavoite- ja toteutuneiden jakaumien vertailua PRO GRADU -TUTKIELMA Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede Marraskuu 2006 Petri Hannuksela Tukkien tavoite- ja toteutuneiden jakaumien vertailua Tampereen Yliopisto Matematiikan,

Lisätiedot

Arkkitehtuurien tutkimus Outi Räihä. OHJ-3200 Ohjelmistoarkkitehtuurit. Darwin-projekti. Johdanto

Arkkitehtuurien tutkimus Outi Räihä. OHJ-3200 Ohjelmistoarkkitehtuurit. Darwin-projekti. Johdanto OHJ-3200 Ohjelmistoarkkitehtuurit 1 Arkkitehtuurien tutkimus Outi Räihä 2 Darwin-projekti Darwin-projekti: Akatemian rahoitus 2009-2011 Arkkitehtuurisuunnittelu etsintäongelmana Geneettiset algoritmit

Lisätiedot

GA & robot path planning. Janne Haapsaari AUTO Geneettiset algoritmit

GA & robot path planning. Janne Haapsaari AUTO Geneettiset algoritmit GA & robot path planning Janne Haapsaari AUTO3070 - Geneettiset algoritmit GA robotiikassa Sovelluksia liikkeen optimoinnissa: * eri vapausasteisten robottien liikeratojen optimointi * autonomisten robottien

Lisätiedot

Darwin: Tutkimusprojektin esittely

Darwin: Tutkimusprojektin esittely 1 Darwin: Tutkimusprojektin esittely Tutkimusongelma: voidaanko ohjelmistoarkkitehtuuri generoida automaattisesti? Suomen Akatemian rahoittama tutkimusprojekti 2009-2011 TTY & TaY yhteistyö Ks. http://practise.cs.tut.fi/project.php?project=darwin

Lisätiedot

Vaihtoehtoisia malleja puuston kokojakauman muodostamiseen

Vaihtoehtoisia malleja puuston kokojakauman muodostamiseen Vaihtoehtoisia malleja puuston kokojakauman muodostamiseen Jouni Siipilehto, Harri Lindeman, Jori Uusitalo, Xiaowei Yu, Mikko Vastaranta Luonnonvarakeskus Geodeettinen laitos Helsingin yliopisto Vertailtavat

Lisätiedot

Kuvioton metsäsuunnittelu Paikkatietomarkkinat, Helsinki Tero Heinonen

Kuvioton metsäsuunnittelu Paikkatietomarkkinat, Helsinki Tero Heinonen Paikkatietomarkkinat, Helsinki 3.11.2009 Tero Heinonen Sisältö Kuvioton metsäsuunnittelu Optimointi leimikon suunnittelumenetelmänä Verrataan optimointi lähestymistapaa diffuusiomenetelmään Muuttuvat käsittely-yksiköt

Lisätiedot

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003 Männyn laaturajojen integrointi runkokäyrän ennustamisessa Laura Koskela Tampereen yliopisto 9.6.2003 Johdantoa Pohjoismaisen käytännön mukaan rungot katkaistaan tukeiksi jo metsässä. Katkonnan ohjauksessa

Lisätiedot

Paikkatietoa metsäbiomassan määrästä tarvitaan

Paikkatietoa metsäbiomassan määrästä tarvitaan Biomassan estimointi laseraineiston, ilmakuvien ja maastomittausten perusteella Esitys Metsätieteen Päivän Taksaattorisessiossa 26.10.2011 Reija Haapanen, Sakari Tuominen ja Risto Viitala Paikkatietoa

Lisätiedot

Voidaanko laatu huomioida männyn katkonnassa? Jori Uusitalo Joensuun yliopisto

Voidaanko laatu huomioida männyn katkonnassa? Jori Uusitalo Joensuun yliopisto Voidaanko laatu huomioida männyn katkonnassa? Jori Uusitalo Joensuun yliopisto Esityksen sisältö Katkonnan ohjauksen perusteet Tutkimustuloksia Laadun huomioon ottaminen katkonnassa Katkonnan ohjauksen

Lisätiedot

Tukkijakauman ohjaus. Tuomo Vuorenpää Anna Aaltonen Vesa Imponen Eero Lukkarinen

Tukkijakauman ohjaus. Tuomo Vuorenpää Anna Aaltonen Vesa Imponen Eero Lukkarinen Tukkijakauman ohjaus Tuomo Vuorenpää Anna Aaltonen Vesa Imponen Eero Lukkarinen Metsätehon raportti 38 23.12.1997 Konsortiohanke: A.Ahlström Osakeyhtiö, Aureskoski Oy, Enso Oyj, Koskitukki Oy, Kuhmo Oy,

Lisätiedot

Puunkorjuun tulevaisuus. Aluejohtaja Jori Uusitalo 21.5.2014

Puunkorjuun tulevaisuus. Aluejohtaja Jori Uusitalo 21.5.2014 Aluejohtaja 21.5.2014 Puunkorjuun kehittämisen painopisteet Puunkorjuun kausivaihtelun vähentäminen Puun jalostamisen ja katkonnan optimointi 1000 m3 Kausivaihtelun vähentäminen 6000 Puunkorjuun kausivaihtelu

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

hinnoitteluun ja puukauppaan

hinnoitteluun ja puukauppaan Työkaluja puutavaran hinnoitteluun ja puukauppaan PUU tutkimus ja kehittämisohjelman väliseminaari 6.9.2012 Sokos Hotel Vaakuna, Hämeenlinna Jukka Malinen Metla / Joensuu Metsäntutkimuslaitos Skogsforskningsinstitutet

Lisätiedot

Algoritmit 2. Luento 12 Ke Timo Männikkö

Algoritmit 2. Luento 12 Ke Timo Männikkö Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit

Lisätiedot

TTY Porin laitoksen optimointipalvelut yrityksille

TTY Porin laitoksen optimointipalvelut yrityksille TTY Porin laitoksen optimointipalvelut yrityksille Timo Ranta, TkT Frank Cameron, TkT timo.ranta@tut.fi frank.cameron@tut.fi Automaation aamukahvit 28.8.2013 Optimointi Tarkoittaa parhaan ratkaisun valintaa

Lisätiedot

Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely)

Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Jari Hast xx.12.2013 Ohjaaja: Harri Ehtamo Valvoja: Hari Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Optimoinnin sovellukset

Optimoinnin sovellukset Optimoinnin sovellukset Timo Ranta Tutkijatohtori TTY Porin laitos OPTIMI 4.12.2014 Mitä optimointi on? Parhaan ratkaisun systemaattinen etsintä kaikkien mahdollisten ratkaisujen joukosta Tieteellinen

Lisätiedot

Puun kasvu ja runkomuodon muutokset

Puun kasvu ja runkomuodon muutokset Puun kasvu ja runkomuodon muutokset Laserkeilaus metsätieteissä 6.10.2017 Ville Luoma Helsingin yliopisto Centre of Excellence in Laser Scanning Research Taustaa Päätöksentekijät tarvitsevat tarkkaa tietoa

Lisätiedot

Tulevaisuuden Saha seminaari. SisuPUUN tavoitteet 27.05.2009 Jouko Silen

Tulevaisuuden Saha seminaari. SisuPUUN tavoitteet 27.05.2009 Jouko Silen Tulevaisuuden Saha seminaari SisuPUUN tavoitteet 27.05.2009 Jouko Silen SisuPUU, miksi? Lähtökohtana projektissa: 2004 2005 vuosien tappiolliset tulokset Sahateollisuuden kehitysvaihtoehdot 1. Keskittyminen

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien

Lineaaristen monitavoiteoptimointitehtävien Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

Vuoden 2005 eläkeuudistuksen

Vuoden 2005 eläkeuudistuksen Vuoden 2005 eläkeuudistuksen vaikutus eläkkeelle siirtymiseen Roope Uusitalo HECER, Helsingin yliopisto Aktuaariyhdistys 23.10. 2013 Tutkimuksen tavoite Arvioidaan vuoden 2005 uudistusten kokonaisvaikutus

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

POHJOIS-KARJALAN AMMATTIKORKEAKOULU KATKONTAOHJEIDEN KEHITTÄMINEN SIMULOINNIN AVULLA KUUSITUKKIJAKAUMAN PARANTAMISEKSI

POHJOIS-KARJALAN AMMATTIKORKEAKOULU KATKONTAOHJEIDEN KEHITTÄMINEN SIMULOINNIN AVULLA KUUSITUKKIJAKAUMAN PARANTAMISEKSI POHJOIS-KARJALAN AMMATTIKORKEAKOULU Metsätalouden koulutusohjelma Mikko Anttilainen KATKONTAOHJEIDEN KEHITTÄMINEN SIMULOINNIN AVULLA KUUSITUKKIJAKAUMAN PARANTAMISEKSI Opinnäytetyö Toukokuu 2012 OPINNÄYTETYÖ

Lisätiedot

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Erkki Heikkola Numerola Oy, Jyväskylä Laskennallisten tieteiden päivä 29.9.2010, Itä-Suomen yliopisto, Kuopio Putkistojen äänenvaimentimien suunnittelu

Lisätiedot

klusteroi data haluttuun määrään klustereita tee n-gram -mallit klustereista (tasoitus) estimoi sekoitteiden painokertoimet λ k

klusteroi data haluttuun määrään klustereita tee n-gram -mallit klustereista (tasoitus) estimoi sekoitteiden painokertoimet λ k /DXU6HWVRH /DXU6HWVRH#KXWI 5XP0,\HUDG0DU2VWHGRUI0RGHJ/RJ'VWDH'HHGHH /DJXDJH7R0[WXUHV9HUVXV'\DP&DKH0RGHV,7UDV VHHKDGDXGRURHVVJ-DXDU\ $KHVHRWHPDGHD.l\WlW l.rhhvdwxrvd

Lisätiedot

Luento 4: Lineaarisen tehtävän duaali

Luento 4: Lineaarisen tehtävän duaali Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea

Lisätiedot

Metsätiedon lähteitä ja soveltamismahdollisuuksia

Metsätiedon lähteitä ja soveltamismahdollisuuksia Metsätiedon lähteitä ja soveltamismahdollisuuksia Tapio Räsänen Metsäteho Oy FOREST BIG DATA hankkeen tulosseminaari 8.3.2016 Heureka, Vantaa Tietojärjestelmät ja sovellukset Sovellus X Sovellus X Sovellus

Lisätiedot

AS Automaation signaalinkäsittelymenetelmät. Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy.

AS Automaation signaalinkäsittelymenetelmät. Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy. AS-84.161 Automaation signaalinkäsittelymenetelmät Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy. Tämän jälkeen täytyy: 1. Lisätä uusi sisääntulo edit->add input 2. nimetä

Lisätiedot

ARVO ohjelmisto. Tausta

ARVO ohjelmisto. Tausta ARVO ohjelmisto Tausta Jukka Malinen, Metla Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi Ennakkotiedon tarve - Metsänomistaja 25.1.2010 2 Ennakkotiedon

Lisätiedot

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization 7.5.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Tausta Ilmavoimilla tärkeä rooli maanpuolustuksessa Rauhan aikana

Lisätiedot

SIMO-seminaari. 23.3.2007 Helsinki

SIMO-seminaari. 23.3.2007 Helsinki SIMO-seminaari 23.3.2007 Helsinki Ohjelma Tässä ollaan nyt: SIMO-demo Kahvi Jotain erilaistakin: Tapion Suokanta Jatkokuviot SIMO-demo Datana Metsähallituksen H_alueelta 240, T_piiristä 5, osastosta 181

Lisätiedot

Search space traversal using metaheuristics

Search space traversal using metaheuristics Search space traversal using metaheuristics Mika Juuti 11.06.2012 Ohjaaja: Ville Mattila Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki

Lisätiedot

Tiedonsiirron kokonaisoptimointi erilaisten tietoverkkojen yhteiskäytössä

Tiedonsiirron kokonaisoptimointi erilaisten tietoverkkojen yhteiskäytössä Tiedonsiirron kokonaisoptimointi erilaisten tietoverkkojen yhteiskäytössä Juuso Meriläinen 27.11.2015 Juuso Meriläinen Tiedonsiirron kokonaisoptimointi erilaisten tietoverkkojen yhteiskäytössä 1 / 11 Johdanto

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

PURO Puuraaka-aineen määrän ja laadun optimointi metsänkasvatuksessa ja teollisuuden prosesseissa. Annikki Mäkelä HY Metsäekologian laitos

PURO Puuraaka-aineen määrän ja laadun optimointi metsänkasvatuksessa ja teollisuuden prosesseissa. Annikki Mäkelä HY Metsäekologian laitos PURO Puuraaka-aineen määrän ja laadun optimointi metsänkasvatuksessa ja teollisuuden prosesseissa Annikki Mäkelä HY Metsäekologian laitos Tausta» Kilpailu kiristynyt - miten saada metsätalous kannattavammaksi

Lisätiedot

Geneettiset algoritmit

Geneettiset algoritmit Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin

Lisätiedot

Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa. Tapio Nummi Tampereen yliopisto

Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa. Tapio Nummi Tampereen yliopisto Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa Tapio Nummi Tampereen yliopisto Runkokäyrän ennustaminen Jotta runko voitaisiin katkaista optimaalisesti pitäisi koko runko mitata etukäteen. Käytännössä

Lisätiedot

IT / PC LISÄOMINAISUUDET

IT / PC LISÄOMINAISUUDET Motomit IT / PC Arvoapteeraus Tiedonsiirto Saksikalibrointi Satunnaisrunko-otanta SISÄLLYSLUETTELO: Motomit PC Hakkuukoneen apteeraus- ja ohjausjärjestelmä 1 ARVO- JA JAKAUMA-APTEERAUS...3 1.1 Arvoapteeraus...3

Lisätiedot

Luento 6: Monitavoiteoptimointi

Luento 6: Monitavoiteoptimointi Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman

Lisätiedot

ARVO ohjelmisto. Tausta

ARVO ohjelmisto. Tausta ARVO ohjelmisto Tausta Jukka Malinen, Metla Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi Ennakkotiedon tarve - Metsänomistaja 11.2.2010 2 Ennakkotiedon

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Avainsanojen poimiminen Eeva Ahonen

Avainsanojen poimiminen Eeva Ahonen Avainsanojen poimiminen 5.10.2004 Eeva Ahonen Sisältö Avainsanat Menetelmät C4.5 päätöspuut GenEx algoritmi Bayes malli Testit Tulokset Avainsanat Tiivistä tietoa dokumentin sisällöstä ihmislukijalle hakukoneelle

Lisätiedot

Puuraaka-aineen hinnoittelumenetelmät

Puuraaka-aineen hinnoittelumenetelmät Puuraaka-aineen hinnoittelumenetelmät Vesa Berg, Harri Kilpeläinen & Jukka Malinen Metsäntutkimuslaitos Joensuun yksikkö Männyn hankinta ja käyttö puutuotealalla Kehityshankkeen tiedonsiirtoseminaari Pohjois-Karjalassa

Lisätiedot

ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2

ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2 ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI Tuomas Airaksinen 1, Erkki Heikkola 2 1 Jyväskylän yliopisto PL 35 (Agora), 40014 Jyväskylän yliopisto tuomas.a.airaksinen@jyu.fi

Lisätiedot

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS 1. Suorakaiteen muotoisen lämmönvaraajan korkeus on K, leveys L ja syvyys S yksikköä. Konvektiosta ja säteilystä johtuvat lämpöhäviöt ovat verrannollisia lämmönvaraajan lämpötilan T ja ympäristön lämpötilan

Lisätiedot

KUUSEN OMINAISUUSPOTENTIAALI

KUUSEN OMINAISUUSPOTENTIAALI KUUSEN OMINAISUUSPOTENTIAALI Marketta Sipi ja Antti Rissanen Helsingin yliopisto Metsävarojen käytön laitos Taustaa» Puuaineen ja kuitujen ominaisuudet vaihtelevat» Runkojen sisällä» Runkojen välillä»

Lisätiedot

SIMO-pilotointi Metsähallituksessa. SIMO-seminaari

SIMO-pilotointi Metsähallituksessa. SIMO-seminaari SIMO-pilotointi Metsähallituksessa SIMO-seminaari Hakkuiden optimointi tiimitasolla Metsähallituksen metsissä Heli Virtasen Pro gradu -tutkielma Tutkimusalue ja aineisto Metsätalouden Kainuun alue Kuhmon

Lisätiedot

OHJ-3100 Ohjelmien ylläpito ja evoluutio. Harjoitustyö. Ohjaaja: Outi Sievi-Korte outi.sievi-korte@tut.fi TE213 Päivystys ti klo 14-16

OHJ-3100 Ohjelmien ylläpito ja evoluutio. Harjoitustyö. Ohjaaja: Outi Sievi-Korte outi.sievi-korte@tut.fi TE213 Päivystys ti klo 14-16 OHJ-3100 Ohjelmien ylläpito ja evoluutio 1 Harjoitustyö Ohjaaja: Outi Sievi-Korte outi.sievi-korte@tut.fi TE213 Päivystys ti klo 14-16 2 Yleiskatsaus Yleisesittely Geneettiset algoritmit Ohjelmistoarkkitehtuurit

Lisätiedot

11. laskuharjoituskierros, vko 15, ratkaisut

11. laskuharjoituskierros, vko 15, ratkaisut 11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa

Lisätiedot

Keskeiset aihepiirit

Keskeiset aihepiirit TkT Harri Eskelinen Keskeiset aihepiirit 1 Perusmääritelmät geometrisiä toleransseja varten 2 Toleroitavat ominaisuudet ja niiden määritelmät 3 Teknisiin dokumentteihin tehtävät merkinnät 4 Geometriset

Lisätiedot

Männyn oksaisuuslaadun vaihtelu ja sen ennustaminen katkonnan yhteydessä. Jarkko Isotalo Tampereen yliopisto

Männyn oksaisuuslaadun vaihtelu ja sen ennustaminen katkonnan yhteydessä. Jarkko Isotalo Tampereen yliopisto Männyn oksaisuuslaadun vaihtelu ja sen ennustaminen katkonnan yhteydessä Jarkko Isotalo Tampereen yliopisto 9.6.2003 Laatuaineisto Laatuaineisto koostuu kuuden eri leimikon mäntyrungoista: 1) Ryösä (20

Lisätiedot

Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa

Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa Mat-2.4142 Optimointiopin seminaari kevät 2011 Kleinmuntz ja Kleinmuntz1999 TEHTÄVÄ Sairaalan strategisen investointibudjetin

Lisätiedot

5.11.2009. www.metsateho.fi. 5.11.2009 Kalle Kärhä: Integroituna vai ilman? 5.11.2009 2

5.11.2009. www.metsateho.fi. 5.11.2009 Kalle Kärhä: Integroituna vai ilman? 5.11.2009 2 Integroituna vai ilman? Kalle Kärhä, Metsäteho Oy Metsätieteen päivä 2009 Näkökulmia puunkorjuun kehitykseen ja kehittämiseen 4.11.2009, Tieteiden talo, Helsinki Tuotantoketjuja tehostettava pieniläpimittaisen,

Lisätiedot

Tentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence

Tentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence Tentin materiaali Sivia: luvut 1,2,3.1-3.3,4.1-4.2,5 MacKay: luku 30 Gelman, 1995: Inference and monitoring convergence Gelman & Meng, 1995: Model checking and model improvement Kalvot Harjoitustyöt Tentin

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

RUNKOPANKIN KÄYTTÖSOVELLUKSET

RUNKOPANKIN KÄYTTÖSOVELLUKSET RUNKOPANKIN KÄYTTÖSOVELLUKSET Projektit Projekti 202 Leimikoiden korjuuohjelman ja apteerausvaihtoehtojen optimointi suunnattiin runkopankin käyttösovellusten kehittämistä tukevaksi ja toteutettiin yhdessä

Lisätiedot

Osakesalkun optimointi

Osakesalkun optimointi Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja 811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A

Lisätiedot

Tree map system in harvester

Tree map system in harvester Tree map system in harvester Fibic seminar 12.6.2013 Lahti Timo Melkas, Metsäteho Oy Mikko Miettinen, Argone Oy Kalle Einola, Ponsse Oyj Project goals EffFibre project 2011-2013 (WP3) To evaluate the accuracy

Lisätiedot

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi

Lisätiedot

Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9

Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9 Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9 1.1 PARAMETRITTOMIEN MENETELMIEN LYHYT HISTORIA 11 1.2 PARAMETRITTOMAT MENETELMÄT IHMISTIETEISSÄ

Lisätiedot

12. Algoritminsuunnittelun perusmenetelmiä

12. Algoritminsuunnittelun perusmenetelmiä 12. Algoritminsuunnittelun perusmenetelmiä Ei vain toteuteta tietorakenteita algoritmeilla, vaan myös tietorakenteita käytetään tyypillisesti erilaisten algoritmien yhteydessä. Kun nämä tietojenkäsittelytieteen

Lisätiedot

12. Algoritminsuunnittelun perusmenetelmiä

12. Algoritminsuunnittelun perusmenetelmiä 12. Algoritminsuunnittelun perusmenetelmiä Ei vain toteuteta tietorakenteita algoritmeilla, vaan myös tietorakenteita käytetään tyypillisesti erilaisten algoritmien yhteydessä. Kun nämä tietojenkäsittelytieteen

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

tehostamisvaraa? WOODVALUE hankkeen tuloksia Heikki Korpunen Hämeenlinna 6.9.2012

tehostamisvaraa? WOODVALUE hankkeen tuloksia Heikki Korpunen Hämeenlinna 6.9.2012 Onko puun hankinnan ja käytön ketjuissa tehostamisvaraa? WOODVALUE hankkeen tuloksia PUUvastaa haasteisiin: Puutametsästä markkinoille Heikki Korpunen Hämeenlinna 6.9.2012 Esityksen sisältö Puun arvoketjututkimuksen

Lisätiedot

Harjoitus 9: Optimointi I (Matlab)

Harjoitus 9: Optimointi I (Matlab) Harjoitus 9: Optimointi I (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien

Lisätiedot

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0

Lisätiedot

Suomenhevosten askelja hyppyominaisuuksien periytyvyys. Suomenhevosten jalostuspäivät 10.2.2016 Aino Aminoff

Suomenhevosten askelja hyppyominaisuuksien periytyvyys. Suomenhevosten jalostuspäivät 10.2.2016 Aino Aminoff Suomenhevosten askelja hyppyominaisuuksien periytyvyys Suomenhevosten jalostuspäivät 10.2.2016 Aino Aminoff Suomenhevosten laatuarvostelu Suomenhevosten laatuarvostelu on 3-5 v. suomenhevosille suunnattu

Lisätiedot

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012 Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170

Lisätiedot

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea.

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea. Roolit Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 25.3.2011 J. Kleinberg kehitti -algoritmin (Hypertext Induced Topic Search) hakukoneen osaksi. n taustalla

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

TILASTOLLINEN OPPIMINEN

TILASTOLLINEN OPPIMINEN 301 TILASTOLLINEN OPPIMINEN Salmiakki- ja hedelmämakeisia on pakattu samanlaisiin käärepapereihin suurissa säkeissä, joissa on seuraavat sekoitussuhteet h 1 : 100% salmiakkia h 2 : 75% salmiakkia + 25%

Lisätiedot

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista

Lisätiedot

Itseoppivat ja joustavat tuotantojärjestelmät puutuoteteollisuudessa (SisuPUU) Teollisuusseminaari 27. toukokuuta 2009

Itseoppivat ja joustavat tuotantojärjestelmät puutuoteteollisuudessa (SisuPUU) Teollisuusseminaari 27. toukokuuta 2009 Itseoppivat ja joustavat tuotantojärjestelmät puutuoteteollisuudessa (SisuPUU) Teollisuusseminaari 7. toukokuuta 009 Tukkien lajittelun optimointi Arto Usenius ja Antti Heikkilä Laatu Latvaläpimitta Pituus

Lisätiedot

Laboratorioanalyysit, vertailunäytteet ja tilastolliset menetelmät

Laboratorioanalyysit, vertailunäytteet ja tilastolliset menetelmät Jarmo Koskiniemi Maataloustieteiden laitos Helsingin yliopisto 0504151624 jarmo.koskiniemi@helsinki.fi 03.12.2015 Kolkunjoen taimenten geneettinen analyysi Näytteet Mika Oraluoma (Vesi-Visio osk) toimitti

Lisätiedot

Laskennallinen data-analyysi II

Laskennallinen data-analyysi II Laskennallinen data-analyysi II Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Kevät 2007 Ulottuvuuksien vähentäminen, SVD, PCA Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto visualisointi

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Monitavoiteoptimointi

Monitavoiteoptimointi Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa

Lisätiedot

Hämeenlinna 6.9.2012. Jari Lindblad Jukka Antikainen. Jukka.antikainen@metla.fi 040 801 5051

Hämeenlinna 6.9.2012. Jari Lindblad Jukka Antikainen. Jukka.antikainen@metla.fi 040 801 5051 Puutavaran mittaus Hämeenlinna 6.9.2012 Jari Lindblad Jukka Antikainen Metsäntutkimuslaitos, Itä Suomen alueyksikkö, Joensuu Jukka.antikainen@metla.fi 040 801 5051 SISÄLTÖ 1. Puutavaran mittaustarkkuus

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

TALOTEHTAAN SAHAUKSEN RAAKA- AINEHANKINNAN OPTIMOINTI

TALOTEHTAAN SAHAUKSEN RAAKA- AINEHANKINNAN OPTIMOINTI TALOTEHTAAN SAHAUKSEN RAAKA- AINEHANKINNAN OPTIMOINTI Perttu Kemppanen Opinnäytetyö Metsätalouden koulutusohjelma Metsätalousinsinööri (AMK) 2014 LAPIN AMMATTIKORKEAKOULU Luonnonvara-ala Metsätalousinsinööri

Lisätiedot

Jonojen matematiikkaa

Jonojen matematiikkaa Lectio praecursoria Jonojen matematiikkaa Samuli Aalto luento.ppt 1 Sisältö Johdanto Joukkopalveltu jono (batch service queue) Nestevarastomalli (fluid flow storage model) 2 Reaalimaailman ilmiö... ÿþýüûr.u.p.t.

Lisätiedot

Puukaupan uudet tuulet - rungonosahinnoittelu. Jori Uusitalo Metla 02.10.2014

Puukaupan uudet tuulet - rungonosahinnoittelu. Jori Uusitalo Metla 02.10.2014 Puukaupan uudet tuulet - rungonosahinnoittelu Jori Uusitalo Metla 02.10.2014 Puun hinnoittelutapoja Puutavaralajihinnoittelu hinta tavaralajille Runkohinnoittelu yksi hinta koko rungolle Rungonosahinnoittelu

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 8: Pienen ohjelmointikielen tulkki (ohjelmoitava laskin) (mm. SICP 4-4.1.5 osin) Riku Saikkonen 15. 11. 2012 Sisältö 1 Nelilaskintulkki, globaalit muuttujat

Lisätiedot

Vanhan tarinan mukaan eräässä syrjäisessä kylässä

Vanhan tarinan mukaan eräässä syrjäisessä kylässä Metsätieteen aikakauskirja 4/1999 Tieteen tori Veli-Pekka Kivinen ja Jori Uusitalo Sumea logiikka ja sen soveltaminen hakkuukoneen apteerauksen ohjauksessa e e m t a Maailma on sumea Vanhan tarinan mukaan

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Merkkausvärin kehittäminen

Merkkausvärin kehittäminen Merkkausvärin kehittäminen Heikki Juhe, 26.1.2011 1. Johdanto JL-tuotteet aloitti keväällä 2010 tutkimus- ja kehitysprojektin, jonka tarkoituksena oli tutkia käytössä olevien merkkausvärien imeytyvyyttä

Lisätiedot