B. Siten A B, jos ja vain jos x A x

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "B. Siten A B, jos ja vain jos x A x"

Transkriptio

1 Mat Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Alkio, Ehdollinen todennäköisyys, Ehtotapahtuma, Empiirinen todennäköisyys, Erotustapahtuma, Frekvenssi, Frekvenssitulkinta, Joukko, Klassinen todennäköisyys, Koetoisto, Komplementti, Komplementtitapahtuma, Leikkaus, Lukumääräfunktio, Mahdoton tapahtuma, Mitta, Otanta, Otanta palauttaen, Otanta palauttamatta, Otosavaruus, Perusjoukko, Pistevieraus, Riippumattomuus, Sattuma, Satunnaisilmiö, Satunnaiskoe, Satunnaisotanta, Suhteellinen frekvenssi, Suhteellinen osuus, Suotuisa alkeistapahtuma, Symmetrisyys, Tapahtuma, Todennäköisyys, Toisensa poissulkevuus, Tyhjä joukko, Tulosääntö, Unioni, Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö Joukko-oppi Joukko ja sen alkiot Joukko voidaan määritellä luettelemalla sen alkiot. Matematiikassa joukko määritellään tavallisesti antamalla ehto, jonka joukon alkioiden on toteutettava. Joukkoja on aina syytä tarkastella jonkin hyvin määritellyn perusjoukon osajoukkoina. Jos perusjoukon S alkio x on joukon A alkio eli x kuuluu joukkoon A, niin merkitsemme x A Vastaavasti, jos perusjoukon S alkio x ei ole joukon A alkio eli x ei kuulu joukkoon A, niin merkitsemme x A Jos A on niiden perusjoukon S alkioiden x joukko, jotka toteuttavat ehdon P(x) eli joille lause P(x) on tosi, niin merkitsemme { ( )} A= x S P x Jos joukko A on äärellinen ja sen alkiot ovat a 1, a 2,, a n merkitsemme A = {a 1, a 2,, a n } Osajoukko Olkoot joukot A ja B perusjoukon S osajoukkoja. Jos jokainen joukon A alkio on myös joukon B alkio, joukko A on joukon B osajoukko ja merkitsemme A B. Siten A B, jos ja vain jos x A x B Ilkka Mellin (2008) 1/28

2 Tyhjä joukko Joukko on tyhjä, jos siinä ei ole yhtään alkiota. Merkitsemme tyhjää joukkoa symbolilla Tyhjä joukko on kaikkien joukkojen osajoukko. Jos siis A on perusjoukon S mielivaltainen osajoukko, niin A Joukko-opin perusoperaatiot: yhdiste Olkoot joukot A ja B perusjoukon S osajoukkoja. Joukkojen A ja B unioni eli yhdiste A B on niiden perusjoukon S alkioiden joukko, jotka kuuluvat joukkoon A tai joukkoon B (tai molempiin): { } A B= x S x A tai x B Joukko-opin perusoperaatiot: leikkaus Olkoot joukot A ja B perusjoukon S osajoukkoja. Joukkojen A ja B leikkaus A B on niiden perusjoukon S alkioiden joukko, jotka kuuluvat joukkoon A ja joukkoon B: Jos { } A B= x S x A ja x B A B = niin sanomme, että joukot A ja B ovat pistevieraita. Joukko-opin perusoperaatiot: komplementti Olkoon joukko A perusjoukon S osajoukko. Joukon A komplementti A c on niiden perusjoukon S alkioiden joukko, jotka eivät kuulu joukkoon A: { } c A = x S x A Joukko-opin perusoperaatiot: erotus Olkoot joukot A ja B perusjoukon S osajoukkoja. Joukkojen A ja B erotus A\B on niiden perusjoukon S alkioiden joukko, jotka kuuluvat joukkoon A, mutta eivät kuulu joukkoon B: A\B = { x x A ja x B} Selvästi A\B = A B c Todennäköisyys ja sen määritteleminen Satunnaisilmiö Reaalimaailman ilmiö on stokastinen ilmiö eli satunnaisilmiö, jos sillä on seuraavat ominaisuudet: (i) Ilmiö voi päätyä alkutilastaan useisiin erilaisiin lopputiloihin eli ilmiöllä on useita erilaisia vaihtoehtoisia tuloksia. (ii) Ilmiön alkutilan perusteella ei voida tarkasti ennustaa ilmiön lopputilaa eli sitä, mikä mahdollisista tulosvaihtoehdoista realisoituu eli toteutuu. Ilkka Mellin (2008) 2/28

3 (iii) Vaikka ilmiön lopputilaa ei voida ennustaa tarkasti, tulosvaihtoehtojen suhteellisten frekvenssien eli osuuksien nähdään ilmiön toistuessa käyttäytyvän säännönmukaisesti. Kutsumme satunnaisilmiötä usein satunnaiskokeeksi ja satunnaisilmiön esiintymiskertaa koetoistoksi. Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruskäsitteet ovat otosavaruus, tapahtuma ja alkeistapahtuma: (i) Sanomme, että satunnaisilmiön tulosvaihtoehto on alkeistapahtuma, jos satunnaisilmiötä ei voida purkaa sitä alkeellisempiin tulosvaihtoehtoihin (ii) Kutsumme satunnaisilmiön kaikkien alkeistapahtumien muodostamaa joukkoa otosavaruudeksi. (iii) Satunnaisilmiön tapahtumat ovat satunnaisilmiön alkeistapahtumien muodostamia otosavaruuden osajoukkoja. Kun sanomme, että jokin tapahtuma sattuu, tarkoitamme aina sitä, että jokin tapahtumaan liittyvistä alkeistapahtumista sattuu. Todennäköisyyslaskennan ja joukko-opin peruskäsitteet vastaavat seuraavalla tavalla toisiaan: Otosavaruus Perusjoukko Alkeistapahtuma Perusjoukon alkio Tapahtuma Perusjoukon osajoukko Todennäköisyys ja sen perusominaisuudet Olkoon A jokin otosavaruuden S tapahtuma eli olkoon A S Todennäköisyys Pr( ) on joukkofunktio, joka liittää tapahtumaan A reaaliluvun: Pr( A) Todennäköisyyden perusominaisuudet: (i) Olkoon tapahtuma A jokin otosavaruuden S tapahtuma. Tällöin 0 Pr(A) 1 (ii) Tyhjä joukko ja mahdoton tapahtuma samaistetaan ja Pr( ) = 0 (iii) Otosavaruus S ja varma tapahtuma samaistetaan ja Pr(S) = 1 Lukumääräfunktio Olkoon = n( A) na funktio, joka kertoo joukon A alkioiden lukumäärän. Jos siis A= { a1, a2,, a k } Ilkka Mellin (2008) 3/28

4 on äärellinen joukko, jonka alkioiden lukumäärä on k, niin n = n( A) = k A Kutsumme funktiota n() lukumääräfunktioksi. Klassinen todennäköisyys Oletetaan, että äärellisen otosavaruuden S = {s 1, s 2,, s n } alkeistapahtumat s i, i = 1, 2,, n ovat symmetrisiä eli yhtä todennäköisiä ja olkoon tapahtuma A otosavaruuden S osajoukko. Tällöin tapahtuman A klassinen todennäköisyys Pr(A) saadaan määräämällä tapahtumalle A suotuisien alkeistapahtumien suhteellinen osuus kaikista alkeistapahtumista eli Pr(A) = n(a)/n(s) jossa ja Empiirinen todennäköisyys n(a) = tapahtumalle A suotuisien alkeistapahtumien lukumäärä = joukkoon A kuuluvien alkeistapahtumien lukumäärä n(s) = kaikkien mahdollisten alkeistapahtumien lukumäärä = otosavaruuteen S kuuluvien alkeistapahtumien lukumäärä Tarkastellaan satunnaiskoetta, jota voidaan toistaa siten, että seuraavat ehdot pätevät: (i) Kokeen olosuhteet säilyvät muuttumattomina koetoistosta toiseen. (ii) Koetoistot ovat riippumattomia siinä mielessä, että yhdenkään koetoiston tulos ei riipu siitä mitä tuloksia muista koetoistoista saadaan. Tarkkaillaan tapahtuman A esiintymistä koetoistojen aikana. Jos tapahtuman A suhteellinen frekvenssi eli osuus koetoistoista lähestyy jotakin kiinteätä lukua koetoistojen lukumäärän kasvaessa rajatta, lukua kutsutaan tapahtuman A empiiriseksi todennäköisyydeksi. Oletetaan, että satunnaiskoetta toistetaan n kertaa. Olkoon f A tapahtuman A frekvenssi eli lukumäärä koetoistojen joukossa. Tällöin f A n on tapahtuman A suhteellinen frekvenssi eli suhteellinen osuus koetoistojen joukossa. Jos koetoistojen lukumäärän n annetaan kasvaa rajatta ja tällöin (jossakin mielessä) f A n p A niin luku p A on tapahtuman A empiirinen todennäköisyys. Ilkka Mellin (2008) 4/28

5 Todennäköisyys mittana Todennäköisyys on mitta, joka mittaa satunnaisilmiön tapahtumavaihtoehtojen sattumisen mahdollisuutta. Todennäköisyyden frekvenssitulkinta Oletetaan, että toistamme jotakin satunnaiskoetta ja tarkkailemme jonkin tapahtuman suhteellisen frekvenssin käyttäytymistä koetoistojen aikana. Todennäköisyyden frekvenssitulkinnan mukaan ko. tapahtuman suhteellinen frekvenssi vaihtelee satunnaisesti koetoistosta toiseen, mutta saa keskimäärin ko. tapahtuman todennäköisyyttä lähellä olevia arvoja. Vahvistavatko havainnot tämän on empiirinen kysymys. Olkoon tapahtuman A todennäköisyys Pr(A) = p Oletetaan, että sitä satunnaiskoetta, jonka tulosvaihtoehtona tapahtuma A on, toistetaan n kertaa. Tällöin todennäköisyyden frekvenssitulkinnasta seuraa, että on odotettavissa, että tapahtuman A frekvenssi f A on lähellä lukua np Todennäköisyyslaskennan peruslaskusäännöt Todennäköisyyslaskennan perusoperaatiot Todennäköisyyslaskennan peruslaskusäännöillä tarkoitetaan laskusääntöjä, joilla jonkin ns. johdetun tapahtuman todennäköisyys saadaan määrätyksi jonkin tai joidenkin toisten tapahtumien toden-näköisyyksien avulla. Johdetut tapahtumat muodostetaan joukko-opin perusoperaatioilla toisista tapahtumista. Todennäköisyyslaskennan ja joukko-opin perusoperaatiot vastaavat seuraavalla tavalla toisiaan: Tapahtuma A ei satu eli tapahtuman A komplementtitapahtuma sattuu Joukon A komplementti A c Tapahtuma A sattuu tai tapahtuma B sattuu tai molemmat sattuvat Joukkojen A ja B unioni eli yhdiste A B Tapahtuma A sattuu ja tapahtuma B sattuu Joukkojen A ja B leikkaus A B Tapahtuma A sattuu ja tapahtuma B ei satu Joukkojen A ja B erotus A\B Komplementtitapahtuman todennäköisyys Olkoon tapahtuma A otosavaruuden S osajoukko. Joukon A komplementtitapahtuman { } c A = x S x A todennäköisyys on Pr(A c ) = 1 Pr(A) Ilkka Mellin (2008) 5/28

6 Yhdisteen todennäköisyys Olkoot tapahtumat A ja B otosavaruuden S osajoukkoja. Tällöin Pr(A B) on todennäköisyys sille, että tapahtuma A sattuu tai tapahtuma B sattuu tai molemmat sattuvat. Leikkauksen todennäköisyys. Olkoot tapahtumat A ja B otosavaruuden S osajoukkoja. Tällöin Pr(A B) on todennäköisyys sille, että tapahtuma A sattuu ja tapahtuma B sattuu. Yleinen yhteenlaskusääntö Yleisen yhteenlaskusäännön mukaan Pr(A B) = Pr(A) + Pr(B) Pr(A B) Toisensa poissulkevien tapahtumien yhteenlaskusääntö Jos tapahtumat A ja B eivät voi sattua samanaikaisesti eli ovat toisensa poissulkevia, niin A B = Siten toisensa poissulkevat tapahtumat ovat joukkoina pistevieraita. Jos tapahtumat A ja B ovat toisensa poissulkevia eli A B =, niin pätee toisensa poissulkevien tapahtumien yhteenlaskusääntö Pr(A B) = Pr(A) + Pr(B) Olkoot A 1, A 2,, A k pareittain toisensa poissulkevia, jolloin A i A j =, kun i j. Tällöin yhdisteen A 1 A 2 A k = A 1 tai A 2 tai tai A k sattuu todennäköisyys on Pr(A 1 A 2 A k ) = Pr(A 1 ) + Pr(A 2 ) + + Pr(A k ) Ehdollinen todennäköisyys Olkoot tapahtumat A ja B otosavaruuden S osajoukkoja. Tällöin tapahtuman A ehdollinen todennäköisyys ehdolla, että tapahtuma B on sattunut saadaan kaavalla Pr( A B) Pr( A B) = Pr( B) jossa Pr(A B) on todennäköisyys, että tapahtuma A ja tapahtuma B ovat sattuneet eli Pr(A B) on tapahtumien A ja B leikkauksen todennäköisyys. Yleinen tulosääntö Yleisen tulosäännön mukaan Pr(A B) = Pr(A B)Pr(B) Tarkastellaan tapahtumia A 1, A 2,, A k. Tällöin leikkauksen A 1 A 2 A k = A 1 ja A 2 ja ja A k sattuvat Ilkka Mellin (2008) 6/28

7 todennäköisyys on Pr( A1 A2 Ak ) = Pr( A) Pr( A A) Pr( A A A ) Pr( A A A A ) k 1 2 k 1 Riippumattomuus ja riippumattomien tapahtumien tulosääntö Tapahtumat A ja B ovat riippumattomia, jos ja vain jos riippumattomien tapahtumien tulosääntö Pr( A B) = Pr( A)Pr( B) pätee. Riippumattomien tapahtumien tulosääntö on yhtäpitävä sen kanssa, että Pr( A B) = Pr( A) Tarkastellaan tapahtumia A 1, A 2,, A k. Jos tapahtumat A 1, A 2,, A k ovat riippumattomia, niin pätee riippumattomien tapahtumien tulosäännön yleistys Pr( A A A ) = Pr( A) Pr( A ) Pr( A ) Pr( A ) Satunnaisotanta ja tulosääntö 1 2 k Olkoon perusjoukko S äärellinen. Yksinkertaisessa satunnaisotannassa perusjoukosta S poimitaan osajoukko B arpomalla perusjoukosta alkioita osajoukkoon B yksi alkio kerrallaan. Osajoukkoa B kutsutaan otokseksi ja arvonnassa käytettyä menetelmää otantamenetelmäksi. Tarkastellaan todennäköisyyttä saada otokseen B alkioita perusjoukon S osajoukosta A. Jos otanta tehdään ilman takaisinpanoa eli palauttamatta poimittua alkiota takaisin perusjoukkoon, poimintatodennäköisyyksiä määrättäessä on sovellettava yleistä tulosääntöä. Jos otanta tehdään takaisinpanolla eli palauttamalla poimittu alkio aina takaisin perusjoukkoon, poimintatodennäköisyyksiä määrättäessä on sovellettava riippumattomien tapahtumien tulosääntöä. k Ilkka Mellin (2008) 7/28

8 Tehtävä 1.1. Virheetöntä noppaa heitettäessä jokaisella silmäluvulla 1, 2, 3, 4, 5, 6 on sama todennäköisyys tulla tulokseksi. Jos virheetöntä noppaa heitetään kaksi kertaa, heittotuloksiin liittyvä perusjoukko voidaan määritellä kaavalla S = {(x, y) x = 1, 2, 3, 4, 5, 6 ja y = 1, 2, 3, 4, 5, 6} jossa x = 1. heiton tulos ja y = 2. heiton tulos. Perusjoukkoa S voidaan kuvata seuraavalla lukukaaviolla: 2. heiton tulos y (x, y) 1. heiton tulos x (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) Virheettömän nopan tapauksessa voimme ajatella, että jokaisella heittotulosten parilla (x, y), x = 1, 2, 3, 4, 5, 6 ; y = 1, 2, 3, 4, 5, 6 on sama todennäköisyys tulla tulokseksi. Määritellään joukot A = {(x, y) S x = 2} B = {(x, y) S y > 4} C = {(x, y) S x + y = 7} D = {(x, y) S x y = 2} E = {(x, y) S x y 2} Merkitse otosavaruutta S kuvaavaan kaavioon seuraavat joukot: (a) A, B, C, D, E (b) A C = Joukkojen A ja C yhdiste (c) B D = Joukkojen B ja D leikkaus Tehtävä 1.1. Mitä opimme? Tehtävässä tarkastellaan joukkojen määrittelemistä ja havainnollistamista sekä joukkoopin perusoperaatioita yhdiste ja leikkaus. Tehtävä 1.1. Ratkaisu: Tehtävässä 1.1. määriteltyjä joukkoja vastaavat lukuparit (x, y) on varjostettu alla oleviin lukukaavioihin. Ilkka Mellin (2008) 8/28

9 (a) A = {(x, y) S x = 2} 2. heiton tulos y (x, y) B = {(x, y) S y > 4} 2. heiton tulos y (x, y) C = {(x, y) S x + y = 7} 2. heiton tulos y (x, y) D = {(x, y) S x y = 2} 2. heiton tulos y (x, y) 1. heiton tulos x (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 1. heiton tulos x (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 1. heiton tulos x (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 1. heiton tulos x (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) Ilkka Mellin (2008) 9/28

10 E = {(x, y) S x y 2} 2. heiton tulos y (x, y) 1. heiton tulos x (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) (b) A C = {(x, y) S (x, y) A tai (x, y) C} 2. heiton tulos y (x, y) 1. heiton tulos x (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) (c) B D = {(x, y) S (x, y) B ja (x, y) D} = 2. heiton tulos y (x, y) 1. heiton tulos x (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) Tehtävä 1.2. Tehtävä 1.2. on jatkoa tehtävälle 1.1. Merkitse perusjoukkoa S kuvaavaan kaavioon seuraavat joukot: (a) E c = Joukon E komplementti (b) B \ C = Joukkojen B ja C erotus (c) C \ B = Joukkojen C ja B erotus Ilkka Mellin (2008) 10/28

11 Tehtävä 1.2. Mitä opimme? Tehtävä on jatkoa tehtävälle 1.1. ja siinä tarkastellaan joukkojen määrittelemistä ja havainnollistamista sekä joukko-opin perusoperaatioita komplementti ja erotus. Tehtävä 1.2. Ratkaisu: Tehtävässä 1.2. määriteltyjä joukkoja vastaavat lukuparit (x, y) on varjostettu alla oleviin lukukaavioihin. (a) E c = {(x, y) S (x, y) E} 2. heiton tulos y (x, y) 1. heiton tulos x (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) (b) B \ C = {(x, y) S (x, y) B ja (x, y) C} 2. heiton tulos y (x, y) 1. heiton tulos x (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) (c) C \ B = {(x, y) S (x, y) C ja (x, y) B} 2. heiton tulos y (x, y) 1. heiton tulos x (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) Ilkka Mellin (2008) 11/28

12 Tehtävä 1.3. Tehtävä 1.3. on jatkoa tehtävälle 1.1. Määrää todennäköisyydet tehtävän 1.1. kohdissa (a) (c) määritellyille tapahtumille. Tehtävä 1.3. Mitä opimme? Tehtävä on jatkoa tehtävälle 1.2. ja siinä tarkastellaan todennäköisyyslaskennan ja joukko-opin peruskäsiteiden ja operaatioiden vastaavuutta sekä klassisen todennäköisyyden käsitettä. Tehtävä 1.3. Ratkaisu: Jos virheetöntä noppaa heitetään yhden kerran, jokaisella silmäluvulla 1, 2, 3, 4, 5, 6 on sama todennäköisyys tulla tulokseksi. Siten silmälukujen 1, 2, 3, 4, 5, 6 muodostamat alkeistapahtumat ovat symmetrisiä. Jos siis x on nopanheiton tulos, niin virheettömän nopan tapauksessa Pr(x) = 1/6, x = 1, 2, 3, 4, 5, 6 Jos virheetöntä noppaa heitetään kaksi kertaa, on järkevää ajatella, että jokaisella silmälukujen parilla (x, y), x = 1, 2, 3, 4, 5, 6 ; y = 1, 2, 3, 4, 5, 6 jossa x = tulos 1. nopan heitosta y = tulos 2. nopan heitosta on sama todennäköisyys tulla tulokseksi. Siten silmälukujen 1, 2, 3, 4, 5, 6 muodostamat alkeistapahtumien parit (x, y) ovat symmetrisiä ja Pr(x, y) = 1/36, x = 1, 2, 3, 4, 5, 6 ; y = 1, 2, 3, 4, 5, 6 Klassisen todennäköisyyden määritelmän mukaan tapahtuman A todennäköisyys Pr(A) saadaan määräämällä tapahtumalle A suotuisien alkeistapahtumien suhteellinen osuus kaikista alkeistapahtumista. Siten Pr(A) = n(a)/n(s) jossa n(a) = tapahtumalle A suotuisien alkeistapahtumien lukumäärä = joukkoon A kuuluvien alkeistapahtumien lukumäärä n(s) = kaikkien mahdollisten alkeistapahtumien lukumäärä = otosavaruuteen S kuuluvien alkeistapahtumien lukumäärä Tehtävän 1.1. otosavaruus on S = {(x, y) x = 1, 2, 3, 4, 5, 6 ja y = 1, 2, 3, 4, 5, 6} jossa x = 1. heiton tulos ja y = 2. heiton tulos. Otosavaruudessa S on 36 alkiota, joten n(s) = 36 Ilkka Mellin (2008) 12/28

13 (a) Koska n(a) = 6, niin Pr(A) = n(a)/n(s) = 6/36 = 1/6 Koska n(b) = 12, niin Pr(B) = n(b)/n(s) = 12/36 = 1/3 Koska n(c) = 6, niin Pr(C) = n(c)/n(s) = 6/36 = 1/6 Koska n(d) = 4, niin Pr(D) = n(d)/n(s) = 4/36 = 1/9 Koska n(e) = 30, niin Pr(E) = n(e)/n(s) = 30/36 = 5/6 (b) Koska n(a C) = 11, niin Pr(A C) = n(a C)/n(S) = 11/36 Sama tulos saadaan tietysti myös yleisen yhteenlaskusäännön Pr(A C) = Pr(A) + Pr(C) Pr(A C) avulla: Kohdan (a) mukaan Pr(A) = 1/6 Pr(C) = 1/6 ja koska A C = {(2,5)} niin Pr(A C) = 1/36 Siten Pr(A C) = Pr(A) + Pr(C) Pr(A C) = 1/6 + 1/6 1/36 = 11/36 (c) Koska B D =, niin Pr(B D) = Pr( ) = 0 Tehtävä 1.4. Tehtävä 1.3. on jatkoa tehtävälle 1.2. Määrää todennäköisyydet tehtävän 1.2. kohdissa (a) (c) määritellyille tapahtumille. Ilkka Mellin (2008) 13/28

14 Tehtävä 1.4. Mitä opimme? Tehtävä on jatkoa tehtävälle 1.2. ja siinä tarkastellaan todennäköisyyslaskennan ja joukko-opin peruskäsiteiden ja operaatioiden vastaavuutta sekä klassisen todennäköisyyden käsitettä; ks. myös tehtävää 1.3. Tehtävä 1.4. Ratkaisu: Otosavaruudessa S on 36 alkiota, joten n = n(s) = 36 (a) Koska n(e c ) = 6, niin Pr(E c ) = n(e c )/n(s) = 6/36 = 1/6 Sama tulos saadaan tietysti myös komplementtitapahtuman todennäköisyyden kaavan Pr(E c ) = 1 Pr(E) avulla: Koska Pr(E) = 30/36 = 5/6 niin Pr(E c ) = 1 Pr(E) = 1 5/6 = 1/6 (b) Koska n(b \ C) = 10, niin Pr(B \ C) = 10/36 = 5/18 (c) Koska n(c \ B) = 4, niin Pr(C \ B) = 4/36 = 1/9 Tehtävä 1.5. Tehtävä 1.5. on jatkoa tehtävälle 1.1. Tarkastellaan silmälukujen summaa z = x + y jossa x = 1. heiton tulos ja y = 2. heiton tulos. Määritellään lisäksi tapahtumat A = {Summa on 1} B = {Summa on 11} C = {1. nopanheitolla saadaan 2} D = {1. nopanheitolla saadaan 5} (a) Määrää silmälukujen summan z = x + y otosavaruus. (b) Määrää tapahtuman A todennäköisyys. (c) Määrää tapahtuman B todennäköisyys. (d) Määrää tapahtuman B ehdollinen todennäköisyys, kun tapahtuma C on sattunut. Ilkka Mellin (2008) 14/28

15 (e) Määrää tapahtuman B ehdollinen todennäköisyys, kun tapahtuma D on sattunut. Tehtävä 1.5. Mitä opimme? Tehtävä on jatkoa tehtävälle 1.1. ja siinä tarkastellaan ehdollisen todennäköisyyden käsitettä. Tehtävä 1.5. Ratkaisu: 1. nopanheittoon liittyvä otosavaruus: {1, 2, 3, 4, 5, 6} 2. nopanheittoon liittyvä otosavaruus: {1, 2, 3, 4, 5, 6} Muodostetaan silmälukujen x ja y mahdollisia summia z = x + y kuvaava aputaulukko: 2. heiton tulos y z = x + y 1. heiton tulos x (a) Aputaulukosta nähdään, että kahden nopanheiton silmälukujen summan otosavaruus on {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} Klassisen todennäköisyyden määritelmän nojalla (ks. tehtävää 1.3.) yo. aputaulukosta saadaan summille z = x + y seuraavat todennäköisyydet: z Pr 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 (b) Koska tapahtuma A = {Summa on 1} on mahdoton, niin Pr(A) = Pr( ) = 0 Ilkka Mellin (2008) 15/28

16 (c) Tapahtuma B = {Summa on 11} voi tulla tulokseksi täsmälleen kahdella tavalla: (1) 1. heitolla saadaan 6 ja 2. heitolla saadaan 5 (2) 1. heitolla saadaan 5 ja 2. heitolla saadaan 6 Koska nämä tavat ovat toisensa poissulkevia ja kummankin todennäköisyys on 1/36, saadaan tapahtuman B todennäköisyydeksi toisensa poissulkevien tapahtumien yhteenlaskusäännön perusteella: Pr(B) = 1/36 + 1/36 = 2/36 = 1/18 (d) Summaksi ei voi tulla 11, jos 1. heitolla saadaan 2, joten tapahtuma B on mahdoton, jos C on sattunut. Siten ehdollinen todennäköisyys Pr(B C) = 0 Sama tulos saadaan tietysti myös ehdollisen todennäköisyyden määritelmästä: Pr(B C) = Pr(B C)/Pr(C) Koska tapahtumat B ja C ovat toisensa poissulkevia, B C = Siten Pr(B C) = 0 jolloin Pr(B C) = 0 (e) Ehdollisen todennäköisyyden määritelmän perusteella: Pr(B D) = Pr(B D)/Pr(D) = (1/36)/(1/6) = 1/6 Tehtävä 1.6. Tehtävä 1.6. on jatkoa tehtävälle 1.1. Tarkastellaan 1. ja 2. nopanheiton silmälukujen erotusta z = x y jossa x = 1. heiton tulos ja y = 2. heiton tulos. Olkoon A = {1. nopalla saadaan 6} B = {2. nopalla saadaan 6} C = {Erotus on 2} (a) Määrää silmälukujen erotuksen z = x y otosavaruus. (b) Määrää ehdollinen todennäköisyys Pr(A B) Ilkka Mellin (2008) 16/28

17 (c) (d) ja vertaa sitä tapahtuman A todennäköisyyteen. Ovatko tapahtumat A ja B riippumattomia? Määrää ehdollinen todennäköisyys Pr(C A ) ja vertaa sitä tapahtuman C todennäköisyyteen. Ovatko tapahtumat C ja A riippumattomia? Määrää ehdollinen todennäköisyys Pr(C B ) ja vertaa sitä tapahtuman C todennäköisyyteen. Ovatko tapahtumat C ja B riippumattomia? Tehtävä 1.6. Mitä opimme? Tehtävä on jatkoa tehtävälle 1.1. ja siinä tarkastellaan ehdollisen todennäköisyyden käsitettä; ks. myös tehtävää 1.5. Tehtävä 1.6. Ratkaisu: 1. heiton tulokseen x liittyvä otosavaruus on {1, 2, 3, 4, 5, 6} 2. heiton tulokseen y liittyvä otosavaruus on {1, 2, 3, 4, 5, 6} Muodostetaan silmälukujen x ja y mahdollisia erotuksia z = x y kuvaava aputaulukko: 2. heiton tulos y z = x y 1. heiton tulos x (a) Aputaulukosta nähdään, että kahden nopan heiton silmälukujen erotuksen z = x y otosavaruus on { 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5} Klassisen todennäköisyyden määritelmän nojalla (ks. tehtävää 1.3.) aputaulukosta saadaan erotuksille z = x y Ilkka Mellin (2008) 17/28

18 seuraavat todennäköisyydet: z Pr 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 (b) Käyttämällä apuna tehtävän 1.1. otosavaruutta S = {(x, y) x = 1, 2, 3, 4, 5, 6 ja y = 1, 2, 3, 4, 5, 6} kuvaavaa taulukkoa 2. heiton tulos y (x, y) 1. heiton tulos x (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) on helppo nähdä klassisen todennäköisyyden määritelmän nojalla, että Pr(A) = n(a)/n(s) = 6/36 = 1/6 Pr(B) = n(b)/n(s) = 6/36 = 1/6 Koska A B = {1. nopalla saadaan 6 ja 2. nopalla saadaan 6} niin Pr(A B) = n(a B)/n(S) = 1/36 Siten ehdollisen todennäköisyyden määritelmän perusteella nähdään, että Pr(A B) = Pr(A B)/Pr(B) = (1/36)/(1/6) = 1/6 Koska Pr(A B) = Pr(A) = 1/6 tapahtumat A ja B ovat riippumattomia. Tehtävän voi ratkaista myös käyttämällä apuna ennen (a)-kohdan ratkaisua esitettyä taulukkoa rajoittumalla tarkastelemaan niitä soluja, joissa 2. nopalla saadaan 6. Näitä soluja on 6 ja täsmälleen yksi niistä vastaa sitä, että 1. nopalla on saatu 6. Siten suoraan klassisen todennäköisyyden määritelmän nojalla Pr(A B) = 1/6 Huomautus: Vaikka tehtävä voidaan siis ratkaista käyttämällä ym. aputaulukkoa, on syytä oppia käyttämään ehdollisen todennäköisyyden kaavaa. Alkeistapahtumien taulukointi ja niiden lukumäärien laskeminen ei ole helppoa, jos otosavaruus on iso ja se on jopa mahdotonta, jos otosavaruus on ääretön. Ilkka Mellin (2008) 18/28

19 (c) Tehtävässä kysytään ehdollista todennäköisyyttä tapahtumalle C = {(x, y) S z = x y = 2} kun tapahtuma A = {x = 6} on sattunut. Kohdan (b) otosavaruutta S kuvaavasta taulukosta on helppo nähdä seuraavaa: Jos tapahtuma A on sattunut, niin erotus z = x y voi saada arvon 2 vain silloin, kun y saa arvon 4. Siten Pr(C A) = 1/6 Sama tulos saadaan myös ehdollisen todennäköisyyden määritelmän perusteella: Pr(C A) = Pr(C A)/Pr(A) = (1/36)/(1/6) = 1/6 Koska Pr(C) = 1/4 Pr(C A) tapahtumat C ja A eivät ole riippumattomia. (d) Tehtävässä kysytään ehdollista todennäköisyyttä tapahtumalle C = {(x, y) S z = x y = 2} kun tapahtuma B = {y = 6} on sattunut. Kohdan (b) otosavaruutta S kuvaavasta matriisista on helppo nähdä seuraavaa: Jos tapahtuma B on sattunut, niin erotus z = x y ei voi saada arvoa 2. Siten Pr(C B) = 0 Sama tulos saadaan myös ehdollisen todennäköisyyden määritelmän perusteella: Pr(C B) = Pr(C B)/Pr(B) = (0/36)/(1/6) = 0/6 = 0 Tehtävä 1.7. Olkoot Pr(A) = 0.5 ja Pr(B) = 0.3. Määrää tapahtuman A B todennäköisyys, kun (a) Pr(A B) = 0.1 (b) A ja B ovat toisensa poissulkevia (c) A ja B ovat riippumattomia (d) Pr(A B) = 0.1 Tehtävä 1.7. Mitä opimme? Ilkka Mellin (2008) 19/28

20 Tehtävässä on tarkastellaan yleistä yhteenlaskusääntöä, toisensa poissulkevuuden ja riippumattomuuden käsitteitä sekä ehdollisen todennäköisyyden määritelmää. Tehtävä 1.7. Ratkaisu: Olkoot tapahtumat A ja B otosavaruuden S osajoukkoja. Yleisen yhteenlaskusäännön mukaan Pr(A B) = Pr(A) + Pr(B) Pr(A B) (a) Tiedämme, että Pr(A) = 0.5 ja Pr(B) = 0.3. Jos Pr(A B) = 0.1, niin Pr(A B) = Pr(A) + Pr(B) Pr(A B) = = 0.7 (b) Tiedämme, että Pr(A) = 0.5 ja Pr(B) = 0.3. Jos A ja B ovat toisensa poissulkevia, niin A B =. Tällöin Pr(A B) = Pr( ) = 0 koska mahdottoman tapahtuman todennäköisyys on nolla. Siten Pr(A B) = Pr(A) + Pr(B) Pr(A B) = Pr(A) + Pr(B) = = 0.8 (c) Tiedämme, että Pr(A) = 0.5 ja Pr(B) = 0.3. Jos A ja B ovat riippumattomia, niin riippumattomien tapahtumien tulosäännön mukaan Pr(A B) = Pr(A)Pr(B) Siten Pr(A B) = Pr(A) + Pr(B) Pr(A B) = Pr(A) + Pr(B) Pr(A)Pr(B) = = 0.65 (d) Tiedämme, että Pr(A) = 0.5 ja Pr(B) = 0.3. Yleisen tulosäännön mukaan Pr(A B) = Pr(A B)Pr(B) Siten Pr(A B) = Pr(A) + Pr(B) Pr(A B) = Pr(A) + Pr(B) Pr(A B)Pr(B) = = 0.77 Ilkka Mellin (2008) 20/28

21 Tehtävä 1.8. Olkoot Pr(A) = 0.5 ja Pr(B) = 0.6. Yritä määrätä tapahtuman A B todennäköisyys, kun (a) Pr(A B) = 0.1 (b) A ja B ovat toisensa poissulkevia (c) A ja B ovat riippumattomia (d) Pr(A B) = 0.1 Milloin tämä on mahdollista? Tehtävä 1.8. Mitä opimme? Tehtävässä on tarkastellaan yleistä yhteenlaskusääntöä, toisensa poissulkevuuden ja riippumattomuuden käsitteitä sekä ehdollisen todennäköisyyden määritelmää; ks. myös tehtävää 1.7. Tehtävä 1.8. Ratkaisu: Olkoot tapahtumat A ja B otosavaruuden S osajoukkoja. Yleisen yhteenlaskusäännön mukaan Pr(A B) = Pr(A) + Pr(B) Pr(A B) (a) Tiedämme, että Pr(A) = 0.5 ja Pr(B) = 0.6. Jos Pr(A B) = 0.1, niin Pr(A B) = Pr(A) + Pr(B) Pr(A B) = = 1 (b) Tiedämme, että Pr(A) = 0.5 ja Pr(B) = 0.6. Jos A ja B ovat toisensa poissulkevia, niin A B =. Tällöin Pr(A B) = Pr( ) = 0 koska mahdottoman tapahtuman todennäköisyys on nolla. Siten Pr(A B) = Pr(A) + Pr(B) Pr(A B) = = 1.1 > 1 mikä on mahdotonta. Annetut tiedot ovat selvästi ristiriitaisia. (c) Tiedämme, että Pr(A) = 0.5 ja Pr(B) = 0.6. Jos A ja B ovat riippumattomia, niin riippumattomien tapahtuman tulosäännön mukaan Pr(A B) = Pr(A)Pr(B) Siten Pr(A B) = Pr(A) + Pr(B) Pr(A B) = Pr(A) + Pr(B) Pr(A)Pr(B) = = 0.8 (d) Tiedämme, että Pr(A) = 0.5 ja Pr(B) = 0.6. Yleisen tulosäännön mukaan Pr(A B) = Pr(A B)Pr(B). Ilkka Mellin (2008) 21/28

22 Siten Pr(A B) = Pr(A) + Pr(B) Pr(A B) = Pr(A) + Pr(B) Pr(A B)Pr(B) = = 1.04 > 1 mikä on mahdotonta. Annetut tiedot ovat selvästi ristiriitaisia. Tehtävä 1.9. Uurnassa on 3 valkoista ja 7 mustaa palloa. (a) Poimitaan uurnasta satunnaisesti kaksi palloa takaisinpanolla eli palauttaen. Tällöin uurnasta nostetaan palloja yksi pallo kerrallaan ja jokainen nostettu pallo palautetaan ennen seuraavan pallon nostoa takaisin uurnaan. Mikä on todennäköisyys, että toisena nostettu pallo on valkoinen, jos ensimmäisenä nostettu pallo on ollut musta? (b) Poimitaan uurnasta satunnaisesti kaksi palloa ilman takaisinpanoa palauttamatta. Tällöin uurnasta nostettuja palloja ei palauteta takaisin uurnaan. Mikä on todennäköisyys, että toisena nostettu pallo on valkoinen, jos ensimmäisenä nostettu pallo on ollut musta? Tehtävä 1.9. Mitä opimme? Tehtävässä havainnollistetaan ehdollisen todennäköisyyden ja riippumattomuuden käsitteitä sekä yleisen tulosäännön ja riippumattomien tapahtumien tulosäännön soveltamista yksinkertaiseen satunnaisotantaan. Yksinkertaisessa satunnaisotannassa poiminta ilman takaisinpanoa eli palauttamatta tapahtuu niin, että poimittua objektia ei palauteta takaisin poimittavien joukkoon, jolloin sama objekti voi tulla poimituksi otokseen vain kerran. Yksinkertaisessa satunnaisotannassa poiminta takaisinpanolla eli palauttaen tapahtuu niin, että jokainen poimittu objekti palautetaan poimimisen jälkeen välittömästi takaisin poimittavien joukkoon, jolloin sama objekti voi tulla poimituksi otokseen useita kertoja. Tehtävä 1.9. Ratkaisu: Poimitaan kaksi palloa uurnasta, jossa on 4 valkoista ja 7 mustaa palloa. Olkoon A i = {i. pallo on musta} c B i = {i. pallo on valkoinen} = A i (a) Suoraan klassisen todennäköisyyden määritelmän perusteella Pr(A 1 ) = 7/10 Koska poiminta tapahtuu takaisinpanolla, tapahtumat A 1 ja B 2 ovat riippumattomia. Siten ehdollinen todennäköisyys Pr(B 2 A 1 ) = Pr(B 2 ) = 3/10 Ilkka Mellin (2008) 22/28

23 mikä nähdään todeksi huomaamalla, että toista palloa nostettaessa uurnassa on edelleen 10 palloa, joista 3 on valkoista. (b) Suoraan klassisen todennäköisyyden määritelmän perusteella Pr(A 1 ) = 7/10 Koska poiminta tapahtuu ilman takaisinpanoa, tapahtumat A 1 ja B 2 eivät ole riippumattomia ja siten ehdollinen todennäköisyys Pr(B 2 A 1 ) = 3/9 mikä nähdään todeksi huomaamalla, että toista palloa nostettaessa uurnassa on enää 9 palloa, joista 3 on valkoista. Tehtävä Uurnassa on 5 punaista ja 7 sinistä palloa. (a) Poimit uurnasta satunnaisesti kolme palloa takaisinpanolla. Mikä on todennäköisyys, että saat kolme punaista palloa? (b) Poimit uurnasta satunnaisesti kolme palloa ilman takaisinpanoa. Mikä on todennäköisyys, että saat kolme punaista palloa? (c) Poimit uurnasta satunnaisesti kolme palloa ilman takaisinpanoa. Mikä on todennäköisyys, että viimeisenä poimittava pallo on punainen, jos kaksi edellistä ovat olleet sinisiä? Tehtävä Mitä opimme? Tehtävässä havainnollistetaan ehdollisen todennäköisyyden ja riippumattomuuden käsitteitä sekä yleisen tulosäännön ja riippumattomien tapahtumien tulosäännön soveltamista yksinkertaiseen satunnaisotantaan; ks. myös tehtävää 1.9. Tehtävä Ratkaisu: Poimitaan kolme palloa uurnasta, jossa on 5 punaista ja 7 sinistä palloa. Olkoon A i = {i. pallo on punainen} A c i = {i. pallo on sininen} (a) Kysytty todennäköisyys on Pr(A 1 A 2 A 3 ) Koska poiminta tapahtuu takaisinpanolla, tapahtumat A 1, A 2 ja A 3 ovat riippumattomia. Siten riippumattomien tapahtumien tulosäännön perusteella Pr(A 1 A 2 A 3 ) = Pr(A 1 )Pr(A 2 )Pr(A 3 ) = (5/12) 3 = mikä nähdään todeksi huomaamalla, että koska poiminnan jokaisessa vaiheessa uurnassa on 12 palloa, joista 5 on punaista. Ilkka Mellin (2008) 23/28

24 (b) Kysytty todennäköisyys on Pr(A 1 A 2 A 3 ) Koska poiminta tapahtuu ilman takaisinpanoa, tapahtumat A 1, A 2 ja A 3 eivät ole riippumattomia. Siten yleisen tulosäännön perusteella Pr(A 1 A 2 A 3 ) = Pr(A 1 )Pr(A 2 A 1 )Pr(A 3 A 1 A 2 ) = (5/12) (4/11) (3/10) = Laskutoimituksen perustelu: (i) Ensimmäistä palloa poimittaessa uurnassa on 12 palloa, joista 5 on punaista. (ii) Jos ensimmäisenä poimittu pallo oli punainen, niin toista palloa poimittaessa uurnassa on jäljellä 11 palloa, joista 4 on punaista. (iii) Jos ensimmäisenä ja toisena poimitut pallot olivat punaisia, niin kolmatta palloa poimittaessa uurnassa on jäljellä 10 palloa, joista 3 on punaista. (c) Kysytty todennäköisyys on Pr(A 3 A c 1 A c 2 ) Jos uurnassa on aluksi 7 sinistä ja 5 punaista palloa ja 2 sinistä palloa otetaan pois, jäljelle jää 5 palloa kumpaakin väriä. Siten todennäköisyys saada seuraavaksi punainen pallo on Pr(A 3 A c 1 A c 2 ) = 5/10 = 0.5 Tehtävä Laatikossa on 10 hehkulamppua, joista 3 on viallista. (a) Poimitaan laatikosta satunnaisesti kolme hehkulamppua takaisinpanolla. Mikä on todennäköisyys, että kaikki kolme lamppua ovat viallisia? (b) Poimitaan laatikosta satunnaisesti kolme hehkulamppua ilman takaisinpanoa. Mikä on todennäköisyys, että kaikki kolme lamppua ovat viallisia? Tehtävä Mitä opimme? Tehtävässä havainnollistetaan ehdollisen todennäköisyyden ja riippumattomuuden käsitteitä sekä yleisen tulosäännön ja riippumattomien tapahtumien tulosäännön soveltamista yksinkertaiseen satunnaisotantaan; ks. myös tehtäviä 1.9. ja Tehtävä Ratkaisu: Olkoon tapahtuma A i = {i. lamppu on viallinen}. (a) Kysytty todennäköisyys on Pr(A 1 A 2 A 3 ) Koska poiminta tapahtuu takaisinpanolla, tapahtumat A 1, A 2 ja A 3 ovat riippumattomia. Siten riippumattomien tapahtumien tulosäännön perusteella Pr(A 1 A 2 A 3 ) = Pr(A 1 )Pr(A 2 )Pr(A 3 ) = (3/10) 3 = Ilkka Mellin (2008) 24/28

25 mikä nähdään todeksi huomaamalla, että poiminnan jokaisessa vaiheessa laatikossa on 10 lamppua, joista 3 on viallista. (b) Kysytty todennäköisyys on Pr(A 1 A 2 A 3 ) Koska poiminta tapahtuu ilman takaisinpanoa, tapahtumat A 1, A 2 ja A 3 eivät ole riippumattomia. Siten yleisen tulosäännön perusteella Pr(A 1 A 2 A 3 ) = Pr(A 1 )Pr(A 2 A 1 )Pr(A 3 A 1 A 2 ) = (3/10) (2/9) (1/8) = 6/720 = Laskutoimituksen perustelu: (i) Ensimmäistä lamppua poimittaessa laatikossa on 10 lamppua, joista 3 on viallista. (ii) Jos ensimmäisenä poimittu lamppu oli viallinen, niin toista lamppua poimittaessa laatikossa on jäljellä 9 lamppua, joista 2 on viallisia. (iii) Jos ensimmäisenä ja toisena poimitut lamput olivat viallisia, niin kolmatta lamppua poimittaessa laatikossa on jäljellä 8 lamppua, joista 1 on viallinen. Tehtävä Eräässä yliopistossa on opiskelijaa. Alla oleva taulukko esittää opiskelijoiden sukupuoli- ja ikäjakaumaa. Määrää seuraavien tapahtumien todennäköisyydet todennäköisyyden frekvenssitulkintaa käyttäen: (a) Satunnaisesti valittu opiskelija on nainen. (b) Satunnaisesti valittu opiskelija on mies, jos hän on vuotias. (c) Satunnaisesti valittu opiskelija on mies tai hän on vuotias. Ikä Mies Nainen Tehtävä Mitä opimme? Tehtävässä havainnollistetaan komplementtitapahtuman todennäköisyyden kaavaa, ehdollisen todennäköisyyden käsitettä sekä yleistä yhteenlaskusääntöä. Tehtävä Ratkaisu: Olkoon A = {opiskelija on nainen} B = {opiskelija on vuotias} Ilkka Mellin (2008) 25/28

26 Tällöin A c = {opiskelija on mies} (a) Toisensa poissulkevien tapahtumien yhteenlaskusäännön mukaan Pr(A) = ( )/10000 = 6050/10000 = Siten komplementtitapahtuman todennäköisyyden kaavasta seuraa, että Pr(A c ) = 1 Pr(A) = = (b) Toisensa poissulkevien tapahtumien yhteenlaskusäännön mukaan Pr(B) = ( )/10000 = 2500/10000 = 0.25 Tehtävän frekvenssitaulukosta nähdään, että Pr(A c B) = 1000/10000 = 0.1 Ehdollisen todennäköisyyden määritelmän mukaan Pr(A c B) = Pr(A c B)/Pr(B) = 0.1/0.25 = 0.4 > = Pr(A c ) Siten tieto siitä, että satunnaisesti valittu opiskelija on vuotias sisältää informaatiota, jota voidaan käyttää hyväksi, kun arvioidaan todennäköisyyttä, että ko. opiskelija on mies. (c) Yleisen yhteenlaskusäännön mukaan Pr(A c B) = Pr(A c ) + Pr(B) Pr(A c B) = = Tehtävä Alla oleva taulukko kuvaa USA:n 101. kongressin (valittiin vuonna 1988) kokoonpanoa. Kongressiedustajat on luokiteltu taulukossa puoluekannan mukaan kahteen luokkaan ja edustajanaoloajan mukaan kolmeen luokkaan. Taulukossa on annettu ainoastaan ne todennäköisyydet (ns. reunatodennäköisyydet), jotka saadaan, kun puoluekantaa ja edustajanaoloaikaa tarkastellaan erillisinä. Täytä taulukon puuttuvat solut, jos oletamme, että puoluekanta ja edustajanaoloaika eivät riipu toisistaan. Todennäköisyys Edustajana -oloaika Demokraatti Puoluekanta Republikaani Yhteensä < 2 vuotta vuotta vuotta Yhteensä Ilkka Mellin (2008) 26/28

27 Tehtävä Mitä opimme? Tehtävässä havainnollistetaan riippumattomuuden käsitettä. Tehtävä Ratkaisu: Taulukon solujen todennäköisyydet saadaan riippumattomien tapahtumien tulosäännön perusteella kertomalla kutakin solua vastaavat reunatodennäköisyydet keskenään: Todennäköisyys Edustajana -oloaika < 2 vuotta 2-9 vuotta 10 vuotta Demokraatti = = = Puoluekanta Republikaani = = = Yhteensä Yhteensä Esimerkiksi: Pr(Edustaja on republikaani ja hän on ollut edustajana 10 vuotta) = Pr(Edustaja on republikaani)pr(edustaja on ollut edustajana 10 vuotta) = = Tehtävä Potilaan ikä saattaa vaikuttaa siihen millaista hoitoa hän saa. Eräässä USA:ssa tehdyssä tutkimuksessa verrattiin eri-ikäisten naisten pääsemistä mammografiaan (rintojen röntgentutkimus rintasyövän toteamiseksi), kun heidän rinnoissaan oli havaittu kyhmyjä. Tulokset on annettu taulukossa alla. Taulukon solut ovat todennäköisyyksiä, että kumpikin tapahtumista sattuu; esim on todennäköisyys, että potilas on alle 65-vuotias ja hänelle on tehty mammografia. Todennäköisyys Ikä Mammografia tehty Mammografiaa ei ole tehty alle tai yli (a) Määrää seuraavien tapahtumien todennäköisyydet: A = {potilas on alle 65-vuotias} Ilkka Mellin (2008) 27/28

28 (b) (c) B = {potilas on 65-vuotias tai yli} C = {potilaalle on tehty mammografia} D = {potilaalle ei ole tehty mammografiaa} Ovatko tapahtumat B ja C riippumattomia? Määrää todennäköisyys sille, että potilaalle on tehty mammografia, jos hän on ollut alle 65-vuotias ja vertaa sitä todennäköisyyteen, että potilaalle on tehty mammografia, jos hän on ollut 65-vuotias tai yli. Tehtävä Mitä opimme? Tehtävässä havainnollistetaan ehdollisen todennäköisyyden käsitettä. Tehtävä Ratkaisu: (a) Kysytyt todennäköisyydet saadaan laskemalla tehtävän taulukosta ns. reunatodennäköisyydet eli rivi- ja sarakesummat: Todennäköisyys Ikä Mammografia tehty Mammografiaa ei ole tehty Summa alle Pr(A) = tai yli Pr(B) = Summa Pr(C) = Pr(D) = (b) Jos tapahtumat B ja C ovat riippumattomia, niin riippumattomien tapahtumien tulosäännöstä seuraa, että Pr(B C) = Pr(B)Pr(C) Taulukosta saadaan Pr(B C) = Pr(B)Pr(C) = Koska Pr(B C) Pr(B)Pr(C) tapahtumat B ja C eivät ole riippumattomia. (c) Ehdollisen todennäköisyyden määritelmän mukaan Pr(C A) = Pr(C A)/Pr(A) = 0.321/0.445 = Pr(C B) = Pr(C B)/Pr(B) = 0.365/0.555 = Tämän perusteella nuorempien potilaiden todennäköisyys päästä mammografiaan on jonkin verran suurempi kuin vanhempien potilaiden todennäköisyys päästä mammografiaan. Ilkka Mellin (2008) 28/28

(x, y) 2. heiton tulos y

(x, y) 2. heiton tulos y Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,

Lisätiedot

1. laskuharjoituskierros, vko 4, ratkaisut

1. laskuharjoituskierros, vko 4, ratkaisut 1. laskuharjoituskierros, vko 4, ratkaisut D1. Heitetään kahta virheetöntä noppaa, joiden kuudella tahkolla on silmäluvut 1, 2, 3, 4, 5 ja 6. Tällöin heittotuloksiin liittyvä otosavaruus on S = {(x, y)

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 Aiheet: Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Klassinen

Lisätiedot

A. Jos A on niiden perusjoukon S alkioiden x joukko, jotka toteuttavat ehdon P(x) eli joille lause P(x) on tosi, niin merkitsemme

A. Jos A on niiden perusjoukon S alkioiden x joukko, jotka toteuttavat ehdon P(x) eli joille lause P(x) on tosi, niin merkitsemme Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 Aiheet: Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Klassinen todennäköisyys

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden peruslaskusäännöt >> Uusien tapahtumien muodostaminen

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden aksioomat Todennäköisyyden määritteleminen Todennäköisyyden aksioomat äärellisissä otosavaruuksissa

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden aksioomat >> Todennäköisyyden määritteleminen Todennäköisyyden

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt - Satunnaiskokeet, otosavaruudet ja tapahtumat - Todennäköisyyden määritteleminen KE (2014) 1 Satunnaiskokeet, otosavaruudet ja tapahtumat

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

A = B. jos ja vain jos. x A x B

A = B. jos ja vain jos. x A x B Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Klassinen todennäköisyys ja kombinatoriikka Kokonaistodennäköisyys ja Bayesin kaava Avainsanat: Bayesin kaava, Binomikaava, Binomikerroin,

Lisätiedot

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1 Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi M-0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 1: Todennäköisyyslaskennan peruskäsitteet; Todennäköisyyden aksioomat; Todennäköisyyslaskennan peruslaskusäännöt; Kokonaistodennäköisyyden

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden peruslaskusäännöt Tapahtumat Peruslaskusäännöt todennäköisyydelle Ehdollinen todennäköisyys

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyslaskenta ja puudiagrammit Puutodennäköisyydet Todennäköisyyslaskennan laskusääntöjen

Lisätiedot

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja. Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Kurssi käsittelee todennäköisyyslaskentaa ja tilastotiedettä. Laaditaan satunnaisilmiöille todennäköisyysmalleja. Miten hyvin mallit kuvaavat todellisuutta?

Lisätiedot

Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt: Esitiedot

Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt: Esitiedot TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskennan peruslaskusäännöt Johdatus todennäköisyyslaskentaan Todennäköisyyslaskennan peruslaskusäännöt TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskennan

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyslaskenta ja puudiagrammit >> Puutodennäköisyydet

Lisätiedot

D ( ) Var( ) ( ) E( ) [E( )]

D ( ) Var( ) ( ) E( ) [E( )] Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskenta ja puudiagrammit iite: Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskenta ja puudiagrammit: Mitä opimme? Verkkoteoria

Lisätiedot

Otanta ilman takaisinpanoa

Otanta ilman takaisinpanoa Otanta ilman takaisinpanoa Populaatio, jossa N alkiota (palloa, ihmistä tms.), kahdenlaisia ( valkoinen, musta ) Poimitaan umpimähkään (= symmetrisesti) n-osajoukko eli otos Merkitään tapahtuma A k = otoksessa

Lisätiedot

Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt

Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt Todennäköisyys ja sen laskusäännöt Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt 1. Johdanto 2. Joukko-opin peruskäsitteet 3. Todennäköisyyslaskennan peruskäsitteet 4. Todennäköisyyslaskennan

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyys ja sen määritteleminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyys ja sen määritteleminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyys ja sen määritteleminen TKK (c) Ilkka Mellin (2005) 1 Todennäköisyys ja sen määritteleminen Deterministisyys ja satunnaisuus Todennäköisyyden määritteleminen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Johdanto: Deterministisyys ja satunnaisuus Todennäköisyyden määritteleminen Todennäköisyyslaskennan peruskäsitteet TKK (c)

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 13. syyskuuta 2007 Antti Rasila () TodB 13. syyskuuta 2007 1 / 21 1 Klassinen todennäköisyys 2 Kombinatoriikkaa Kombinatoriikan perusongelmat Permutaatiot

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Luku 1. Johdanto. 1.1 Todennäköisyys ja tilastotiede. 1.2 Havaitut frekvenssit ja empiiriset jakaumat

Luku 1. Johdanto. 1.1 Todennäköisyys ja tilastotiede. 1.2 Havaitut frekvenssit ja empiiriset jakaumat Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Tämä kurssi käsittelee sekä todennäköisyyslaskentaa että tilastotiedettä. Uhkapelurien ongelmat inspiroivat todennäköisyyslaskennan uranuurtajien ajattelua,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma

Lisätiedot

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta 031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 7 4 h) ke 12-14 ja pe 8-10 (ks. tarkemmin Oodista tai Nopasta) Harjoitukset

Lisätiedot

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia TKK (c) Ilkka Mellin (2005) 1 Diskreettejä jakaumia Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen jakauma Negatiivinen

Lisätiedot

D ( ) E( ) E( ) 2.917

D ( ) E( ) E( ) 2.917 Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot T (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan T (c) Ilkka Mellin (2004) 2 : Mitä oimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa,

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2004) 1 Verkot ja todennäköisyyslaskenta Puudiagrammit todennäköisyyslaskennassa: Johdatteleva esimerkki Todennäköisyyslaskenta

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2005) 1 Verkot ja todennäköisyyslaskenta >> Puudiagrammit todennäköisyyslaskennassa:

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B

Mat Sovellettu todennäköisyyslaskenta B Mat-1.2620 Sovellettu todennäköisslaskenta B 1. välikoe 08.03.2011 / Kibble Kirjoita selvästi jokaiseen koepaperiin seuraavat tiedot: Mat-1.2620 SovTnB 1. vk 08.03.2011 opiskelijanumero + kirjain TEKSTATEN

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Klassinen todennäköisyys ja kombinatoriikka Klassinen todennäköisyys Olkoon S = {s 1,s 2,...,s n } äärellinen otosavaruus. Oletetaan, että Pr(s i ) = 1, kaikille i = 1, 2,...,n n Tällöin alkeistapahtumat

Lisätiedot

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat Kaksiulotteiset todennäköisyysjakaumat

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen

Lisätiedot

9 Yhteenlaskusääntö ja komplementtitapahtuma

9 Yhteenlaskusääntö ja komplementtitapahtuma 9 Yhteenlaskusääntö ja komplementtitapahtuma Kahta joukkoa sanotaan erillisiksi, jos niillä ei ole yhtään yhteistä alkiota. Jos pysytellään edelleen korttipakassa, niin voidaan ilman muuta sanoa, että

Lisätiedot

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto Todennäköisyyslaskenta /7 Sisältö ESITIEDOT: joukko-oppi, n laskeminen, käsite Hakemisto Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennassa tarkastelun kohteena ovat satunnaisilmiöt.esimerkkejä

Lisätiedot

4. laskuharjoituskierros, vko 7, ratkaisut

4. laskuharjoituskierros, vko 7, ratkaisut 4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku Harjoitus 2 (vko 39/2003) (ihe: tapahtumien todennäköisyys, Laininen luvut 1.6 2.4) 1. Tarkastellaan rinnan- ja sarjaankytketyistä

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat Johdatus todennäköisyyslaskentaan todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat: Mitä opimme? /5 hden satunnaismuuttujan todennäköisyysjakaumat

Lisätiedot

11. laskuharjoituskierros, vko 15, ratkaisut

11. laskuharjoituskierros, vko 15, ratkaisut 11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

2. laskuharjoituskierros, vko 5, ratkaisut

2. laskuharjoituskierros, vko 5, ratkaisut 2. laskuharjoituskierros, vko, ratkaisut Aiheet: Klassinen todennäköisyys, kombinatoriikka, kokonaistodennäköisyys ja Bayesin kaava D1. Eräässä maassa autojen rekisterikilpien tunnukset ovat muotoa XXXXNN,

Lisätiedot

Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2005) 1 Klassinen todennäköisyys ja kombinatoriikka Klassinen todennäköisyys Kombinatoriikan perusperiaatteet

Lisätiedot

1. Matkalla todennäköisyyteen

1. Matkalla todennäköisyyteen 1. Matkalla todennäköisyyteen Wovon man nicht sprechen kann, darüber muss man schweigen (Ludwig Wittgenstein, Tractatus Logico-Philosophicus 1921) Miten ihmeessä tämä liittyy tähän kurssiin????!?? 1.1

Lisätiedot

Kurssin puoliväli ja osan 2 teemat

Kurssin puoliväli ja osan 2 teemat Kurssin puoliväli ja osan 2 teemat Kurssin osa 1 keskittyi mittaukseen, tiedonkeruuseen ja kuvailevaan tilastotieteeseen. Osassa 2 painottuu tilastollinen päättely, joka puolestaan rakentuu voimakkaasti

Lisätiedot

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan: Mat-.6 Sovellettu todennäköisslaskenta B Mat-.6 Sovellettu todennäköisslaskenta B / Ratkaisut Aiheet: Moniulotteiset satunnaismuuttujat ja todennäköissjakaumat Moniulotteisia jakaumia Avainsanat: Diskreetti

Lisätiedot

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien

Lisätiedot

3. laskuharjoituskierros, vko 6, ratkaisut

3. laskuharjoituskierros, vko 6, ratkaisut Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa

Lisätiedot

Todennäköisyyslaskenta: Liitteet. Liite 1. Joukko oppi Liite 2. Todennäköisyyslaskenta ja puudiagrammit. Ilkka Mellin (2006) 449

Todennäköisyyslaskenta: Liitteet. Liite 1. Joukko oppi Liite 2. Todennäköisyyslaskenta ja puudiagrammit. Ilkka Mellin (2006) 449 Liitteet Todennäköisyyslaskenta: Liitteet Liite 1. Joukko oppi Liite 2. Todennäköisyyslaskenta ja puudiagrammit TKK @ Ilkka Mellin (2006) 449 Liitteet TKK @ Ilkka Mellin (2006) 450 Liitteet Sisällys 1.

Lisätiedot

031021P Tilastomatematiikka (5 op)

031021P Tilastomatematiikka (5 op) 031021P Tilastomatematiikka (5 op) Jukka Kemppainen Mathematics Division Yleinen todennäköisyys Kertausmateriaalissa esiteltiin koulusta tuttuja todennäköisyysmalleja. Tällä kurssilla todennäköisyys on

Lisätiedot

Moniulotteiset satunnaismuuttujat ja jakaumat

Moniulotteiset satunnaismuuttujat ja jakaumat Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat KE (2014) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat >> Kaksiulotteiset

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat .9. Kaksiulotteiset satunnaismuuttujat MS-A Todennäköisslaskennan ja tilastotieteen peruskurssi Viikko Moniulotteiset satunnaismuuttujat sekä niiden jakaumat ja tunnusluvut; Moniulotteisia jakaumia Usein

Lisätiedot

Johdatus todennäköisyyslaskentaan Joukko-oppi. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Joukko-oppi. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Joukko-oppi TKK (c) Ilkka Mellin (2005) 1 Joukko-oppi Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot ja funktioiden

Lisätiedot

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet TKK () Ilkka Mellin (2004) 1 Joukko-oppi Liite: Joukko-oppi TKK () Ilkka Mellin (2004) 2 Joukko-oppi: Mitä opimme? Tämän liitteen tavoitteena on esitellä joukko-opin peruskäsitteet ja - operaatiot laajuudessa,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

χ 2 -yhteensopivuustestissä käytetään χ 2 -testisuuretta χ = Mat Sovellettu todennäköisyyslasku A

χ 2 -yhteensopivuustestissä käytetään χ 2 -testisuuretta χ = Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Estimointi, Havaittu frekvenssi, Heterogeenisuus,

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Kaksi järjestettyä paria ovat samat, jos niillä on samat ensimmäiset alkiot ja samat toiset alkiot:

Lisätiedot

Joukot. Georg Cantor ( )

Joukot. Georg Cantor ( ) Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja niiden todennäköisyysjakaumat

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2004) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

031021P Tilastomatematiikka (5 op)

031021P Tilastomatematiikka (5 op) 031021P Tilastomatematiikka (5 op) Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 11 4 h) ti 12-14 ja to 8-10 (ks. tarkempi opetusohjelma Oodista tms.) Harjoitukset (yht. 11 2 h)

Lisätiedot