Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia

Koko: px
Aloita esitys sivulta:

Download "Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia"

Transkriptio

1 Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia kahdessa eri m oodissa: norm aalim oodi ja aksiaalim oodi. Normaalimoodissa se on y m p ärisäteilev ä rintam asäteilijä helixin akseliin nähden ja on kooltaan sähköisesti p ieni (D λ,l λ), jolloin sen v irta on v akio. Y htä kierrosta v oidaan ap p roksim oida p ienen silm ukan ja ideaalidip olin y hdistelm änä (kuv a ). Helix-antennilla norm aalim oodissa käy tetään/ käy tettiin p aljon känny köissä ja m uissa p ienissä lähetin-v astaanottim issa. S itä sy ötetään usein m aatason p äällä m onop olina.

2 Helix-antenni Etuna muihin lyhyisiin antenneihin verrattuna + K ierre tuo induktiivista komponenttia, kumoaa osan suoran lang an kapasitiivisesta vaikutuksesta + Säteilyresistanssi isompi kuin ideaalimonopolilla + P äästään ympyräpolarisoituneisiin aaltoihin Aksiaalimoodissa helix-antenni toimii päätysäteilijänä, jolla on yksi keila helixin akselin suuntaan. N iillä saavutetaan jopa 15 db :n vahvistus ja niiden säteily ympyräpolarisoitunutta.

3 Helix-antenni Suhteellisen pienestä poikkipinnastaan johtuen aksiaalimoodin helix-antennia käytetään yleisesti U HF -taajuuksilla satelliittilinkeissä. Yhden silmukan ympärysmitta on aallonpituuden luokkaa. Antennissa kulkee sinimuotoinen etenevä aalto, jonka sähkökentät ympyräpolarisoituneita. Helixin vastakkaisilla puolilla virta on 18 0 vaihesiirrossa ja vastakkaissuuntainen, joten kokonaisuudessaan virrat ovat samanvaiheisia ja vahvistavat siten toisiaan akselin suuntaan.

4 Helix-antenni Sitä voidaan mallintaa antenniryhmänä, jonka elementtiantennit ovat silmukoita, joilla kehän pituus on λ. O ikeankätinen helix tuottaa oikeakätisesti ympyräpolarisoituneen aallon, vastaava vasenkätisille. L yhyt helix on suhteellisen leveäkaistainen, f U / f L on hieman alle kaksi. Aksiaalimoodissa toimivan helix-antennin keilanleveys pienenee (vahvistus kasvaa) kierroksia lisättäessä. Syöttöresistanssi lähes reaalinen etenevistä aalloista johtuen.

5 Kaksoiskartiodipoli Tavallisten dipoleiden kaistanleveyttä voi parantaa käyttämällä paksumpia johtimia. Kaistaleveyttä saadaan kasvatettua vielä enemmän, kun tehdään johtimista kartion mallisia (kuva 6-15). J os kartiot ovat äärettömän pitkiä ja niillä on äärellinen väli syöttöpisteessä, kyseessä on ääretön kaksoiskartiodipoli. Sitä voidaan approksimoida siirtolinjana, jossa etenee TEM -aalto Eteneviä aaltoja reaalinen impedanssi Säteilykuvio kuvassa 6-16

6 Kaksoiskartiodipoli Käytännössä kartiot eivät voi olla äärettömiä, vaan ne pitää katkaista kuvan 6-17 mukaisesti. Tällöin antenniin syntyy seisovia aaltoja, jotka aiheuttavat syöttöimpedanssiin reaktiivisen komponentin. Lisäämällä kartioiden kulmaa, saadaan reaktiivinen osa minimoitua ja reaaliosa vähemmän herkäksi taajuuden muutoksille, jolloin saavutetaan 2 :1 impedanssin kaistanleveys. (kuva 6-18) Kaksoiskartiodipolin toiminta riippuu enemmän sen kartioiden kulmasta kuin niiden koosta. Taajuuskaistan alapäässä kartion koko on λ/4 :n luokkaa, yläpäässä λ/2 :ta suurempi.

7 Kaksoiskartiodipoli Kaksoiskartiodipolin tasomainen vastine on kuvan 6-32 b ow -tie -antenni. Jos toinen kartio korvataan kiekon mallisella maatasolla, saadaan lev y kartioantenni (discone, kuva 6-19). Kuvassa 6-20 on esitetty levykartioantennin säteilykuvio 3:1 kaistanleveydellä. Taajuuskaistan alapäässä se säteilee kuten lyhyt dipoli, yläpäässä kuten ääretön kartiodipoli.

8 Vaippa-antenni Dipolin (tai monopolin) kaistanleveyttä voidaan parantaa lisäämällä siihen erityyppisiä vaipparakenteita (kuvat 6-21, 6-22). Kuvassa 6-21 vaipan avulla saadaan virta monopoli virtuaalisessa syöttöpisteessä pysymään samansuuruisena sekä λ/2- että λ/4-pituudella, jolloin myös impedanssi ja säteilykeila pysyvät samana, ja saavutetaan jopa 4:1 kaistanleveys.

9 Taajuusriippumattomat antennit Jos antennin säteilykuvio pysyy vakiona vähintään 10:1 kaistanleveyden, sitä kutsutaan taajuusriippumattomaksi antenniksi. Äärettömän pitkä kaksoiskartiodipoli täyttää tämän ehdon. Se on myös esimerkki siitä yleisestä taajuusriippumattomien antennien ominaisuudesta, että sen toimintaan eivät vaikuta mitkään fyysiset mitat, ainoastaan geometriassa esiintyvät kulmat. Taajuusriippumattomuuteen päästään välttämällä antennin toimintaan vaikuttavia kiinteitä äärellisiä mittoja ja maksimoimalla ominaisuuksien riippuvuus geometrian kulmista.

10 Taajuusriippumattomat antennit Tarkastellaan kuvan 6-25a nauhadipolia, ja samanmuotoista aukkoantennia 6-25b. Aukkoantenni saadaan dipolista korvaamalla tasossa metallinauha ilmalla ja ilma metallilevyllä, eli nämä rakenteet ovat komplementaarisia. Yleisesti komplementaarisille antenneille pätee B abinet n periaate, joka sanoo, että metallisen antennin syöttöimpedanssi Z metal ja sille komplementaarisen aukkoantennin impedanssi Z air toteuttavat Z metal Z air = η2 4, (211) jossa η on ympäröivän aineen aaltoimpedanssi.

11 Taajuusriippumattomat antennit Jos antenni on itsensä komplementti (eli komplementista päädytään rotaatiolla tai translaatiolla alkuperäiseen antenniin), sen impedanssi on Z metal = Z air = η Ω, (212) eli sen impedanssi on taajuudesta riippumaton. Tästä saadaan toinen taajuusriippumattomien antennien suunnitteluperiaate: antenneista pyritään tekemään itsekomplementaarisia. Myös ei-itsekomplementaarisia laajakaista-antenneja on olemassa.

12 Taajuusriippumattomat antennit Taajuusriippumattomien antenneille tyypilliset ominaisuudet voi tiivistää seuraavasti: Painotus kulmilla pituuksien sijasta Suositaan itsekomplementaarisia rakenteita Käytetään paksuja metallirakenteita Kaikki taajuusriippumattomat antennit eivät kuitenkaan toteuta kaikkia näitä ehtoja. Taajuusriippumattomille ominaista on itseskaalautuvuus. Suurin osa säteilystä syntyy alueella, jonka pituus on λ/2:n tai kehä λ:n luokkaa, ns. aktiivisella alueella. Taajuuden laskiessa aktiivinen alue siirtyy kohti fyysisesti isompaa osaa antennia.

13 Spiraaliantenni Esimerkkejä itseskaalautuvuudesta ja aktiivisesta alueesta ovat spiraaliantennit, jotka ovat lisäksi (tarkasti tai lähes) itsekomplementaarisia. Niillä saavutetaan parhaimmillaan 40:1 kaistanleveys. Tarkastellaan kuvan 6-27 samakulmaista tasospiraaliantennia, jonka reunaviivat toteuttavat yhtälön r =r 0 e aφ. Taajuuden laskiessa aktiivinen alue siirtyy ulommas spiraalirakenteessa, jolloin impedanssi, säteilykuvio ja polarisaatio pysyvät lähes vakioina isolla taajuusalueella. Syötön mitat määräävät taajuuskaistan ylärajan; ylärajan aallonpituus λ U syötön ympärysmitan kokoluokkaa, eli syötön säde on noin λ U /4.

14 Spiraaliantenni Taajuuskaistan alarajan määrää antennin säde R, alarajalla antennin kehä C = 2π R on λ L :n luokkaa. Samakulmaista tasospiraaliantennin säteilykuvio koostuu kahdesta tasolle kohtisuorasta vastakkaissuuntaisesta keilasta. Toinen yleinen tasospiraaliantennin on kuvan 6-28 A rkimeden spiraaliantenni, joka on muotoa r = r 0 φ. Syöttöpisteen ja aktiivisen alueen välillä virrat kulkevat siirtolinjamoodissa, eivätkä säteile. Aktiivisella alueella ympärysmitta on aallonpituuden suuruinen. Aktiivisen alueen säteilyhäviöiden vuoksi tämän ulkopuolella virrat ovat pieniä. Antenni toimii kuin se olisi äärettömän iso.

15 Spiraaliantenni Koska syötöt ovat 180 vaihesiirrossa ja matka syöttöpisteistä aktiiviselle alueelle on sama molemmissa johtimissa, virrat ovat samassa vaiheessa vastakkaisilla puolilla spiraalia (esim kuvan 6-28 pisteissä A 1 ja A 2 ). Lisäksi virrat ovat aktiivisella alueella samassa vaiheessa rinnakkaisissa johtimissa (esim pisteissä A 1 ja A 2) johtuen kehän λ/2-matkalla tapahtuvasta 180 vaihesiirrosta. Samavaiheisuudesta johtuen sähkökentät vahvistavat toisiaan rintamasuuntaan. Spiraaliantenni tuottaa ympyräpolarisoitunutta aaltoa ja spiraalin kätisyys määrää polarisaation kätisyyden.

16 Spiraaliantenni Tasospiraaliantenneja voidaan valmistaa edullisesti painotekniikalla, kuten piirejä ja mikroliuska-antenneja. Pääkeilalle vastakkaisen keila saadaan poistettua lisäämällä tasospiraalin taakse johdelevy. Tällöin antennin ja metallitason etäisyys tuo kuitenkin antenniin kiinteän fyysisen mitan, jolloin taajuusriippumattomuus menetetään. Takakeilan suurutta voidaan vähentää myös ilman johdinlevyä käyttämällä kuvan 6-30 mukaista kartiospiraaliantennia.

17 Log-periodiset antennit Spiraaliantennien rakenne painottaa kulmia dimensioiden asemesta, kuten haluttiinkin. Mutta haluaisimme geometrisesti yksinkertaisemman muotoisia rakenteita (suoria, ympyröitä), joita olisi helpompi valmistaa. Log-periodisten antennien geometria on sellainen, että niiden impedanssi ja säteilyominaisuudet muuttuvat periodisesti taajuuden logaritmin funktiona. Muutokset taajuuden funktiona ovat tavallisesti pieniä lähes taajuusriippumaton antenni. Log-peridinen käytös saadaan aikaan sillä, että myös antennin geometriset mitat tehdään log-periodisiksi.

18 Log-periodiset antennit Esimerkki: kuvan 6-33 log-periodisesti h ammastettu tasoantenni, joka on lisäksi itsekomplementaarinen. Hammasrakenne estää antennista säteen suuntaisesti kulkevia virtoja ja kullakin taajuudella λ/4-pituisten hampaiden poikkisuuntaiset virrat tuottavat säteilyn. Peräkkäisten hampaiden ulkosäteiden suhde on aina sama, τ = R n+1 /R n, jolloin säteilykuviossa ja impedanssissakin on taajuuden suhteen sama jakso, f n /f n+1 = τ. Kun tästä otetaan logaritmi puolittain, saadaan log f n+1 = log f n + log 1 τ. (213) Siten antennin toiminta logaritmisesti jaksollinen; tästä seuraa log-periodisten antennien nimi.

19 Log-periodiset antennit Muita esimerkkejä ovat log-pediodinen kiila-antenni (kuva 6-34) + vain yksi pääkeila +z-suuntaan log-periodisesti hammastettu puolisuunnikasantenni (kuva 6-35) + Suorat särmät, helpompi valmistaa Toiminta samanlaista kuin käyrällä versiolla Metallilevystä tehdyt antennit ovat matalilla taajuuksilla usein epäkäytännöllisen kokoisia, siksi levyt korvataankin usein hampaiden ulkopinnan muotoisilla metallilangoilla (kuva 6-36).

20 Log-periodiset antennit Yksinkertaisin ja samalla yleisin log-periodinen antenni on log-periodinen dipoliryhmä (kuvat 6-37 ja 6-38). R akenne jäljittelee kaksinkerroin taitettua kuvan 6-35 hammastettua puolisuunnikasantennia. Kullakin taajuudella jotkut dipoleista on lähellä λ/2-pituutta ja toimivat lähettiminä, viereisten pidempien ja lyhyempien dipolien toimiessa heijastajina ja suuntaajina Yagi-Uda-antennien tapaan. Taajuuskaistan ylä- ja alarajalla lyhin tai pisin dipoli on (karkeasti) λ/2 luokkaa. Elementtien määrä, paikat ja pituudet määräytyvät kuvan 6-39 optimaalisista arvoista.

21 Log-periodiset antennit Antennin runko-osa toimii siirtolinjana, joka syöttää aktiivisen alueen dipoleita. Kuvassa 6-40 on esimerkki siitä, miten eri elementtien virrat ja jännitteet muuttuvat taajuuden muuttuessa. Kuvassa 6-41 säteilykuvio usealla eri taajuudella. Huomataan, että säteilykeila ja impedanssi pysyvät lähes vakiona isolla taajuusalueella. Log-periodinen dipoliryhmä on todella yleinen laajakaista-antenni, koska se on yksinkertainen ja halpa valmistaa sekä kevyt. Log-periodisilla antenneilla saavutetaan usein 10:1 kaistanleveyksiä.

Resonanssiantennit. Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa.

Resonanssiantennit. Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa. Resonanssiantennit Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa. E sim erk k ejä: S u orat lank ad ip olit V -d ip olit T aittod ip olit (folded

Lisätiedot

Kulmaheijastinantenni

Kulmaheijastinantenni Kulmaheijastinantenni Asettamalla syö ttö an ten n i jo h d elev yjen k u lmaan k u v an 5-4 2 mu k aisesti, saad aan n o stettu a v ah v istu sta 1 0-1 2 d B p u o liaalto d ip o lin taso sta. S en an

Lisätiedot

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008 Antennin impedanssi Antennin sy ö ttö impedanssi on se impedanssi, jolla antenni näk y y sen sy öttöpisteisiin. S y öttöimpedanssiin v aik u ttav at k aik k i antennin läh istöllä olev at rak enteet ja

Lisätiedot

Antennit ja syöttöjohdot

Antennit ja syöttöjohdot Antennit ja syöttöjohdot http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf Siirtojohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf

Lisätiedot

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa Antennit osana viestintäjärjestelm ää Antennien pääk äy ttö tark o itu s o n to im inta v iestintäjärjestelm issä. V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa

Lisätiedot

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan

Lisätiedot

Antennit ja. syöttöjohdot. http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf. OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY

Antennit ja. syöttöjohdot. http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf. OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Antennit ja http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf syöttöjohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf

Lisätiedot

Häiriöt kaukokentässä

Häiriöt kaukokentässä Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

Radioamatöörikurssi 2014

Radioamatöörikurssi 2014 Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Siirtojohdot, Antennit ja Eteneminen 11.11.2014 Juha, OH2EAN 1 / 42 Illan aiheet Siirtojohdot Antennit Radioaaltojen eteneminen 2 / 42 Siirtojohto Mikä

Lisätiedot

Desibeli. OH3TR radioamatöörikurssi 2009 OH3HNY 1. Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia.

Desibeli. OH3TR radioamatöörikurssi 2009 OH3HNY 1. Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia. Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia Desibeli Tiiti Kellomäki, Yleisiä antenneja Desibeliasteikko Desibelilaskentaa Kaikki piirit vahvistavat tai vaimentavat tehoa. A = P o /P

Lisätiedot

Antenni ja säteilykuvio

Antenni ja säteilykuvio POHDIN projekti Antenni ja säteilykuvio Nykyaikana sekä tietoliikennekulttuuri että ylipäätään koko infrastruktuuri perustuvat hyvin voimallisesti sähkömagneettiseen säteilyyn ja antenneihin. Kun tarkastellaan

Lisätiedot

Desibeli. Desibeliasteikko. Desibelilaskentaa. Desibeliyksiköitä. Peukalosääntöjä. Desibeli Siirtojohdot, SWR Antennien ominaisuuksia

Desibeli. Desibeliasteikko. Desibelilaskentaa. Desibeliyksiköitä. Peukalosääntöjä. Desibeli Siirtojohdot, SWR Antennien ominaisuuksia Desibeli Siirtojohdot, SWR Antennien ominaisuuksia Desibeli Tiiti Kellomäki, OH3HNY Yleisiä antenneja Desibeliasteikko Kaikki piirit vahvistavat tai vaimentavat tehoa. A = P o /P i = 100000 B = P o /P

Lisätiedot

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m 1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan

Lisätiedot

SWR eli SAS Antennien ominaisuuksia. Tiiti Kellomäki, OH3HNY. antenneja

SWR eli SAS Antennien ominaisuuksia. Tiiti Kellomäki, OH3HNY. antenneja Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia i i Tiiti Kellomäki, OH3HNY Yleisiä antenneja ylikurssia! ylikurssia! ylikurssia! ylikurssia! ylikurssia! Desibeli ylikurssia! i ylikurssia!

Lisätiedot

Huygensin periaate Jos kuvan 7-3a mukaisessa tilanteessa tehtävää muutetaan siten, että alueen V pinnalla S reunaehdot pysyvät samoina, ja lähteet V

Huygensin periaate Jos kuvan 7-3a mukaisessa tilanteessa tehtävää muutetaan siten, että alueen V pinnalla S reunaehdot pysyvät samoina, ja lähteet V Aukko-antennit Neljästä an ten n ien p ääry h m ästä o n en ää k äsittelem ättä y k si, au k k o an ten n it. A u k k o an ten n ien rak en teessa o n jo k in au k k o, jo n k a k au tta säh k ö m ag n

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Radiotekniikan perusteet BL50A0301

Radiotekniikan perusteet BL50A0301 Radiotekniikan perusteet BL50A0301 1. Luento Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto Opetusjärjestelyt Luentoja 12h, laskuharjoituksia 12h, 1. periodi Luennot Juhamatti Korhonen Harjoitukset

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

Radioamatöörikurssi 2014

Radioamatöörikurssi 2014 Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Siirtojohdot, Antennit ja Eteneminen 10.11.2015 Otto, OH2EMQ 1 / 44 Illan aiheet Siirtojohdot Antennit Radioaaltojen eteneminen 2 / 44 Siirtojohto Mikä

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot

Häiriöt, siirtojohdot, antennit, eteneminen

Häiriöt, siirtojohdot, antennit, eteneminen Radioamatöörikurssi PRK OH2TI Häiriöt, siirtojohdot, antennit, eteneminen 2.11.2011 Teemu, OH2FXN 1 / 44 Häiriöt Radioamatööri on vastuussa aiheuttamistaan häiriöistä. Kaikissa häiriötapauksissa amatööri

Lisätiedot

AALTOLIIKEOPPIA FYSIIKASSA

AALTOLIIKEOPPIA FYSIIKASSA 1 AALTOLIIKEOPPIA FYSIIKASSA Miten aallot käyttäytyvät väliaineissa & esteissä? Mitä ovat Maxwellin yhtälöt? HUYGENSIN PERIAATE 2 Aaltoa voidaan pitää jokaisesta aallon jo läpäisemästä väliaineen pisteestä

Lisätiedot

T2-Kurssimateriaalia 1.0 Janne Strang OH6LSL 27.9.2002

T2-Kurssimateriaalia 1.0 Janne Strang OH6LSL 27.9.2002 1. ANTENNITYYPPEJÄ Koska radiotaajuusalue kattaa oktaaveissa ajatellen erittäin laajan kaistan satojen kilometrien pituisista aalloista millimetrien pituisiin, on saman antennityypin käyttäminen mahdotonta

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina ) KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Ongelmia mittauksissa Ulkoiset häiriöt

Ongelmia mittauksissa Ulkoiset häiriöt Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

RF-tekniikan perusteet BL50A0300

RF-tekniikan perusteet BL50A0300 RF-tekniikan perusteet BL50A0300 1. Luento 26.8.2013 Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto DI Juho Tyster Opetusjärjestelyt Luentoja 14h, laskuharjoituksia 14h, 1.periodi Luennot ja harjoitukset

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

Mikrofonien toimintaperiaatteet. Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist

Mikrofonien toimintaperiaatteet. Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist Mikrofonien toimintaperiaatteet Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist Mikrofonien luokittelu Sähköinen toimintaperiaate Akustinen toimintaperiaate Suuntakuvio Herkkyys Taajuusvaste

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

EMC Suojan epäjatkuvuudet

EMC Suojan epäjatkuvuudet EMC Suojan epäjatkuvuudet EMC - Aukot suojassa Edelliset laskelmat olettivat että suoja on ääretön ehyt tasopinta Todellisuudessa koteloissa on saumoja, liitoksia aukkoja: tuuletus, painonapit luukkuja,

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Esimerkki: Kun halutaan suojautua sähkömagneettisia

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

Yleisen antennin säteily k enttien ratk aisem isen v aih eet:

Yleisen antennin säteily k enttien ratk aisem isen v aih eet: Sä te ily k e n ttie n ra tk a ise m in e n Yleisen antennin säteily k enttien ratk aisem isen v aih eet: 1. E tsi A integ roim alla y h tälö A = µ e jβr 4π r V Je j βˆr r dv, (40 ) 2. L ask e E E = jωa

Lisätiedot

Geometriaa kuvauksin. Siirto eli translaatio

Geometriaa kuvauksin. Siirto eli translaatio Geometriaa kuvauksin Siirto eli translaatio Janan AB kuva on jana A B ja ABB A on suunnikas. Suora kuvautuu itsensä kanssa yhdensuuntaiseksi suoraksi. Kulmat säilyvät. Kuva ja alkukuva ovat yhtenevät.

Lisätiedot

df4sa dipl.-ing cornelius paul liebigstrasse 2-20 d-22113 hamburg info@spiderbeam.net www.spiderbeam.net

df4sa dipl.-ing cornelius paul liebigstrasse 2-20 d-22113 hamburg info@spiderbeam.net www.spiderbeam.net Spiderbeam kehitettiin Dxpeditioihmisten unelma-antenniksi. Se on täysikokoinen, kevyt, kolmen taajuusalueen yagi joka on valmistettu lasikuidusta ja langasta. Koko antenni painaa ainoastaan kg, mikä tekee

Lisätiedot

Aaltoputket. 11. helmikuuta 2008

Aaltoputket. 11. helmikuuta 2008 Aaltoputket TEM-aaltojen lisäk si aaltojoh d oissa v oi ed etä m y ös m u ita aaltom u otoja, tark em m in sanottu na TE- ja TM-aaltom u otoja. A ik aisem m in on tod ettu, että TEM-aalto etenee v ain

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot

RF-tekniikan perusteet BL50A0300

RF-tekniikan perusteet BL50A0300 RF-tekniikan perusteet BL50A0300 5. Luento 30.9.2013 Antennit Radioaaltojen eteneminen DI Juho Tyster Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Tupla 5/8-aallon antenni APRS-tukiasemakäyttöön

Tupla 5/8-aallon antenni APRS-tukiasemakäyttöön Sivu 1/24 Tupla 5/8-aallon antenni APRS-tukiasemakäyttöön Minkälainen antenni APRS-käyttöön? APRS-käyttöä ajatellen ympärisäteilevä vertikaalipolarisoitu antenni on toimiva ratkaisu. Kyseistä antennityyppiähän

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

SMG-5450 Antennit ja ohjatut aallot

SMG-5450 Antennit ja ohjatut aallot Luennot SMG-5450 Antennit ja ohjatut aallot ti 10-12 SC105B pe 11-13 SC105B Luennoijat Tuomas Kovanen, SC307, tuomas.kovanen@tut.fi Jukka Uusitalo, SC305b, jukka-pekka.uusitalo@tut.fi (Luentokalvot: Janne

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN 766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

EMC:n perusteet. EMC:n määritelmä

EMC:n perusteet. EMC:n määritelmä EMC:n perusteet EMC:n määritelmä Järjestelmän tai laitteen kyky toimia tyydyttävästi sähkömagneettisessa ympäristössään tuottamatta muille laitteille tai järjestelmille niille sietämätöntä häiriötä tässä

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet.

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. 1 1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. Radiosignaalin häipyminen. Adaptiivinen antenni. Piilossa oleva pääte. Radiosignaali voi edetä lähettäjältä vastanottajalle (jotka molemmat

Lisätiedot

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Pienjännitesähköasennukset standardin osassa SFS6000-5-5 esitetään johtojen mitoitusperusteet johtimien ja kaapelien kuormitettavuudelle. Lähtökohtana

Lisätiedot

Antenni ilmanlaadun mittauslaitteessa

Antenni ilmanlaadun mittauslaitteessa Aalto-yliopisto Teknillinen korkeakoulu Elektroniikan, tietoliikenteen ja automaation tiedekunta Radiotieteen ja -tekniikan laitos Tuomas Pennanen Antenni ilmanlaadun mittauslaitteessa Diplomityö, joka

Lisätiedot

LIITTEET. Leena Korpinen, Jarmo Elovaara, Lauri Puranen

LIITTEET. Leena Korpinen, Jarmo Elovaara, Lauri Puranen LIITTEET Leena Korpinen, Jarmo Elovaara, Lauri Puranen SISÄLLYSLUETTELO Liite 1 Voimalinjojen sähkö- ja magneettikentän laskenta... 530 Liite 2 Radiotaajuisen kentän laskentamalleja... 537 Liite 3 Mikroaaltoantennin

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen

RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen RF-tekniikan perusteet BL50A0301 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen Antennit Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin

Lisätiedot

2 arvo muuttujan arvolla

2 arvo muuttujan arvolla Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran

Lisätiedot

Laske relaksaatiotaajuus 7 µm (halk.) solulle ja 100 µm solulle.

Laske relaksaatiotaajuus 7 µm (halk.) solulle ja 100 µm solulle. TEKNILLINEN KORKEAKOULU HARJOITUSTEHTÄVÄT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 31.10.2005 vaikutukset ja mittaukset 1(5) Kari Jokela Säteilyturvakeskus HARJOITUSTEHTÄVÄ 1 Laske relaksaatiotaajuus

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

4. SÄHKÖMAGNEETTINEN INDUKTIO

4. SÄHKÖMAGNEETTINEN INDUKTIO 4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ

Lisätiedot

Logiikan rakenteen lisäksi kaikilla ohjelmoitavilla logiikoilla on myös muita yhteisiä piirteitä.

Logiikan rakenteen lisäksi kaikilla ohjelmoitavilla logiikoilla on myös muita yhteisiä piirteitä. Automaatio KYTKENTÄ INFORMAATIOTA 1 KOHTA1: KERRATTAVA MATERIAALISSA OLEVA SIEMENS SIMATIC S7CPU212 TUNNISSA TUTUKSI MONISTE ERITYISESTI LOGIIGAN TULO JA LÄHTÖ LIITTIMIEN JA LIITÄNTÖJEN OSALTA TÄSSÄ TULEE

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

Antennit. Säteilyn syntyminen antennissa

Antennit. Säteilyn syntyminen antennissa Antennit Antenneilla lähetetään ja vastaanotetaan radioaaltoja. Lähetysleho pyritään saamaan antennilla mahdollisimman tehokkaasti radiotielle tai radiotieltä vastaanottimeen. Antenneja tarvitaan lahes

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 Sähkötekniikka NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella vaihtovirtaa!

Lisätiedot

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy

Lisätiedot

Esimerkki 1a. Stubisovituksen (= siirtokaapelisovitus) laskeminen Smithin kartan avulla

Esimerkki 1a. Stubisovituksen (= siirtokaapelisovitus) laskeminen Smithin kartan avulla Esimerkkejä Smithin kartan soveltamisesta Materiaali liittyy OH3AB:llä keväällä 2007 käytyihin tekniikkamietintöihin. 1.5.2007 oh3htu Esimerkit on tehty käyttäen Smith v 1.91 demo-ohjelmaa. http://www.janson-soft.de/seminare/dh7uaf/smith_v191.zip

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

Käyrien välinen dualiteetti (projektiivisessa) tasossa

Käyrien välinen dualiteetti (projektiivisessa) tasossa Solmu 3/2008 1 Käyrien välinen dualiteetti (projektiivisessa) tasossa Georg Metsalo georg.metsalo@tkk.fi Tämä kirjoitus on yhteenveto kaksiosaisesta esitelmästä Maunulan yhteiskoulun matematiikkapäivänä

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot