TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

Koko: px
Aloita esitys sivulta:

Download "TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010"

Transkriptio

1 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen syksy 2010

2 NSGA-II Non-dominated Sorting Genetic Algorithm (NSGA) Ehkä tunnetuin EMO-menetelmä Srinivas & Deb, Evolutionary Computation, 2, 1995 (NSGA) Deb, Pratap, Agarwal & Meyariven, IEEE Transactions on Evolutionary Computation, 6, 2002 (NSGA-II)

3 NSGA-II Ominaisuuksia elitistinen algoritmi: populaation paras ratkaisu siirtyy automaattisesti seuraavaan sukupolveen eksplisiittinen mekanismi ratkaisujen hyvän jakautumisen säilyttämiseen korostaa dominoimattomia ratkaisuja

4 NSGA-II Idea: uutta sukupolvea muodostettaessa alkuperäistä populaatiota käyttäen muodostetaan jälkeläispopulaatio (käyttäen geneettisiä operaattoreita) alkuperäinen populaatio ja jälkeläispopulaatio yhdistetään populaatio, jonka koko on 2N, populaation koko = N saatu populaatio jaetaan luokkiin käyttäen dominanssia uuteen sukupolveen valitaan ratkaisut luokkien mukaan 1. alkaen kunnes valittuna on N ratkaisua

5 NSGA-II f 2, min alkuperäinen & jälkeläispopulaatio (2N, N=7) 1. luokan dominoimattomat ratkaisut 2. luokan dominoimattomat ratkaisut 3. luokan dominoimattomat ratkaisut 4. luokan dominoimattomat ratkaisut uuteen sukupolveen pääsevät kuvan tapauksessa kaikki 1. ja 2. luokan dominoimattomat ratkaisut (N=7) f 1, min

6 NSGA-II Edellisen kuvan tapauksessa uuteen sukupolveen pääsivät siis 1. ja 2. luokan ratkaisut (N=7 ratkaisua) Jos esim. populaation koko olisi ollut 10, niin mukaan olisi mahtunut vielä kolme ratkaisua 3. luokan dominoimattomista ratkaisuista 3. luokan ratkaisuista mukaan olisi valittu ne kolme, jotka olisivat antaneet parhaimman diversiteetin (suurin etäisyys muihin ratkaisuihin, crowding distance)

7 NSGA-II f 2, min 3. luokan dominoimattomat ratkaisut f 1, min Ääriratkaisut (1. & 4.) saavat etäisyyden eli ne valitaan aina Muille etäisyys lasketaan kahden vierekkäisen ratkaisun määräämän kuution tilavuutena Jos kuvan ratkaisuista valitaan 3, niin valituksi tulevat 1 ja 4 sekä 3

8 NSGA-II Valmiita toteutuksia Prof. Kalyanmoy Deb, Kanpur Genetic Algorithms Laboratory MATLAB Central (file exchange) change/10429

9 Testitehtävät EMO-menetelmien suorituskyvyn mittaamiseen on kehitetty erilaisia testitehtäviä, joiden Paretooptimaaliset joukot tunnetaan Menetelmän antamaa ratkaisupopulaatiota voidaan sitten verrata tarkkaan ratkaisuun Testitehtävät on yleensä muodostettu siten, että niitä voidaan skaalata (esim. muuttujien määrää voi säätää) Tarkasteltavia kriteereitä ovat populaation etäisyys PO joukosta ratkaisujen jakautuminen PO joukkoon PO joukon kattaminen

10 Testitehtävät f 2, min PO joukko ratkaisupopulaatio referenssipiste f 1, min Suorituskyvyn mittaamiseen on kehitetty erilaisia metriikoita esim. mitataan populaation dominoiman sallitun alueen suuruutta mitä suurempi ala sitä parempi ratkaisu

11 Testitehtävät Tunnettuja testitehtäviä ovat mm. Kursawe, 1990 (2 objektifunktiota) ZDT-tehtävät, 2000 (2 objektifunktiota) DTLZ-tehtävät, 2001 (2 tai useampia objektifunktioita)

12 Testitehtävät

13 Esimerkki: Kemiallinen erotusprosessi Tarkastellaan kromatografiaan perustuvaa kemiallista erotusprosessia Käytetään moniin tärkeisiin erotusprosesseihin (mm. sokeri-, petrokemian- ja lääketeollisuudessa) Perustuu eri kemiallisten komponenttien nopeuseroon nesteessä *

14 Kemiallinen erotusprosessi Syöte- ja poistovirtojen paikkaa vaihdetaan säännöllisin väliajoin (askelaika) Säätömuuttujat askelaika virtausnopeudet

15 Kemiallinen erotusprosessi Simulated Moving Bed (SMB) prosessia on optimoitu myös käyttäen NSGA-menetelmää Subramani, Hidajat & Ray, Optimization of reactive SMB and Varicol systems, Computers and Chemical Engineering, 27, 2003 Kahden ja kolmen objektifunktion tehtäviä ratkottu Monitavoiteoptimointia käytetty vertailemaan normaalia (samanaikainen syöte- ja poistovirtojen paikkojen vaihto) ja modifioitua SMB-prosessia (ei-samanaikainen vaihto)

16 Kemiallinen erotusprosessi 4 eri tapausta olemassa olevan SMB-prosessin optimointi max tuotteen puhtaus ja saanto, min liuottimen määrä SMB-prosessin optimaalinen suunnittelu max tuotteen puhtaus, min kiinteät ja käyttökustannukset modifioidun SMB-prosessin optimointi ja vertailu SMB-prosessiin samat tavoitteet kuin 1. tapauksessa kiinteiden ja käyttökustannusten minimointi tavalliselle sekä modifioidulle SMB-prosessille

17 Kemiallinen erotusprosessi max tuotteen puhtaus (P MTBE ) ja saanto (Y MTBE ), min liuottimen määrä (γ) Visualisointi ratkaisupopulaatiosta 1. tapauksessa visualisoitu kahden objektifunktion suhteen

18 Ratkaisujen visualisointi f 2, min Pareto-optimaalisten ratkaisujen visualisointi DM arvioi ja vertailee saatuja ratkaisuja Objektifunktioita 2, visualisointi helppoa voidaan esittää tason pisteinä f 1, min

19 Ratkaisujen visualisointi Objektifunktioita 3, onnistuu mutta tulkinta hankalampaa PO joukko on pinta 3-D:ssä

20 Ratkaisujen visualisointi Objektifunktioita > 3, visualisointi hankaloituu PO joukon approksimaatiota ei voi suoraan visualisoida Voidaan visualisoida esim. PO joukon projektioita 2:n tai 3:n objektifunktion suhteen (vrt. kemiallisen erotusprosessin optimointi edellä) kaikki PO pisteet eivät näytä Pareto-optimaalisilta projektioissa

21 Ratkaisujen visualisointi Yleensä visualisoidaan vain pientä joukkoa PO ratkaisuja kun objektifunktioita > 3 Käytetään erilaisia tapoja visualisoida yksittäisiä ratkaisuja paras visualisointi riippuu tietenkin DM:stä Tavoitteena pystyä vertailemaan ratkaisuja

22 Ratkaisujen visualisointi Esimerkkejä: 3D palkit Yksi ratkaisu on yksi väri

23 Ratkaisujen visualisointi Arvopolut: yksi ratkaisu on yksi murtoviiva

24 Ratkaisujen visualisointi Petal diagram: yksi ratkaisu on yksi kiekko Mitä enemmän väriä sitä huonompi arvo

25 Ratkaisujen visualisointi Whisker plot: yksi ratkaisu on yksi kiekko Mitä enemmän väriä sitä huonompi arvo

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Monitavoiteoptimointi Mitä monitavoitteisuus tarkoittaa? Halutaan saavuttaa

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Tasaväliset PO pisteet? Painokerroinmenetelmä: muutetaan painoja systemaattisesti

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2

ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2 ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI Tuomas Airaksinen 1, Erkki Heikkola 2 1 Jyväskylän yliopisto PL 35 (Agora), 40014 Jyväskylän yliopisto tuomas.a.airaksinen@jyu.fi

Lisätiedot

Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely)

Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Jari Hast xx.12.2013 Ohjaaja: Harri Ehtamo Valvoja: Hari Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Erkki Heikkola Numerola Oy, Jyväskylä Laskennallisten tieteiden päivä 29.9.2010, Itä-Suomen yliopisto, Kuopio Putkistojen äänenvaimentimien suunnittelu

Lisätiedot

GA & robot path planning. Janne Haapsaari AUTO Geneettiset algoritmit

GA & robot path planning. Janne Haapsaari AUTO Geneettiset algoritmit GA & robot path planning Janne Haapsaari AUTO3070 - Geneettiset algoritmit GA robotiikassa Sovelluksia liikkeen optimoinnissa: * eri vapausasteisten robottien liikeratojen optimointi * autonomisten robottien

Lisätiedot

A W F P. A W F P Hellävarainen kemiallinen pesu. Erittäin hellävarainen konepesu enintään ilmoitetussa lämpötilassa.

A W F P. A W F P Hellävarainen kemiallinen pesu. Erittäin hellävarainen konepesu enintään ilmoitetussa lämpötilassa. 30 40 50 60 70 95 Konepesu enintään ilmoitetussa lämpötilassa. 30 40 50 60 70 95 Erittäin hellävarainen konepesu enintään ilmoitetussa lämpötilassa. 30 40 Erittäin hellävarainen konepesu enintään ilmoitetussa

Lisätiedot

TIEA382 Lineaarinen ja diskreetti optimointi

TIEA382 Lineaarinen ja diskreetti optimointi TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/

Lisätiedot

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS 1. Suorakaiteen muotoisen lämmönvaraajan korkeus on K, leveys L ja syvyys S yksikköä. Konvektiosta ja säteilystä johtuvat lämpöhäviöt ovat verrannollisia lämmönvaraajan lämpötilan T ja ympäristön lämpötilan

Lisätiedot

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi Optimointi Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa Ongelman mallintaminen Mallin ratkaiseminen Ratkaisun analysointi 1 Peruskäsitteitä Muuttujat: Sallittu alue: x = (x 1, x 2,...,

Lisätiedot

Logistinen regressio, separoivat hypertasot

Logistinen regressio, separoivat hypertasot Logistinen regressio, separoivat hypertasot Topi Sikanen Logistinen regressio Aineisto jakautunut K luokkaan K=2 tärkeä erikoistapaus Halutaan mallintaa luokkien vedonlyöntikertoimia (odds) havaintojen

Lisätiedot

HePon ryhmäajokoulutus Ajomuodostelmat

HePon ryhmäajokoulutus Ajomuodostelmat HePon ryhmäajokoulutus 9.4.2011 Ajomuodostelmat Peesaus Edellä ajavaan etäisyys 30 cm Kovissa nopeuksissa parikin metriä jo auttaa Älä aja renkaat limittäin Pidä veto koko ajan päällä Älä kiihdytä ja rullaa

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Harjoitus 9: Optimointi I (Matlab)

Harjoitus 9: Optimointi I (Matlab) Harjoitus 9: Optimointi I (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

Ke3130900 Kemiantekniikan tietotekniikka Luento 3

Ke3130900 Kemiantekniikan tietotekniikka Luento 3 Ke3130900 Kemiantekniikan tietotekniikka Luento 3 Kimmo Klemola 08.02.2007 February 8, 2007 Kimmo Klemola 1 Polymath Helppokäyttöinen Chemical Reaction Engineeringprofessorien tekemä Soveltuu monipuolisesti

Lisätiedot

Fotogrammetrian seminaari. Kolmiulotteisen pinnanmuodostuksen asettamat vaatimukset 3D-digitoinnin suorittamiseen

Fotogrammetrian seminaari. Kolmiulotteisen pinnanmuodostuksen asettamat vaatimukset 3D-digitoinnin suorittamiseen Fotogrammetrian seminaari Kolmiulotteisen pinnanmuodostuksen asettamat vaatimukset 3D-digitoinnin suorittamiseen 1 Johdanto...3 Alkuoletukset pisteaineistolle...3 Kolmiopinnan muodostaminen...5 2D-Marching

Lisätiedot

YLEISKUVA - Kysymykset

YLEISKUVA - Kysymykset INSIGHT Käyttöopas YLEISKUVA - Kysymykset 1. Insight - analysointityökalun käytön mahdollistamiseksi täytyy kyselyn raportti avata Beta - raportointityökalulla 1. Klikkaa Insight välilehteä raportilla

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

Katkonnanohjaus evoluutiolaskennan keinoin

Katkonnanohjaus evoluutiolaskennan keinoin Katkonnanohjaus evoluutiolaskennan keinoin Askel kohti optimaalista tavaralajijakoa Veli-Pekka Kivinen HY, Metsävarojen käytön laitos Katkonnanohjauksen problematiikkaa Miten arvo-/tavoitematriisit tulisi

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 PROSENTTILASKENTA Prosentti on 1/100 tai 0,01. Esimerkki 40. Lukuarvo % 0,42 42 0,013 1,3 1,002 100,2 1/25 100/25=4 23/45 51,1

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Automaatio mahdollistaa Software as a Service - arkkitehtuurin

Automaatio mahdollistaa Software as a Service - arkkitehtuurin Automaatio mahdollistaa Software as a Service - arkkitehtuurin Softatyön trendit 11.6.2015 käytännön kokemuksia kehittämistyöstä Jussi Haaja Senior Systems Specialist Twitter @jussihaaja Esityksen sisältö

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

Ilmaisia ohjelmia laserkeilausaineistojen käsittelyyn. Laserkeilaus- ja korkeusmalliseminaari 8.10.2010 Jakob Ventin, Aalto-yliopisto

Ilmaisia ohjelmia laserkeilausaineistojen käsittelyyn. Laserkeilaus- ja korkeusmalliseminaari 8.10.2010 Jakob Ventin, Aalto-yliopisto Ilmaisia ohjelmia laserkeilausaineistojen käsittelyyn Laserkeilaus- ja korkeusmalliseminaari 8.10.2010, Aalto-yliopisto Johdanto Aalto-yliopiston maanmittausosastolla tehdyn kesätyön tuloksia Tehtävä oli

Lisätiedot

Miksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon

Miksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon Miksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon Kaisa Miettinen Johdantoa optimointiin Optimointi tarkoittaa systemaattisia tapoja taata parhaan mahdollisen

Lisätiedot

The spectroscopic imaging of skin disorders

The spectroscopic imaging of skin disorders Automation technology October 2007 University of Vaasa / Faculty of technology 1000 students 4 departments: Mathematics and statistics, Electrical engineerin and automation, Computer science and Production

Lisätiedot

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely)

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) 17.09.2015 Ohjaaja: TkT Eeva Vilkkumaa Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Metsikkötason optimointi metsäsuunnittelussa, esimerkkinä SMA

Metsikkötason optimointi metsäsuunnittelussa, esimerkkinä SMA Metsikkötason optimointi metsäsuunnittelussa, esimerkkinä SMA SIMO-seminaari 2.11.2007 Lauri Valsta Metsäekonomian laitos Sisältö Metsikkötason suunnittelun käyttökohteet Katsaus menetelmiin SMA:n rakenne

Lisätiedot

Algoritmit. Ohjelman tekemisen hahmottamisessa käytetään

Algoritmit. Ohjelman tekemisen hahmottamisessa käytetään Ohjelmointi Ohjelmoinnissa koneelle annetaan tarkkoja käskyjä siitä, mitä koneen tulisi tehdä. Ohjelmointikieliä on olemassa useita satoja. Ohjelmoinnissa on oleellista asioiden hyvä suunnittelu etukäteen.

Lisätiedot

OHJ-3100 Ohjelmien ylläpito ja evoluutio. Harjoitustyö. Ohjaaja: Outi Sievi-Korte outi.sievi-korte@tut.fi TE213 Päivystys ti klo 14-16

OHJ-3100 Ohjelmien ylläpito ja evoluutio. Harjoitustyö. Ohjaaja: Outi Sievi-Korte outi.sievi-korte@tut.fi TE213 Päivystys ti klo 14-16 OHJ-3100 Ohjelmien ylläpito ja evoluutio 1 Harjoitustyö Ohjaaja: Outi Sievi-Korte outi.sievi-korte@tut.fi TE213 Päivystys ti klo 14-16 2 Yleiskatsaus Yleisesittely Geneettiset algoritmit Ohjelmistoarkkitehtuurit

Lisätiedot

Tuntematon järjestelmä. Adaptiivinen suodatin

Tuntematon järjestelmä. Adaptiivinen suodatin 1 1 Vastaa lyhyesti seuraaviin a) Miksi signaaleja ylinäytteistetään AD- ja DA-muunnosten yhteydessä? b) Esittele lohkokaaviona adaptiiviseen suodatukseen perustuva tuntemattoman järjestelmän mallinnus.

Lisätiedot

Mikroskooppisten kohteiden

Mikroskooppisten kohteiden Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

Lean toimintamallia tukevan Excelin pikakäyttöopas versio 1.1

Lean toimintamallia tukevan Excelin pikakäyttöopas versio 1.1 Lean toimintamallia tukevan Excelin pikakäyttöopas versio 1.1 versio 1.0 Varhac Oy Jussi Luukkonen 01.10.2013 versio 1.1. HSY Lotta Toivonen 25.10.2013 Sisällys 1 Sovelluksen asennus... 3 2 Sovelluksen

Lisätiedot

TUULIKKI TANSKA ALGORITMIT PUURAKENTAMISESSA

TUULIKKI TANSKA ALGORITMIT PUURAKENTAMISESSA TUULIKKI TANSKA ALGORITMIT PUURAKENTAMISESSA Tarkoituksena kehittää ja tutkia puurakenteita ja puurakentamista julkisen rakennuksen mittakaavassa käyttäen algoritmisia suunnittelumenetelmiä, sekä tietokoneavusteisia

Lisätiedot

Zeon PDF Driver Trial

Zeon PDF Driver Trial Matlab-harjoitus 2: Kuvaajien piirto, skriptit ja funktiot. Matlabohjelmoinnin perusteita Numeerinen integrointi trapezoidaalimenetelmällä voidaan tehdä komennolla trapz. Esimerkki: Vaimenevan eksponentiaalin

Lisätiedot

PERSONEC HR-JÄRJESTELMÄ Käyttöohje Esimies

PERSONEC HR-JÄRJESTELMÄ Käyttöohje Esimies PERSONEC HR-JÄRJESTELMÄ Käyttöohje Esimies Personec HR-järjestelmä sisältää yliopistojen palkkausjärjestelmän arviointilomakkeet, joihin tallennetut tiedot siirtyvät järjestelmässä ypj-arviointiprosessin

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Energiatehokkuuden parantaminen talousveden jakelussa

Energiatehokkuuden parantaminen talousveden jakelussa Energiatehokkuuden parantaminen talousveden jakelussa DI Mika Kuronen 20.5.2015 Sisältö Pohjana samanniminen diplomityö, Aalto-yliopisto Tilaaja Tuusulan seudun vesilaitos kuntayhtymä, mukana myös VVY,

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Mitä elämä on? Astrobiologian luento 15.9.2015 Kirsi

Mitä elämä on? Astrobiologian luento 15.9.2015 Kirsi Mitä elämä on? Astrobiologian luento 15.9.2015 Kirsi Määritelmän etsimistä Lukemisto: Origins of Life and Evolution of the Biosphere, 2010, issue 2., selaile kokonaan Perintteisesti: vaikeasti määriteltävä

Lisätiedot

HSC-ohje laskuharjoituksen 1 tehtävälle 2

HSC-ohje laskuharjoituksen 1 tehtävälle 2 HSC-ohje laskuharjoituksen 1 tehtävälle 2 Metanolisynteesin bruttoreaktio on CO 2H CH OH (3) 2 3 Laske metanolin tasapainopitoisuus mooliprosentteina 350 C:ssa ja 350 barin paineessa, kun lähtöaineena

Lisätiedot

CABAS - Maalausnäytöt

CABAS - Maalausnäytöt CABAS - Maalausnäytöt Maalausvalinta Ulkopinnan maalaus Sisäpinnan maalaus Ruostesuoja ja kiveniskusuoja Järjestelmä antaa maalausehdotuksen Uusi varaosan vaihdon yhteydessä, jos kyseessä on ruuvikiinnitteinen

Lisätiedot

T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi

T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi Johdantoluento (22.1.2008) Nikolaj Tatti ntatti@cc.hut.fi Johdantoluento Kurssijärjestelyt ja vaatimukset. Kurssin sisällöstä. Hyvä esitelmä

Lisätiedot

11. Tilavuusrenderöinti

11. Tilavuusrenderöinti 11. Tilavuusrenderöinti Tilavuusrenderöinti tarkoittaa vokseliperusteisen datan käsittelyä tai visualisointia. Luvussa 2 esitettiin vokselien merkintään perustuvia tiedonesitysmenetelmiä. Suuret homogeeniset

Lisätiedot

TTY Porin laitoksen optimointipalvelut yrityksille

TTY Porin laitoksen optimointipalvelut yrityksille TTY Porin laitoksen optimointipalvelut yrityksille Timo Ranta, TkT Frank Cameron, TkT timo.ranta@tut.fi frank.cameron@tut.fi Automaation aamukahvit 28.8.2013 Optimointi Tarkoittaa parhaan ratkaisun valintaa

Lisätiedot

Matemaattisten vertailukaavojen riskit

Matemaattisten vertailukaavojen riskit Matemaattisten vertailukaavojen riskit 21.11.2013 VT Tapio Lahtinen PTCServices Oy Peruskaava Yleensä hintojen pisteytys hoidetaan valtion hankintakäsikirjassakin esitetyllä kaavalla vertailuperusteen

Lisätiedot

Paikkatietojen käytön tulevaisuus -

Paikkatietojen käytön tulevaisuus - Paikkatietojen käytön tulevaisuus - Näkökulmina teholaskenta ja vuorovaikutteisuus Juha Oksanen, tutkimuspäällikkö Geoinformatiikan ja kartografian osasto, Geodeettinen laitos Geoinformatiikan tutkimuspäivät

Lisätiedot

Ukkoverkot Oy. 100% Internettiä - 0% Puhetta 19.8.2015. CC-BY-SA Ukkoverkot Oy, 2015.

Ukkoverkot Oy. 100% Internettiä - 0% Puhetta 19.8.2015. CC-BY-SA Ukkoverkot Oy, 2015. Ukkoverkot Oy 100% Internettiä - 0% Puhetta 19.8.2015 Saarijärvi Ukkonet 4G LTE Band 38, 2.6GHz Tukiasemapaikat ja peittoennusteet 2 Selvityksen kohteet 3 Keskustaajaman ulkopuolella, asukasluvun perusteella

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

testo 831 Käyttöohje

testo 831 Käyttöohje testo 831 Käyttöohje FIN 2 1. Yleistä 1. Yleistä Lue käyttöohje huolellisesti läpi ennen laitteen käyttöönottoa. Säilytä käyttöohje myöhempää käyttöä varten. 2. Tuotekuvaus Näyttö Infrapuna- Sensori, Laserosoitin

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot

OPERAATIOTUTKIMUS METSÄTALOUDESSA

OPERAATIOTUTKIMUS METSÄTALOUDESSA OPERAATIOTUTKIMUS METSÄTALOUDESSA Jyrki Kangas, UPM Metsä & Annika Kangas, Helsingin yliopisto Alustus FORS-seminaarissa 'Operaatiotutkimus metsäsektorilla' 24.5.2006 Helsinki Tyypillisimmät OR-tehtävät

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT HAJAUTUS, JÄRJESTÄMISESTÄ HAJAUTTAMISEN IDEA Jos avaimet (tai data) ovat kokonaislukuja välillä 1 N, voidaan niitä käyttää suoraan indeksointiin Järkevä rakenne on

Lisätiedot

Yksilöllinen oppiminen ja ohjattu itsearviointi

Yksilöllinen oppiminen ja ohjattu itsearviointi Yksilöllinen oppiminen ja ohjattu itsearviointi eduhakkeri Pekka Peura Martinlaakson lukio pekka.peura@eduvantaa.fi blogi: www.maot.fi www.facebook.com/eduhakkerit 12.4.2014 Aiheet 1) Oppimispotentiaali

Lisätiedot

JOITAKIN KOMMENTTEJA JA LISÄEHDOTUKSIA TIETEEN METODIIKKA MODUULIN YHTEISEEN KURSSILISTAAN Esitys 25.4.2007 KK

JOITAKIN KOMMENTTEJA JA LISÄEHDOTUKSIA TIETEEN METODIIKKA MODUULIN YHTEISEEN KURSSILISTAAN Esitys 25.4.2007 KK JOITAKIN KOMMENTTEJA JA LISÄEHDOTUKSIA TIETEEN METODIIKKA MODUULIN YHTEISEEN KURSSILISTAAN Esitys 25.4.2007 KK 1 Osastojen kommentteja (1. ja 2.) ja tarkennus (3.) : 1. Tu-osasto (suunn. Tarja Timonen,

Lisätiedot

Internet of Things. Ideasta palveluksi 17.4.2015. Omat tiedot ja niiden tietosuoja. Petteri Järvinen. # IoTidea

Internet of Things. Ideasta palveluksi 17.4.2015. Omat tiedot ja niiden tietosuoja. Petteri Järvinen. # IoTidea Internet of Things Ideasta palveluksi 17.4.2015 Omat tiedot ja niiden tietosuoja Petteri Järvinen Paljonko dataa olen tänään jo tuottanut? Sähköpostit, tekstiviestit, puhelut, some-käyttö, nettisurffailu

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Suomen virtuaaliammattikorkeakoulu Boolen operaattorit v. 0.5 > 80 % 80 60 % 60 50 % < 50 % Suhteellinen osuus maksimiarvosta (%)

Suomen virtuaaliammattikorkeakoulu Boolen operaattorit v. 0.5 > 80 % 80 60 % 60 50 % < 50 % Suhteellinen osuus maksimiarvosta (%) Oppimisaihion arviointi / Arvioinnin tulos 9 Aineiston arvioinnin tulos arviointialueittain Suomen virtuaaliammattikorkeakoulu Boolen operaattorit v. 0.5 > 80 % 80 60 % 60 50 % < 50 % Arviointialue Ominaisuuksien

Lisätiedot

Liikehavaintojen estimointi langattomissa lähiverkoissa. Diplomityöseminaari Jukka Ahola

Liikehavaintojen estimointi langattomissa lähiverkoissa. Diplomityöseminaari Jukka Ahola Liikehavaintojen estimointi langattomissa lähiverkoissa Diplomityöseminaari Jukka Ahola ESITYKSEN SISÄLTÖ Työn tausta Tavoitteen asettelu Johdanto Liikehavaintojen jakaminen langattomassa mesh-verkossa

Lisätiedot

Korkean resoluution ja suuren kuva-alueen SAR

Korkean resoluution ja suuren kuva-alueen SAR Korkean resoluution ja suuren kuva-alueen SAR Risto Vehmas, Juha Jylhä, Minna Väilä ja prof. Ari Visa Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos Myönnetty rahoitus: 50 000 euroa Esityksen

Lisätiedot

T-111.210 Studio 4. luento 1: kurssin järjestelyt k-2005 tietokonegrafiikan perusteita. 20.1.2005 Tassu Takala 1

T-111.210 Studio 4. luento 1: kurssin järjestelyt k-2005 tietokonegrafiikan perusteita. 20.1.2005 Tassu Takala 1 T-111.210 Studio 4 luento 1: kurssin järjestelyt k-2005 tietokonegrafiikan perusteita 20.1.2005 Tassu Takala 1 Kurssin tavoitteet ohjelmoitavan tietokonegrafiikan alkeet grafiikan soveltaminen luovalla

Lisätiedot

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Laske 20 12 11 21. Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut a) 31 b) 0 c) 9 d) 31 Ratkaisu. Suoralla laskulla 20 12 11 21 = 240 231 = 9. (2) Kahden peräkkäisen

Lisätiedot

Lahden kaupungin metsien hiililaskennat

Lahden kaupungin metsien hiililaskennat Lahden kaupungin metsien hiililaskennat SIMO-seminaari 23.3.2011 Jouni Kalliovirta Laskenta pääpiirtein Tehtävä: Selvittää Lahden kaupungin metsien hiilivirrat Hiilensidonnan kannalta optimaalinen metsänkäsittely

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Panosprosessien integroitu hallinta

Panosprosessien integroitu hallinta Panosprosessien integroitu hallinta Jari Hämäläinen VTT Tuotteet ja tuotanto jari.hamalainen@vtt.fi Panosprosessien integroitu hallinta - PINHA 1.10.1999-31.1.2003 Kehitettiin uusia simulointiin ja optimointiin

Lisätiedot

Tulevaisuuden radio. Puheenvuoro Radiovuosi 2010 tilaisuudessa 21.1.2010 Tuija Aalto YLE Uudet palvelut Tulevaisuus Lab

Tulevaisuuden radio. Puheenvuoro Radiovuosi 2010 tilaisuudessa 21.1.2010 Tuija Aalto YLE Uudet palvelut Tulevaisuus Lab Tulevaisuuden radio Puheenvuoro Radiovuosi 2010 tilaisuudessa 21.1.2010 Tulevaisuus Lab Mediakäytön muutoksien ennakointi Avoin innovaatio ja tuotekehitys Toimintatapana verkostoituminen ja yhteistyö

Lisätiedot

Kappale 20: Kantaluvut

Kappale 20: Kantaluvut Kappale 20: Kantaluvut 20 Johdanto: Kantaluvut... 328 Kantalukujen syöttäminen ja muuntaminen... 329 Matemaattiset toiminnot Hex- ja Bin-luvuilla... 330 Bittien vertaileminen ja manipulointi... 331 Huom!

Lisätiedot

ABSORBOIVIEN PINTOJEN OPTIMAALINEN SIJOITTELU 1 JOHDANTO 2 TAUSTAA. Kai Saksela 1, Jonathan Botts 1, Lauri Savioja 1

ABSORBOIVIEN PINTOJEN OPTIMAALINEN SIJOITTELU 1 JOHDANTO 2 TAUSTAA. Kai Saksela 1, Jonathan Botts 1, Lauri Savioja 1 Kai Saksela 1, Jonathan Botts 1, Lauri Savioja 1 1 Aalto-yliopiston tietotekniikan laitos PL 15500, 00076 AALTO etunimi.sukunimi@aalto.fi Tiivistelmä Tässä paperissa esitetään menetelmä, jonka avulla absorboivien

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

ja sähkövirta I lämpövirtaa q, jolloin lämpövastukselle saadaan yhtälö

ja sähkövirta I lämpövirtaa q, jolloin lämpövastukselle saadaan yhtälö Säteily Konvektio Johtuminen iitosjohto astu Kansi Kotelo Pinni Kaikki lämmönsiirtomuodot käytössä. Eri mekanismien voimakkuus riippuu kuitenkin käyttölämpötilasta ja kotelosta. astun ja kehyksen liitos

Lisätiedot

Lego Mindstorms NXT. OPH oppimisympäristöjen kehittämishanke 2011-2013. (C) 2012 Oppimiskeskus Innokas! All Rights Reserved 1

Lego Mindstorms NXT. OPH oppimisympäristöjen kehittämishanke 2011-2013. (C) 2012 Oppimiskeskus Innokas! All Rights Reserved 1 Lego Mindstorms NXT OPH oppimisympäristöjen kehittämishanke 2011-2013 (C) 2012 Oppimiskeskus Innokas! All Rights Reserved 1 Anturi- ja moottoriportit A B C 1 2 3 4 (C) 2012 Oppimiskeskus Innokas! All Rights

Lisätiedot

Online tulostallennus näyttelyissä

Online tulostallennus näyttelyissä Online tulostallennus näyttelyissä Online tulostallennus Tulokset tallennetaan kehässä reaaliaikaisesti. Tulokset näkyvät saman tien koiran tiedoissa jalostustietojärjestelmässä sekä Showlinkin tulospalvelussa.

Lisätiedot

Muita rekisteriallokaatiomenetelmiä

Muita rekisteriallokaatiomenetelmiä TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 23. marraskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe E tiistai 1.12. klo 10 koodigenerointi (ilman rekisteriallokaatiota)

Lisätiedot

I Geometrian rakentaminen pisteestä lähtien

I Geometrian rakentaminen pisteestä lähtien I Geometrian rakentaminen pisteestä lähtien Koko geometrian voidaan ajatella koostuvan pisteistä. a) Matemaattinen piste on sellainen, millä EI OLE LAINKAAN ULOTTUVUUKSIA. Oppilaita voi johdatella pisteen

Lisätiedot

KUUMAVALSSATUT TERÄSLEVYT JA -KELAT Ultraäänitarkastus

KUUMAVALSSATUT TERÄSLEVYT JA -KELAT Ultraäänitarkastus KUUMAVALSSATUT TERÄSLEVYT JA -KELAT Ultraäänitarkastus www.ruukki.fi Ruukki toimittaa kuumavalssattuja levyjä ultraäänitarkastettuina tai muiden, erikseen sovittavien vaatimusten mukaisesti. Ultraäänitarkastuksesta

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Computing Curricula 2001 -raportin vertailu kolmeen suomalaiseen koulutusohjelmaan

Computing Curricula 2001 -raportin vertailu kolmeen suomalaiseen koulutusohjelmaan Computing Curricula 2001 -raportin vertailu kolmeen suomalaiseen koulutusohjelmaan CC1991:n ja CC2001:n vertailu Tutkintovaatimukset (degree requirements) Kahden ensimmäisen vuoden opinnot Ohjelmistotekniikan

Lisätiedot

Tuulivoimahankkeiden vaikutusten arviointi. ja muita kokemuksia vaikutusten arvioinnista kuntakaavoituksessa

Tuulivoimahankkeiden vaikutusten arviointi. ja muita kokemuksia vaikutusten arvioinnista kuntakaavoituksessa Tuulivoimahankkeiden vaikutusten arviointi ja muita kokemuksia vaikutusten arvioinnista kuntakaavoituksessa Kaavojen vaikutusten arviointi miniseminaari 3.11.2016 Maisema-arkkitehti Marketta Nummijärvi

Lisätiedot

Palauta vuoden agilitykoira ja vuoden näyttelykoira tulokset lomakkeella, joka löytyy VASin wwwsivuilta kohdasta Vuoden koira.

Palauta vuoden agilitykoira ja vuoden näyttelykoira tulokset lomakkeella, joka löytyy VASin wwwsivuilta kohdasta Vuoden koira. Vuoden koira 2014-kilpailu Vuoden koira valintaan voit osallistua toimittamalla ohjeiden mukaan vuoden aikana virallisista kokeista tai näyttelyistä saavutetut tulokset (+kopion kilpailukirjasta) alla

Lisätiedot

EN 45545 Railway applications. Fire protection on railway vehicles Kiskoliikenne. Palontorjunta kiskoajoneuvoissa

EN 45545 Railway applications. Fire protection on railway vehicles Kiskoliikenne. Palontorjunta kiskoajoneuvoissa Railway applications. Fire protection on railway vehicles standardien pääkohdat standardien merkitys muutokset nykykäytäntöön 1 Euroopassa on ollut voimassa useita kansallisia standardeja kiskokaluston

Lisätiedot

Geotrim TAMPEREEN SEUTUKUNNAN MITTAUSPÄIVÄT 29.3.2006

Geotrim TAMPEREEN SEUTUKUNNAN MITTAUSPÄIVÄT 29.3.2006 Geotrim TAMPEREEN SEUTUKUNNAN MITTAUSPÄIVÄT 29.3.2006 Satelliittimittauksen tulevaisuus GPS:n modernisointi, L2C, L5 GALILEO GLONASS GNSS GPS:n modernisointi L2C uusi siviilikoodi L5 uusi taajuus Block

Lisätiedot

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Seuraavassa esitetään optimointitehtävien numeerisia ratkaisumenetelmiä, eli optimointialgoritmeja, keittokirjamaisesti.

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

Istutukset muuttavat kuhakantojen perimää

Istutukset muuttavat kuhakantojen perimää Istutukset muuttavat kuhakantojen perimää Marja-Liisa Koljonen, RKTL 1 - Kuhan istutustoiminta on laajaa. -Geneettistä monimuotoisuutta ei kuitenkaan juuri ole otettu huomioon, alkuperäinen 650 (28%) järvessä,

Lisätiedot

Lääkintähelikopterikaluston mallintaminen

Lääkintähelikopterikaluston mallintaminen Mat-2.4177 Operaatiotutkimuksen projektityöseminaari 11.05.2010 Lääkintähelikopterikaluston mallintaminen Loppuraportti Toimeksiantaja: HEMS-hallinnointiyksikköhanke Yhteyshenkilö: Jyri Örri Projektityöryhmä:

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

Vanhojen ihmisten asuminen yhteiskuntapoliittisena kysymyksenä

Vanhojen ihmisten asuminen yhteiskuntapoliittisena kysymyksenä Vanhojen ihmisten asuminen yhteiskuntapoliittisena kysymyksenä Teppo Kröger Ikäasumisen valinnat ja mahdollisuudet -seminaari Helsinki 17.8.2015 Ikäasumisen suuret kysymykset Yksin vai yhdessä? Eläkejärjestelmän

Lisätiedot

Kemialliset aseet ja verifikaatioanalytiikka

Kemialliset aseet ja verifikaatioanalytiikka Kemialliset aseet ja verifikaatioanalytiikka FT Paula Vanninen Johtaja Kemiallisen aseen kieltosopimuksen valvontalaitos () Historiaa I Maailmansota saksalaiset, britit, ranskalaiset ja amerikkalaiset

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

Virukset Materiaalitieteiden Rakennusaineina Suomalainen Tiedeakatemia

Virukset Materiaalitieteiden Rakennusaineina Suomalainen Tiedeakatemia Virukset Materiaalitieteiden Rakennusaineina Suomalainen Tiedeakatemia Mauri Kostiainen Molekyylimateriaalit-ryhmä Teknillisen fysiikan osasto Aalto-yliopisto Virukset materiaaleina Virus on isäntäsolussa

Lisätiedot

Jäteveden- ja lieteenkäsittelyn tekniikat, riskienhallinta ja toteutukset

Jäteveden- ja lieteenkäsittelyn tekniikat, riskienhallinta ja toteutukset Jäteveden- ja lieteenkäsittelyn tekniikat, riskienhallinta ja toteutukset Lappeenrannan jätevesien käsittelyn YVA Hanhijärven asukastilaisuus 25.5.2015 Suunnittelupäällikkö Kristian Sahlstedt UUDEN JÄTEVEDENPUHDISTAMON

Lisätiedot

tarvitsetko tilaa ja kustannustehokkuutta?

tarvitsetko tilaa ja kustannustehokkuutta? tarvitsetko tilaa ja kustannustehokkuutta? Optimointiin ja hätään Tilan määrä Kun pääkonttoriin iskee vesivahinko tai luokat täyttyvät koululaisista, vastaus on Cramo. Saat laadukkaat ratkaisut kaikkiin

Lisätiedot

testo 610 Käyttöohje

testo 610 Käyttöohje testo 610 Käyttöohje FIN 2 Pikaohje testo 610 Pikaohje testo 610 1 Suojakansi: käyttöasento 2 Kosteus- ja lämpötilasensori 3 Näyttö 4 Toimintonäppäimet 5 Paristokotelo (laitteen takana) Perusasetukset

Lisätiedot

Kuva maailmasta Pakettiverkot (Luento 1)

Kuva maailmasta Pakettiverkot (Luento 1) M.Sc.(Tech.) Marko Luoma (1/20) M.Sc.(Tech.) Marko Luoma (2/20) Kuva maailmasta Pakettiverkot (Luento 1) WAN Marko Luoma TKK Teletekniikan laboratorio LAN M.Sc.(Tech.) Marko Luoma (3/20) M.Sc.(Tech.) Marko

Lisätiedot

Laskuharjoitus 9, tehtävä 6

Laskuharjoitus 9, tehtävä 6 Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen

Lisätiedot