Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia
|
|
- Arto Hänninen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia kahdessa eri m oodissa: norm aalim oodi ja aksiaalim oodi. Normaalimoodissa se on y m p ärisäteilev ä rintam asäteilijä helixin akseliin nähden ja on kooltaan sähköisesti p ieni (D λ,l λ), jolloin sen v irta on v akio. Y htä kierrosta v oidaan ap p roksim oida p ienen silm ukan ja ideaalidip olin y hdistelm änä (kuv a ). Helix-antennilla norm aalim oodissa käy tetään/ käy tettiin p aljon känny köissä ja m uissa p ienissä lähetin-v astaanottim issa. S itä sy ötetään usein m aatason p äällä m onop olina.
2 Helix-antenni Etuna muihin lyhyisiin antenneihin verrattuna + K ierre tuo induktiivista komponenttia, kumoaa osan suoran lang an kapasitiivisesta vaikutuksesta + Säteilyresistanssi isompi kuin ideaalimonopolilla + P äästään ympyräpolarisoituneisiin aaltoihin Aksiaalimoodissa helix-antenni toimii päätysäteilijänä, jolla on yksi keila helixin akselin suuntaan. N iillä saavutetaan jopa 15 db :n vahvistus ja niiden säteily ympyräpolarisoitunutta.
3 Helix-antenni Suhteellisen pienestä poikkipinnastaan johtuen aksiaalimoodin helix-antennia käytetään yleisesti U HF -taajuuksilla satelliittilinkeissä. Yhden silmukan ympärysmitta on aallonpituuden luokkaa. Antennissa kulkee sinimuotoinen etenevä aalto, jonka sähkökentät ympyräpolarisoituneita. Helixin vastakkaisilla puolilla virta on 18 0 vaihesiirrossa ja vastakkaissuuntainen, joten kokonaisuudessaan virrat ovat samanvaiheisia ja vahvistavat siten toisiaan akselin suuntaan.
4 Helix-antenni Sitä voidaan mallintaa antenniryhmänä, jonka elementtiantennit ovat silmukoita, joilla kehän pituus on λ. O ikeankätinen helix tuottaa oikeakätisesti ympyräpolarisoituneen aallon, vastaava vasenkätisille. L yhyt helix on suhteellisen leveäkaistainen, f U / f L on hieman alle kaksi. Aksiaalimoodissa toimivan helix-antennin keilanleveys pienenee (vahvistus kasvaa) kierroksia lisättäessä. Syöttöresistanssi lähes reaalinen etenevistä aalloista johtuen.
5 Kaksoiskartiodipoli Tavallisten dipoleiden kaistanleveyttä voi parantaa käyttämällä paksumpia johtimia. Kaistaleveyttä saadaan kasvatettua vielä enemmän, kun tehdään johtimista kartion mallisia (kuva 6-15). J os kartiot ovat äärettömän pitkiä ja niillä on äärellinen väli syöttöpisteessä, kyseessä on ääretön kaksoiskartiodipoli. Sitä voidaan approksimoida siirtolinjana, jossa etenee TEM -aalto Eteneviä aaltoja reaalinen impedanssi Säteilykuvio kuvassa 6-16
6 Kaksoiskartiodipoli Käytännössä kartiot eivät voi olla äärettömiä, vaan ne pitää katkaista kuvan 6-17 mukaisesti. Tällöin antenniin syntyy seisovia aaltoja, jotka aiheuttavat syöttöimpedanssiin reaktiivisen komponentin. Lisäämällä kartioiden kulmaa, saadaan reaktiivinen osa minimoitua ja reaaliosa vähemmän herkäksi taajuuden muutoksille, jolloin saavutetaan 2 :1 impedanssin kaistanleveys. (kuva 6-18) Kaksoiskartiodipolin toiminta riippuu enemmän sen kartioiden kulmasta kuin niiden koosta. Taajuuskaistan alapäässä kartion koko on λ/4 :n luokkaa, yläpäässä λ/2 :ta suurempi.
7 Kaksoiskartiodipoli Kaksoiskartiodipolin tasomainen vastine on kuvan 6-32 b ow -tie -antenni. Jos toinen kartio korvataan kiekon mallisella maatasolla, saadaan lev y kartioantenni (discone, kuva 6-19). Kuvassa 6-20 on esitetty levykartioantennin säteilykuvio 3:1 kaistanleveydellä. Taajuuskaistan alapäässä se säteilee kuten lyhyt dipoli, yläpäässä kuten ääretön kartiodipoli.
8 Vaippa-antenni Dipolin (tai monopolin) kaistanleveyttä voidaan parantaa lisäämällä siihen erityyppisiä vaipparakenteita (kuvat 6-21, 6-22). Kuvassa 6-21 vaipan avulla saadaan virta monopoli virtuaalisessa syöttöpisteessä pysymään samansuuruisena sekä λ/2- että λ/4-pituudella, jolloin myös impedanssi ja säteilykeila pysyvät samana, ja saavutetaan jopa 4:1 kaistanleveys.
9 Taajuusriippumattomat antennit Jos antennin säteilykuvio pysyy vakiona vähintään 10:1 kaistanleveyden, sitä kutsutaan taajuusriippumattomaksi antenniksi. Äärettömän pitkä kaksoiskartiodipoli täyttää tämän ehdon. Se on myös esimerkki siitä yleisestä taajuusriippumattomien antennien ominaisuudesta, että sen toimintaan eivät vaikuta mitkään fyysiset mitat, ainoastaan geometriassa esiintyvät kulmat. Taajuusriippumattomuuteen päästään välttämällä antennin toimintaan vaikuttavia kiinteitä äärellisiä mittoja ja maksimoimalla ominaisuuksien riippuvuus geometrian kulmista.
10 Taajuusriippumattomat antennit Tarkastellaan kuvan 6-25a nauhadipolia, ja samanmuotoista aukkoantennia 6-25b. Aukkoantenni saadaan dipolista korvaamalla tasossa metallinauha ilmalla ja ilma metallilevyllä, eli nämä rakenteet ovat komplementaarisia. Yleisesti komplementaarisille antenneille pätee B abinet n periaate, joka sanoo, että metallisen antennin syöttöimpedanssi Z metal ja sille komplementaarisen aukkoantennin impedanssi Z air toteuttavat Z metal Z air = η2 4, (211) jossa η on ympäröivän aineen aaltoimpedanssi.
11 Taajuusriippumattomat antennit Jos antenni on itsensä komplementti (eli komplementista päädytään rotaatiolla tai translaatiolla alkuperäiseen antenniin), sen impedanssi on Z metal = Z air = η Ω, (212) eli sen impedanssi on taajuudesta riippumaton. Tästä saadaan toinen taajuusriippumattomien antennien suunnitteluperiaate: antenneista pyritään tekemään itsekomplementaarisia. Myös ei-itsekomplementaarisia laajakaista-antenneja on olemassa.
12 Taajuusriippumattomat antennit Taajuusriippumattomien antenneille tyypilliset ominaisuudet voi tiivistää seuraavasti: Painotus kulmilla pituuksien sijasta Suositaan itsekomplementaarisia rakenteita Käytetään paksuja metallirakenteita Kaikki taajuusriippumattomat antennit eivät kuitenkaan toteuta kaikkia näitä ehtoja. Taajuusriippumattomille ominaista on itseskaalautuvuus. Suurin osa säteilystä syntyy alueella, jonka pituus on λ/2:n tai kehä λ:n luokkaa, ns. aktiivisella alueella. Taajuuden laskiessa aktiivinen alue siirtyy kohti fyysisesti isompaa osaa antennia.
13 Spiraaliantenni Esimerkkejä itseskaalautuvuudesta ja aktiivisesta alueesta ovat spiraaliantennit, jotka ovat lisäksi (tarkasti tai lähes) itsekomplementaarisia. Niillä saavutetaan parhaimmillaan 40:1 kaistanleveys. Tarkastellaan kuvan 6-27 samakulmaista tasospiraaliantennia, jonka reunaviivat toteuttavat yhtälön r =r 0 e aφ. Taajuuden laskiessa aktiivinen alue siirtyy ulommas spiraalirakenteessa, jolloin impedanssi, säteilykuvio ja polarisaatio pysyvät lähes vakioina isolla taajuusalueella. Syötön mitat määräävät taajuuskaistan ylärajan; ylärajan aallonpituus λ U syötön ympärysmitan kokoluokkaa, eli syötön säde on noin λ U /4.
14 Spiraaliantenni Taajuuskaistan alarajan määrää antennin säde R, alarajalla antennin kehä C = 2π R on λ L :n luokkaa. Samakulmaista tasospiraaliantennin säteilykuvio koostuu kahdesta tasolle kohtisuorasta vastakkaissuuntaisesta keilasta. Toinen yleinen tasospiraaliantennin on kuvan 6-28 A rkimeden spiraaliantenni, joka on muotoa r = r 0 φ. Syöttöpisteen ja aktiivisen alueen välillä virrat kulkevat siirtolinjamoodissa, eivätkä säteile. Aktiivisella alueella ympärysmitta on aallonpituuden suuruinen. Aktiivisen alueen säteilyhäviöiden vuoksi tämän ulkopuolella virrat ovat pieniä. Antenni toimii kuin se olisi äärettömän iso.
15 Spiraaliantenni Koska syötöt ovat 180 vaihesiirrossa ja matka syöttöpisteistä aktiiviselle alueelle on sama molemmissa johtimissa, virrat ovat samassa vaiheessa vastakkaisilla puolilla spiraalia (esim kuvan 6-28 pisteissä A 1 ja A 2 ). Lisäksi virrat ovat aktiivisella alueella samassa vaiheessa rinnakkaisissa johtimissa (esim pisteissä A 1 ja A 2) johtuen kehän λ/2-matkalla tapahtuvasta 180 vaihesiirrosta. Samavaiheisuudesta johtuen sähkökentät vahvistavat toisiaan rintamasuuntaan. Spiraaliantenni tuottaa ympyräpolarisoitunutta aaltoa ja spiraalin kätisyys määrää polarisaation kätisyyden.
16 Spiraaliantenni Tasospiraaliantenneja voidaan valmistaa edullisesti painotekniikalla, kuten piirejä ja mikroliuska-antenneja. Pääkeilalle vastakkaisen keila saadaan poistettua lisäämällä tasospiraalin taakse johdelevy. Tällöin antennin ja metallitason etäisyys tuo kuitenkin antenniin kiinteän fyysisen mitan, jolloin taajuusriippumattomuus menetetään. Takakeilan suurutta voidaan vähentää myös ilman johdinlevyä käyttämällä kuvan 6-30 mukaista kartiospiraaliantennia.
17 Log-periodiset antennit Spiraaliantennien rakenne painottaa kulmia dimensioiden asemesta, kuten haluttiinkin. Mutta haluaisimme geometrisesti yksinkertaisemman muotoisia rakenteita (suoria, ympyröitä), joita olisi helpompi valmistaa. Log-periodisten antennien geometria on sellainen, että niiden impedanssi ja säteilyominaisuudet muuttuvat periodisesti taajuuden logaritmin funktiona. Muutokset taajuuden funktiona ovat tavallisesti pieniä lähes taajuusriippumaton antenni. Log-peridinen käytös saadaan aikaan sillä, että myös antennin geometriset mitat tehdään log-periodisiksi.
18 Log-periodiset antennit Esimerkki: kuvan 6-33 log-periodisesti h ammastettu tasoantenni, joka on lisäksi itsekomplementaarinen. Hammasrakenne estää antennista säteen suuntaisesti kulkevia virtoja ja kullakin taajuudella λ/4-pituisten hampaiden poikkisuuntaiset virrat tuottavat säteilyn. Peräkkäisten hampaiden ulkosäteiden suhde on aina sama, τ = R n+1 /R n, jolloin säteilykuviossa ja impedanssissakin on taajuuden suhteen sama jakso, f n /f n+1 = τ. Kun tästä otetaan logaritmi puolittain, saadaan log f n+1 = log f n + log 1 τ. (213) Siten antennin toiminta logaritmisesti jaksollinen; tästä seuraa log-periodisten antennien nimi.
19 Log-periodiset antennit Muita esimerkkejä ovat log-pediodinen kiila-antenni (kuva 6-34) + vain yksi pääkeila +z-suuntaan log-periodisesti hammastettu puolisuunnikasantenni (kuva 6-35) + Suorat särmät, helpompi valmistaa Toiminta samanlaista kuin käyrällä versiolla Metallilevystä tehdyt antennit ovat matalilla taajuuksilla usein epäkäytännöllisen kokoisia, siksi levyt korvataankin usein hampaiden ulkopinnan muotoisilla metallilangoilla (kuva 6-36).
20 Log-periodiset antennit Yksinkertaisin ja samalla yleisin log-periodinen antenni on log-periodinen dipoliryhmä (kuvat 6-37 ja 6-38). R akenne jäljittelee kaksinkerroin taitettua kuvan 6-35 hammastettua puolisuunnikasantennia. Kullakin taajuudella jotkut dipoleista on lähellä λ/2-pituutta ja toimivat lähettiminä, viereisten pidempien ja lyhyempien dipolien toimiessa heijastajina ja suuntaajina Yagi-Uda-antennien tapaan. Taajuuskaistan ylä- ja alarajalla lyhin tai pisin dipoli on (karkeasti) λ/2 luokkaa. Elementtien määrä, paikat ja pituudet määräytyvät kuvan 6-39 optimaalisista arvoista.
21 Log-periodiset antennit Antennin runko-osa toimii siirtolinjana, joka syöttää aktiivisen alueen dipoleita. Kuvassa 6-40 on esimerkki siitä, miten eri elementtien virrat ja jännitteet muuttuvat taajuuden muuttuessa. Kuvassa 6-41 säteilykuvio usealla eri taajuudella. Huomataan, että säteilykeila ja impedanssi pysyvät lähes vakiona isolla taajuusalueella. Log-periodinen dipoliryhmä on todella yleinen laajakaista-antenni, koska se on yksinkertainen ja halpa valmistaa sekä kevyt. Log-periodisilla antenneilla saavutetaan usein 10:1 kaistanleveyksiä.
Resonanssiantennit. Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa.
Resonanssiantennit Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa. E sim erk k ejä: S u orat lank ad ip olit V -d ip olit T aittod ip olit (folded
Kulmaheijastinantenni
Kulmaheijastinantenni Asettamalla syö ttö an ten n i jo h d elev yjen k u lmaan k u v an 5-4 2 mu k aisesti, saad aan n o stettu a v ah v istu sta 1 0-1 2 d B p u o liaalto d ip o lin taso sta. S en an
Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008
Antennin impedanssi Antennin sy ö ttö impedanssi on se impedanssi, jolla antenni näk y y sen sy öttöpisteisiin. S y öttöimpedanssiin v aik u ttav at k aik k i antennin läh istöllä olev at rak enteet ja
Antennit ja syöttöjohdot
Antennit ja syöttöjohdot http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf Siirtojohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf
Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds
Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan
V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa
Antennit osana viestintäjärjestelm ää Antennien pääk äy ttö tark o itu s o n to im inta v iestintäjärjestelm issä. V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa
Antennit ja. syöttöjohdot. http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf. OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY
Antennit ja http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf syöttöjohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf
Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta.
Pieni silmukka-antenni duaalisuus Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. S amalla saamme my ö s silmukan läh ikentät. Käy tämme h y v äksi sitä, että
Kapasitiivinen ja induktiivinen kytkeytyminen
Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina
Häiriöt kaukokentässä
Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa
Antennit ja syöttöjohdot. OH3NE:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY
Antennit ja syöttöjohdot OH3NE:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Desibeli Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia Yleisiä antenneja Aallonpituus Aallonpituus = valon
Desibeli. OH3TR radioamatöörikurssi 2009 OH3HNY 1. Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia.
Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia Desibeli Tiiti Kellomäki, Yleisiä antenneja Desibeliasteikko Desibelilaskentaa Kaikki piirit vahvistavat tai vaimentavat tehoa. A = P o /P
Scanned by CamScanner
Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä
Antenni ja säteilykuvio
POHDIN projekti Antenni ja säteilykuvio Nykyaikana sekä tietoliikennekulttuuri että ylipäätään koko infrastruktuuri perustuvat hyvin voimallisesti sähkömagneettiseen säteilyyn ja antenneihin. Kun tarkastellaan
Radioamatöörikurssi 2014
Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Siirtojohdot, Antennit ja Eteneminen 11.11.2014 Juha, OH2EAN 1 / 42 Illan aiheet Siirtojohdot Antennit Radioaaltojen eteneminen 2 / 42 Siirtojohto Mikä
Säh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti h y v in su u ri.
Kä y tä n n ö n sä h k ö ise sti p ie n e t d ip o lit Säh k ö isesti pien en an ten n in k o k o o n alle λ/1 0. Säh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti
Desibeli. Desibeliasteikko. Desibelilaskentaa. Desibeliyksiköitä. Peukalosääntöjä. Desibeli Siirtojohdot, SWR Antennien ominaisuuksia
Desibeli Siirtojohdot, SWR Antennien ominaisuuksia Desibeli Tiiti Kellomäki, OH3HNY Yleisiä antenneja Desibeliasteikko Kaikki piirit vahvistavat tai vaimentavat tehoa. A = P o /P i = 100000 B = P o /P
RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m
1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan
SWR eli SAS Antennien ominaisuuksia. Tiiti Kellomäki, OH3HNY. antenneja
Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia i i Tiiti Kellomäki, OH3HNY Yleisiä antenneja ylikurssia! ylikurssia! ylikurssia! ylikurssia! ylikurssia! Desibeli ylikurssia! i ylikurssia!
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn
Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina
Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain
Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen
Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0
Huygensin periaate Jos kuvan 7-3a mukaisessa tilanteessa tehtävää muutetaan siten, että alueen V pinnalla S reunaehdot pysyvät samoina, ja lähteet V
Aukko-antennit Neljästä an ten n ien p ääry h m ästä o n en ää k äsittelem ättä y k si, au k k o an ten n it. A u k k o an ten n ien rak en teessa o n jo k in au k k o, jo n k a k au tta säh k ö m ag n
Radiotekniikan perusteet BL50A0301
Radiotekniikan perusteet BL50A0301 1. Luento Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto Opetusjärjestelyt Luentoja 12h, laskuharjoituksia 12h, 1. periodi Luennot Juhamatti Korhonen Harjoitukset
EMC Säteilevä häiriö
EMC Säteilevä häiriö Kaksi päätyyppiä: Eromuotoinen johdinsilmukka (yleensä piirilevyllä) silmulla toimii antennina => säteilevä magneettikenttä Yhteismuotoinen ei-toivottuja jännitehäviöitä kytkennässä
Siirtolinjat - Sisältö
Siirtolinjat - Sisältö Siirtolinjatyypit Symmetriset siirtolinjat Epäsymmetriset siirtolinjat Ominaisimpedanssi SWR, sovitus Siirtolinjojen ominaisuuksia Syöttöjohtotyyppejä: Koaksiaalikaapeli (koksi)
Radioamatöörikurssi 2014
Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Siirtojohdot, Antennit ja Eteneminen 10.11.2015 Otto, OH2EMQ 1 / 44 Illan aiheet Siirtojohdot Antennit Radioaaltojen eteneminen 2 / 44 Siirtojohto Mikä
SÄHKÖMAGNEETTINEN KYTKEYTYMINEN
SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori
RATKAISUT: 18. Sähkökenttä
Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että
MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5
d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen
MEI-55100 Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen Tehtävä 1: Tarkastellaan luentojen esimerkkiä, jossa johepalkki liikkuu kahen johelevyn välissä homogeenisessä magneettikentässä,
Jukka Kinkamo, OH2JIN Kaukopäästä avoin ja oikosuljettu syöttöjohto
Kaukopäästä avoin ja oikosuljettu syöttöjohto Jos lähtötilanteessamme on lähettimen ulostuloimpedanssi 50 Ω, syöttöjohdon impedanssi samoin 50 Ω ja kuorman eli antennin impedanssi 50 Ω, on tehonsiirto
FYSP105 / K3 RC-SUODATTIMET
FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä
Häiriöt, siirtojohdot, antennit, eteneminen
Radioamatöörikurssi PRK OH2TI Häiriöt, siirtojohdot, antennit, eteneminen 2.11.2011 Teemu, OH2FXN 1 / 44 Häiriöt Radioamatööri on vastuussa aiheuttamistaan häiriöistä. Kaikissa häiriötapauksissa amatööri
Ideaalinen dipoliantenni
Ideaalinen dipoliantenni Ideaalinen dipoli on säh k öisesti p ieni lank a-antenni ( z λ), jossa v irralla v ak io am p litu d i ja v aih e. Id eaalinen d ip oliantenni on k äy tännön antennina h arv inainen.
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)
AALTOLIIKEOPPIA FYSIIKASSA
1 AALTOLIIKEOPPIA FYSIIKASSA Miten aallot käyttäytyvät väliaineissa & esteissä? Mitä ovat Maxwellin yhtälöt? HUYGENSIN PERIAATE 2 Aaltoa voidaan pitää jokaisesta aallon jo läpäisemästä väliaineen pisteestä
a P en.pdf KOKEET;
Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten
1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset:
521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 4 1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset: f [MHz] [Ω] 870 120-j100 875 100-j80 880 80-j55 885 70-j30 890 70-j15 895 65+j10 900 70+j30
Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon
Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])
TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA
TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022
Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on
763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Ensimmäisen asteen polynomifunktio
Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()
Aaltoputket analyyttinen ratkaisu. Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun.
Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun. Lähd etään hakem aan ratkaisua y htälöistä (2 ) ja (3 ), kuten T E M -siirtolinjojen y htey d essä. N y t aaltoputkien tapauksessa z-kom
Tehtävien ratkaisut
Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta
Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.
Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)
Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)
Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori
Kartio ja pyramidi
Kartio ja pyramidi Kun avaruuden suora s liikkuu pitkin itseään leikkaamatonta tason T suljettua käyrää ja lisäksi kulkee tason T ulkopuolisen pisteen P kautta, suora s piirtää avaruuteen pinnan, jota
Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora
Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen
2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
Mikrofonien toimintaperiaatteet. Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist
Mikrofonien toimintaperiaatteet Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist Mikrofonien luokittelu Sähköinen toimintaperiaate Akustinen toimintaperiaate Suuntakuvio Herkkyys Taajuusvaste
T2-Kurssimateriaalia 1.0 Janne Strang OH6LSL 27.9.2002
1. ANTENNITYYPPEJÄ Koska radiotaajuusalue kattaa oktaaveissa ajatellen erittäin laajan kaistan satojen kilometrien pituisista aalloista millimetrien pituisiin, on saman antennityypin käyttäminen mahdotonta
Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
Coulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =
KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )
KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen
7. Resistanssi ja Ohmin laki
Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) Ratkaistaan suorakulmaisen kolmion kateetin pituus x tangentin avulla. tan9 x,5,5 x,5 tan 9 x 2,8... x» 2,8 (cm) Kateetin pituus x on 2,8 cm. b) Ratkaistaan vinokulmaisen kolmion sivun pituus
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja
x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)
MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon
Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora
Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen
Ongelmia mittauksissa Ulkoiset häiriöt
Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,
80m antenneista kotimaan työskentelyssä
80m antenneista kotimaan työskentelyssä Pekka Ketonen, OH1TV 16.11.2016 OH1TV 1 Vertailua 80m kotimaan antenneista 1. Yleistä 2. λ luuppi 3. Magneettinen luuppi 4x4m 4. λ/2 dipoli 5. Yhteenvweto ja johtopäätökset
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 17.10.016 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ 1. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 180. Kolmannen kulman
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18
Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi
31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde
1 Määrittelyjä ja aputuloksia
1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia
RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)
FYSP1082 / K4 HELMHOLTZIN KELAT
FYSP1082 / K4 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funktiona. Sähkömagnetismia ja
Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 22..204 Ratkaisuita. Laske 23 45. a) 4000 b) 4525 c) 4535 d) 5525 e) 5535 Ratkaisu. Lasketaan allekkain: 45 23 35 90 45 5535 2. Yhden maalipurkin sisällöllä
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän
3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina
Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä
FYSP105 / K2 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funtiona. Sähkömagnetismia ja työssä
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Ei-ideaaliset piirikomponentit Tarkastellaan
SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO
SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen
521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3
51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi
Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13
Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 11 / versio 23. marraskuuta 2015 Aaltojohdot ja resonaattorit (Ulaby 8.6 8.11) TE-, TM- ja TEM-aaltomuodot Suorakulmaisen aaltoputken perusaaltomuoto
Kenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen
Kenttäteoria Viikko 10: Tasoaallon heijastuminen ja taittuminen Tämän viikon sisältöä Todellinen aalto vai tasoaalto Desibelit Esitehtävä Kohtisuora heijastus metalliseinästä Kohtisuora heijastus ja läpäisy
SEISOVA AALTOLIIKE 1. TEORIAA
1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus
Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta
MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit
Lineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.
766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua
7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia
10. Toisen asteen käyrien ja pintojen geometriaa 10.1. Ympyrän ja pallon ominaisuuksia 446. Minkä käyrän muodostavat ne tason E 2 pisteet, joista pisteitä ( a,0) ja (a,0) yhdistävä jana (a > 0) näkyy 45
Kertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi
5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen
Toisen asteen käyrät 1/7 Sisältö ESITIEDOT: käyrä, kartio ja lieriö
Toisen asteen kärät 1/7 Sisältö ESITIEDOT: kärä, kartio ja lieriö Hakemisto KATSO MYÖS: mprä, toisen asteen pinnat Toisen asteen kärä Toisen asteen käräksi kutsutaan kärää, jonka htälö -ssa on muuttujien
Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.
Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.
Derivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
df4sa dipl.-ing cornelius paul liebigstrasse 2-20 d-22113 hamburg info@spiderbeam.net www.spiderbeam.net
Spiderbeam kehitettiin Dxpeditioihmisten unelma-antenniksi. Se on täysikokoinen, kevyt, kolmen taajuusalueen yagi joka on valmistettu lasikuidusta ja langasta. Koko antenni painaa ainoastaan kg, mikä tekee
Epäeuklidista geometriaa
Epäeuklidista geometriaa 7. toukokuuta 2006 Sisältö 1 Johdanto 1 1.1 Euklidinen geometria....................... 1 1.2 Epäeuklidinen geometria..................... 2 2 Poincarén kiekko 2 3 Epäeuklidiset
RF-tekniikan perusteet BL50A0300
RF-tekniikan perusteet BL50A0300 1. Luento 26.8.2013 Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto DI Juho Tyster Opetusjärjestelyt Luentoja 14h, laskuharjoituksia 14h, 1.periodi Luennot ja harjoitukset