TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

Koko: px
Aloita esitys sivulta:

Download "TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010"

Transkriptio

1 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen syksy 2010

2 NSGA-II Non-dominated Sorting Genetic Algorithm (NSGA) Ehkä tunnetuin EMO-menetelmä Srinivas & Deb, Evolutionary Computation, 2, 1995 (NSGA) Deb, Pratap, Agarwal & Meyariven, IEEE Transactions on Evolutionary Computation, 6, 2002 (NSGA-II)

3 NSGA-II Ominaisuuksia elitistinen algoritmi: populaation paras ratkaisu siirtyy automaattisesti seuraavaan sukupolveen eksplisiittinen mekanismi ratkaisujen hyvän jakautumisen säilyttämiseen korostaa dominoimattomia ratkaisuja

4 NSGA-II Idea: uutta sukupolvea muodostettaessa alkuperäistä populaatiota käyttäen muodostetaan jälkeläispopulaatio (käyttäen geneettisiä operaattoreita) alkuperäinen populaatio ja jälkeläispopulaatio yhdistetään populaatio, jonka koko on 2N, populaation koko = N saatu populaatio jaetaan luokkiin käyttäen dominanssia uuteen sukupolveen valitaan ratkaisut luokkien mukaan 1. alkaen kunnes valittuna on N ratkaisua

5 NSGA-II f 2, min alkuperäinen & jälkeläispopulaatio (2N, N=7) 1. luokan dominoimattomat ratkaisut 2. luokan dominoimattomat ratkaisut 3. luokan dominoimattomat ratkaisut 4. luokan dominoimattomat ratkaisut uuteen sukupolveen pääsevät kuvan tapauksessa kaikki 1. ja 2. luokan dominoimattomat ratkaisut (N=7) f 1, min

6 NSGA-II Edellisen kuvan tapauksessa uuteen sukupolveen pääsivät siis 1. ja 2. luokan ratkaisut (N=7 ratkaisua) Jos esim. populaation koko olisi ollut 10, niin mukaan olisi mahtunut vielä kolme ratkaisua 3. luokan dominoimattomista ratkaisuista 3. luokan ratkaisuista mukaan olisi valittu ne kolme, jotka olisivat antaneet parhaimman diversiteetin (suurin etäisyys muihin ratkaisuihin, crowding distance)

7 NSGA-II f 2, min 3. luokan dominoimattomat ratkaisut f 1, min Ääriratkaisut (1. & 4.) saavat etäisyyden eli ne valitaan aina Muille etäisyys lasketaan kahden vierekkäisen ratkaisun määräämän kuution tilavuutena Jos kuvan ratkaisuista valitaan 3, niin valituksi tulevat 1 ja 4 sekä 3

8 NSGA-II Valmiita toteutuksia Prof. Kalyanmoy Deb, Kanpur Genetic Algorithms Laboratory MATLAB Central (file exchange) change/10429

9 Testitehtävät EMO-menetelmien suorituskyvyn mittaamiseen on kehitetty erilaisia testitehtäviä, joiden Paretooptimaaliset joukot tunnetaan Menetelmän antamaa ratkaisupopulaatiota voidaan sitten verrata tarkkaan ratkaisuun Testitehtävät on yleensä muodostettu siten, että niitä voidaan skaalata (esim. muuttujien määrää voi säätää) Tarkasteltavia kriteereitä ovat populaation etäisyys PO joukosta ratkaisujen jakautuminen PO joukkoon PO joukon kattaminen

10 Testitehtävät f 2, min PO joukko ratkaisupopulaatio referenssipiste f 1, min Suorituskyvyn mittaamiseen on kehitetty erilaisia metriikoita esim. mitataan populaation dominoiman sallitun alueen suuruutta mitä suurempi ala sitä parempi ratkaisu

11 Testitehtävät Tunnettuja testitehtäviä ovat mm. Kursawe, 1990 (2 objektifunktiota) ZDT-tehtävät, 2000 (2 objektifunktiota) DTLZ-tehtävät, 2001 (2 tai useampia objektifunktioita)

12 Testitehtävät

13 Esimerkki: Kemiallinen erotusprosessi Tarkastellaan kromatografiaan perustuvaa kemiallista erotusprosessia Käytetään moniin tärkeisiin erotusprosesseihin (mm. sokeri-, petrokemian- ja lääketeollisuudessa) Perustuu eri kemiallisten komponenttien nopeuseroon nesteessä *

14 Kemiallinen erotusprosessi Syöte- ja poistovirtojen paikkaa vaihdetaan säännöllisin väliajoin (askelaika) Säätömuuttujat askelaika virtausnopeudet

15 Kemiallinen erotusprosessi Simulated Moving Bed (SMB) prosessia on optimoitu myös käyttäen NSGA-menetelmää Subramani, Hidajat & Ray, Optimization of reactive SMB and Varicol systems, Computers and Chemical Engineering, 27, 2003 Kahden ja kolmen objektifunktion tehtäviä ratkottu Monitavoiteoptimointia käytetty vertailemaan normaalia (samanaikainen syöte- ja poistovirtojen paikkojen vaihto) ja modifioitua SMB-prosessia (ei-samanaikainen vaihto)

16 Kemiallinen erotusprosessi 4 eri tapausta olemassa olevan SMB-prosessin optimointi max tuotteen puhtaus ja saanto, min liuottimen määrä SMB-prosessin optimaalinen suunnittelu max tuotteen puhtaus, min kiinteät ja käyttökustannukset modifioidun SMB-prosessin optimointi ja vertailu SMB-prosessiin samat tavoitteet kuin 1. tapauksessa kiinteiden ja käyttökustannusten minimointi tavalliselle sekä modifioidulle SMB-prosessille

17 Kemiallinen erotusprosessi max tuotteen puhtaus (P MTBE ) ja saanto (Y MTBE ), min liuottimen määrä (γ) Visualisointi ratkaisupopulaatiosta 1. tapauksessa visualisoitu kahden objektifunktion suhteen

18 Ratkaisujen visualisointi f 2, min Pareto-optimaalisten ratkaisujen visualisointi DM arvioi ja vertailee saatuja ratkaisuja Objektifunktioita 2, visualisointi helppoa voidaan esittää tason pisteinä f 1, min

19 Ratkaisujen visualisointi Objektifunktioita 3, onnistuu mutta tulkinta hankalampaa PO joukko on pinta 3-D:ssä

20 Ratkaisujen visualisointi Objektifunktioita > 3, visualisointi hankaloituu PO joukon approksimaatiota ei voi suoraan visualisoida Voidaan visualisoida esim. PO joukon projektioita 2:n tai 3:n objektifunktion suhteen (vrt. kemiallisen erotusprosessin optimointi edellä) kaikki PO pisteet eivät näytä Pareto-optimaalisilta projektioissa

21 Ratkaisujen visualisointi Yleensä visualisoidaan vain pientä joukkoa PO ratkaisuja kun objektifunktioita > 3 Käytetään erilaisia tapoja visualisoida yksittäisiä ratkaisuja paras visualisointi riippuu tietenkin DM:stä Tavoitteena pystyä vertailemaan ratkaisuja

22 Ratkaisujen visualisointi Esimerkkejä: 3D palkit Yksi ratkaisu on yksi väri

23 Ratkaisujen visualisointi Arvopolut: yksi ratkaisu on yksi murtoviiva

24 Ratkaisujen visualisointi Petal diagram: yksi ratkaisu on yksi kiekko Mitä enemmän väriä sitä huonompi arvo

25 Ratkaisujen visualisointi Whisker plot: yksi ratkaisu on yksi kiekko Mitä enemmän väriä sitä huonompi arvo

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 PO pisteiden määräämismenetelmät Idea: tuotetaan erilaisia PO ratkaisuita, joista

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Evoluutiopohjainen monitavoiteoptimointi MCDM ja EMO Monitavoiteoptimointi kuuluu

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Käytännön optimointiongelmien ratkaiseminen Käytännön optimointiongelmien ratkaiseminen

Lisätiedot

Monitavoiteoptimointi

Monitavoiteoptimointi Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen

Lisätiedot

Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu

Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu (Valmiin työn esittely) 11.4.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Työn tavoite Tutkia evoluutioalgoritmia (Lee

Lisätiedot

TIES483 Epälineaarinen optimointi. Monitavoiteoptimointi Syksy 2012

TIES483 Epälineaarinen optimointi. Monitavoiteoptimointi Syksy 2012 TIES483 Epälineaarinen optimointi Monitavoiteoptimointi jussi.hakanen@jyu.fi Syksy 2012 Sisältö Johdanto monitavoiteoptimointiin Monitavoiteoptimoinnin käsitteitä Menetelmätyypit Käytännön sovellusesimerkkejä

Lisätiedot

ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2

ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2 ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI Tuomas Airaksinen 1, Erkki Heikkola 2 1 Jyväskylän yliopisto PL 35 (Agora), 40014 Jyväskylän yliopisto tuomas.a.airaksinen@jyu.fi

Lisätiedot

A W F P. A W F P Hellävarainen kemiallinen pesu. Erittäin hellävarainen konepesu enintään ilmoitetussa lämpötilassa.

A W F P. A W F P Hellävarainen kemiallinen pesu. Erittäin hellävarainen konepesu enintään ilmoitetussa lämpötilassa. 30 40 50 60 70 95 Konepesu enintään ilmoitetussa lämpötilassa. 30 40 50 60 70 95 Erittäin hellävarainen konepesu enintään ilmoitetussa lämpötilassa. 30 40 Erittäin hellävarainen konepesu enintään ilmoitetussa

Lisätiedot

GA & robot path planning. Janne Haapsaari AUTO Geneettiset algoritmit

GA & robot path planning. Janne Haapsaari AUTO Geneettiset algoritmit GA & robot path planning Janne Haapsaari AUTO3070 - Geneettiset algoritmit GA robotiikassa Sovelluksia liikkeen optimoinnissa: * eri vapausasteisten robottien liikeratojen optimointi * autonomisten robottien

Lisätiedot

Paikkatiedon käsittely 6. Kyselyn käsittely

Paikkatiedon käsittely 6. Kyselyn käsittely HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 6. Kyselyn käsittely Antti Leino antti.leino@cs.helsinki.fi 1.2.2007 Tietojenkäsittelytieteen laitos Kysely indeksin

Lisätiedot

TIEA382 Lineaarinen ja diskreetti optimointi

TIEA382 Lineaarinen ja diskreetti optimointi TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Diskriminanttianalyysi I

Diskriminanttianalyysi I Diskriminanttianalyysi I 12.4-12.5 Aira Hast 24.11.2010 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen Johdanto Lineaarinen diskriminanttianalyysi

Lisätiedot

HePon ryhmäajokoulutus Ajomuodostelmat

HePon ryhmäajokoulutus Ajomuodostelmat HePon ryhmäajokoulutus 9.4.2011 Ajomuodostelmat Peesaus Edellä ajavaan etäisyys 30 cm Kovissa nopeuksissa parikin metriä jo auttaa Älä aja renkaat limittäin Pidä veto koko ajan päällä Älä kiihdytä ja rullaa

Lisätiedot

Geneettiset algoritmit

Geneettiset algoritmit Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

AS Automaation signaalinkäsittelymenetelmät. Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy.

AS Automaation signaalinkäsittelymenetelmät. Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy. AS-84.161 Automaation signaalinkäsittelymenetelmät Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy. Tämän jälkeen täytyy: 1. Lisätä uusi sisääntulo edit->add input 2. nimetä

Lisätiedot

Mat Optimointiopin seminaari

Mat Optimointiopin seminaari Lähde: Preferenssi-informaatio DEA-malleissa: Value Efficiency Analysis (VEA) -menetelmä Mat-2.4142 Optimointiopin seminaari 23.3.2011 Halme, M., Joro, T., Korhonen, P., Wallenius, J., 1999. A Value Efficiency

Lisätiedot

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi Optimointi Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa Ongelman mallintaminen Mallin ratkaiseminen Ratkaisun analysointi 1 Peruskäsitteitä Muuttujat: Sallittu alue: x = (x 1, x 2,...,

Lisätiedot

Online-oppiva ilmavalvontajärjestelmän suorituskykymalli

Online-oppiva ilmavalvontajärjestelmän suorituskykymalli Online-oppiva ilmavalvontajärjestelmän suorituskykymalli MATINE tutkimusseminaari 17.11.2016 Juha Jylhä, Marja Ruotsalainen, Riitta Kerminen, Ari Visa Tampereen teknillinen yliopisto Signaalinkäsittelyn

Lisätiedot

Fotogrammetrian seminaari. Kolmiulotteisen pinnanmuodostuksen asettamat vaatimukset 3D-digitoinnin suorittamiseen

Fotogrammetrian seminaari. Kolmiulotteisen pinnanmuodostuksen asettamat vaatimukset 3D-digitoinnin suorittamiseen Fotogrammetrian seminaari Kolmiulotteisen pinnanmuodostuksen asettamat vaatimukset 3D-digitoinnin suorittamiseen 1 Johdanto...3 Alkuoletukset pisteaineistolle...3 Kolmiopinnan muodostaminen...5 2D-Marching

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2 Uolevin reitti Kuvaus Uolevi on ruudukon vasemmassa ylänurkassa ja haluaisi päästä oikeaan alanurkkaan. Uolevi voi liikkua joka askeleella ruudun verran vasemmalle, oikealle, ylöspäin tai alaspäin. Lisäksi

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Informaation leviäminen väkijoukossa matemaattinen mallinnus

Informaation leviäminen väkijoukossa matemaattinen mallinnus Informaation leviäminen väkijoukossa matemaattinen mallinnus Tony Nysten 11.4.2011 Ohjaaja: DI Simo Heliövaara Valvoja: Prof. Harri Ehtamo Väkijoukon toiminta evakuointitilanteessa Uhkaavan tilanteen huomanneen

Lisätiedot

Palauta vuoden agilitykoira ja vuoden näyttelykoira tulokset lomakkeella, joka löytyy VASin wwwsivuilta kohdasta Vuoden koira.

Palauta vuoden agilitykoira ja vuoden näyttelykoira tulokset lomakkeella, joka löytyy VASin wwwsivuilta kohdasta Vuoden koira. Vuoden koira 2014-kilpailu Vuoden koira valintaan voit osallistua toimittamalla ohjeiden mukaan vuoden aikana virallisista kokeista tai näyttelyistä saavutetut tulokset (+kopion kilpailukirjasta) alla

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

Harjoitus 9: Optimointi I (Matlab)

Harjoitus 9: Optimointi I (Matlab) Harjoitus 9: Optimointi I (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien

Lisätiedot

S Laskennallinen systeemibiologia

S Laskennallinen systeemibiologia S-114.2510 Laskennallinen systeemibiologia 3. Harjoitus 1. Koska tilanne on Hardy-Weinbergin tasapainossa luonnonvalintaa lukuunottamatta, saadaan alleeleista muodostuvien eri tsygoottien genotyyppifrekvenssit

Lisätiedot

PERSONEC HR-JÄRJESTELMÄ Käyttöohje Esimies

PERSONEC HR-JÄRJESTELMÄ Käyttöohje Esimies PERSONEC HR-JÄRJESTELMÄ Käyttöohje Esimies Personec HR-järjestelmä sisältää yliopistojen palkkausjärjestelmän arviointilomakkeet, joihin tallennetut tiedot siirtyvät järjestelmässä ypj-arviointiprosessin

Lisätiedot

Luento 6: Piilopinnat ja Näkyvyys

Luento 6: Piilopinnat ja Näkyvyys Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Piilopinnat ja Näkyvyys Janne Kontkanen Geometrinen mallinnus / 1 Johdanto Piilopintojen poisto-ongelma Syntyy kuvattaessa 3-ulotteista maailmaa 2-ulotteisella

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Tuntematon järjestelmä. Adaptiivinen suodatin

Tuntematon järjestelmä. Adaptiivinen suodatin 1 1 Vastaa lyhyesti seuraaviin a) Miksi signaaleja ylinäytteistetään AD- ja DA-muunnosten yhteydessä? b) Esittele lohkokaaviona adaptiiviseen suodatukseen perustuva tuntemattoman järjestelmän mallinnus.

Lisätiedot

Matemaattisten vertailukaavojen riskit

Matemaattisten vertailukaavojen riskit Matemaattisten vertailukaavojen riskit 21.11.2013 VT Tapio Lahtinen PTCServices Oy Peruskaava Yleensä hintojen pisteytys hoidetaan valtion hankintakäsikirjassakin esitetyllä kaavalla vertailuperusteen

Lisätiedot

Yhden muuttujan funktion minimointi

Yhden muuttujan funktion minimointi Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

Moottorin kierrosnopeus Tämän harjoituksen jälkeen:

Moottorin kierrosnopeus Tämän harjoituksen jälkeen: Moottorin kierrosnopeus Tämän harjoituksen jälkeen: osaat määrittää moottorin kierrosnopeuden pulssianturin ja Counter-sisääntulon avulla, osaat siirtää manuaalisesti mittaustiedoston LabVIEW:sta MATLABiin,

Lisätiedot

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet Mat-2.142 Optimointiopin seminaari kevät 2000 Monitavoiteoptimointi Optimointiopin seminaari - Kevät 2000 / 1 Tavoitteet Monitavoitteisten optimointitehtävien ratkaisukäsitteet ja soveltamismahdollisuudet

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

ESS oppiminen ja sen simulointi

ESS oppiminen ja sen simulointi ESS oppiminen ja sen simulointi 8.10.2008 Suhteellinen palkkiosumma, RPS = = = = + + = = n i t i t i t i t i i n i i i i P m r P m r t f r r f 1 1 1 1 1 1 1 1 ) ( ) ( ) ( (1) τ τ τ τ τ τ Harleyn (1981)

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

Metsikkötason optimointi metsäsuunnittelussa, esimerkkinä SMA

Metsikkötason optimointi metsäsuunnittelussa, esimerkkinä SMA Metsikkötason optimointi metsäsuunnittelussa, esimerkkinä SMA SIMO-seminaari 2.11.2007 Lauri Valsta Metsäekonomian laitos Sisältö Metsikkötason suunnittelun käyttökohteet Katsaus menetelmiin SMA:n rakenne

Lisätiedot

TIIVISTELMÄRAPORTTI. Online-oppiva ilmavalvontajärjestelmän suorituskykymalli

TIIVISTELMÄRAPORTTI. Online-oppiva ilmavalvontajärjestelmän suorituskykymalli 2016/2500M-0056 ISSN 1797-3457 (verkkojulkaisu) ISBN (PDF) 978-951-25-2852-3 TIIVISTELMÄRAPORTTI Online-oppiva ilmavalvontajärjestelmän suorituskykymalli Ari Visa, Juha Jylhä, Marja Ruotsalainen, Riitta

Lisätiedot

Miten hyväksyn SoleOPSissa opiskelijat omalle opintojakson toteutukselle?

Miten hyväksyn SoleOPSissa opiskelijat omalle opintojakson toteutukselle? Miten hyväksyn SoleOPSissa opiskelijat omalle opintojakson toteutukselle? Syksystä 2014 lähtien uusien aloittavien vuosikurssien osalta opintojakson toteutukselle ilmoittautuneiden opiskelijoiden hyväksyminen

Lisätiedot

Gradient Sampling-Algoritmi

Gradient Sampling-Algoritmi 1/24 Gradient Sampling-Algoritmi Ville-Pekka Eronen April 20, 2016 2/24 Perusidea -"Stabiloitu nopeimman laskeutumisen menetelmä" - Laskevan suunnan haku: lasketaan gradientit nykyisessä pisteessä sekä

Lisätiedot

testo 460 Käyttöohje

testo 460 Käyttöohje testo 460 Käyttöohje FIN 2 Pikaohje testo 460 Pikaohje testo 460 1 Suojakansi: käyttöasento 2 Sensori 3 Näyttö 4 Toimintonäppäimet 5 Paristokotelo (laitteen takana) Perusasetukset Laite sammutettuna >

Lisätiedot

Vanhankaupunginkosken ultraäänikuvaukset Simsonar Oy Pertti Paakkolanvaara

Vanhankaupunginkosken ultraäänikuvaukset Simsonar Oy Pertti Paakkolanvaara Vanhankaupunginkosken ultraäänikuvaukset 15.7. 14.11.2014 Simsonar Oy Pertti Paakkolanvaara Avaintulokset 2500 2000 Ylös vaellus pituusluokittain: 1500 1000 500 0 35-45 cm 45-60 cm 60-70 cm >70 cm 120

Lisätiedot

KÄYTETTÄVYYDEN PERUSTEET 1,5op. Käyttäjäaineiston tulkinta. Tehtävä Käyttäjäaineiston tulkinta ja suunnitteluvaatimukset. Katja Soini TaiK 11.4.

KÄYTETTÄVYYDEN PERUSTEET 1,5op. Käyttäjäaineiston tulkinta. Tehtävä Käyttäjäaineiston tulkinta ja suunnitteluvaatimukset. Katja Soini TaiK 11.4. KÄYTETTÄVYYDEN PERUSTEET 1,5op Käyttäjäaineiston tulkinta Katja Soini TaiK 11.4.2007 1. MÄÄRITTELE 2. TUNNISTA RATKAISU 5. ARVIOI 3. MÄÄRITTELE 4. LUO Aiheena keskiviikkona 11.4.2007 Luento Käyttäjäaineiston

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Mitä elämä on? Astrobiologian luento 15.9.2015 Kirsi

Mitä elämä on? Astrobiologian luento 15.9.2015 Kirsi Mitä elämä on? Astrobiologian luento 15.9.2015 Kirsi Määritelmän etsimistä Lukemisto: Origins of Life and Evolution of the Biosphere, 2010, issue 2., selaile kokonaan Perintteisesti: vaikeasti määriteltävä

Lisätiedot

Yksilöllinen oppiminen ja ohjattu itsearviointi

Yksilöllinen oppiminen ja ohjattu itsearviointi Yksilöllinen oppiminen ja ohjattu itsearviointi eduhakkeri Pekka Peura Martinlaakson lukio pekka.peura@eduvantaa.fi blogi: www.maot.fi www.facebook.com/eduhakkerit 12.4.2014 Aiheet 1) Oppimispotentiaali

Lisätiedot

Kunnat ulkoistavat palvelujaan. Mitä tapahtuu eläkemaksuille ja eläkkeille?

Kunnat ulkoistavat palvelujaan. Mitä tapahtuu eläkemaksuille ja eläkkeille? 1 Kunnat ulkoistavat palvelujaan Mitä tapahtuu eläkemaksuille ja eläkkeille? 2 Mitä palveluita uudelleen järjestettäessä on hyvä muistaa? Yksittäinen kuntatyönantaja ei vapaudu kokonaan kunnallisista eläkemaksuista,

Lisätiedot

TIES483 Epälineaarinen optimointi

TIES483 Epälineaarinen optimointi TIES483 Epälineaarinen optimointi Käytännön optimointiongelmien ratkaiseminen jussi.hakanen@jyu.fi Syksy 2012 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Dynaaminen optimointi

Dynaaminen optimointi Dynaaminen optimointi Tapa ratkaista optimointitehtävä Tehtävä ratkaistaan vaiheittain ja vaiheet yhdistetään rekursiivisesti Perustuu optimaalisuusperiaatteeseen: Optimaalisen ratkaisupolun loppuosa on

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

EN 45545 Railway applications. Fire protection on railway vehicles Kiskoliikenne. Palontorjunta kiskoajoneuvoissa

EN 45545 Railway applications. Fire protection on railway vehicles Kiskoliikenne. Palontorjunta kiskoajoneuvoissa Railway applications. Fire protection on railway vehicles standardien pääkohdat standardien merkitys muutokset nykykäytäntöön 1 Euroopassa on ollut voimassa useita kansallisia standardeja kiskokaluston

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Useampitasoiset ADT:t Käytetään esimerkkiohjelmaa Ratkaisuyritys 1 Ratkaisuyritys 2 Lopullinen ratkaisu Lopullisen ratkaisun toteutusyritys Lopullisen ratkaisun oikea toteutus

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

How to Support Decision Analysis with Software Case Förbifart Stockholm

How to Support Decision Analysis with Software Case Förbifart Stockholm How to Support Decision Analysis with Software Case Förbifart Stockholm (Valmiin työn esittely) 13.9.2010 Ohjaaja: Prof. Mats Danielson Valvoja: Prof. Ahti Salo Tausta -Tukholman ohikulkutien suunnittelu

Lisätiedot

Darwin: Tutkimusprojektin esittely

Darwin: Tutkimusprojektin esittely 1 Darwin: Tutkimusprojektin esittely Tutkimusongelma: voidaanko ohjelmistoarkkitehtuuri generoida automaattisesti? Suomen Akatemian rahoittama tutkimusprojekti 2009-2011 TTY & TaY yhteistyö Ks. http://practise.cs.tut.fi/project.php?project=darwin

Lisätiedot

Valintaperusteena on kokonaistaloudellinen edullisuus. Vertailuvaiheeseen pääsevät ne tarjoukset, jotka täyttävät kelpoisuusehdot.

Valintaperusteena on kokonaistaloudellinen edullisuus. Vertailuvaiheeseen pääsevät ne tarjoukset, jotka täyttävät kelpoisuusehdot. 1 (5) SÄHKÖISEN OPPIMISYMPÄRISTÖPALVELUN HANKINTA Valintaperusteena on kokonaistaloudellinen edullisuus. Vertailuvaiheeseen pääsevät ne tarjoukset, jotka täyttävät kelpoisuusehdot. VERTAILUPERUSTEET 1.

Lisätiedot

ja sähkövirta I lämpövirtaa q, jolloin lämpövastukselle saadaan yhtälö

ja sähkövirta I lämpövirtaa q, jolloin lämpövastukselle saadaan yhtälö Säteily Konvektio Johtuminen iitosjohto astu Kansi Kotelo Pinni Kaikki lämmönsiirtomuodot käytössä. Eri mekanismien voimakkuus riippuu kuitenkin käyttölämpötilasta ja kotelosta. astun ja kehyksen liitos

Lisätiedot

OHJE 1 (5) 16.12.2011 VALMERI-KYSELYN KÄYTTÖOHJEET. Kyselyn sisältö ja tarkoitus

OHJE 1 (5) 16.12.2011 VALMERI-KYSELYN KÄYTTÖOHJEET. Kyselyn sisältö ja tarkoitus OHJE 1 (5) VALMERI-KYSELYN KÄYTTÖOHJEET Kyselyn sisältö ja tarkoitus Valmeri-kysely on työntekijöille suunnattu tiivis työolosuhdekysely, jolla saadaan yleiskuva henkilöstön käsityksistä työoloistaan kyselyn

Lisätiedot

OHJ-3100 Ohjelmien ylläpito ja evoluutio. Harjoitustyö. Ohjaaja: Outi Sievi-Korte outi.sievi-korte@tut.fi TE213 Päivystys ti klo 14-16

OHJ-3100 Ohjelmien ylläpito ja evoluutio. Harjoitustyö. Ohjaaja: Outi Sievi-Korte outi.sievi-korte@tut.fi TE213 Päivystys ti klo 14-16 OHJ-3100 Ohjelmien ylläpito ja evoluutio 1 Harjoitustyö Ohjaaja: Outi Sievi-Korte outi.sievi-korte@tut.fi TE213 Päivystys ti klo 14-16 2 Yleiskatsaus Yleisesittely Geneettiset algoritmit Ohjelmistoarkkitehtuurit

Lisätiedot

TUULIKKI TANSKA ALGORITMIT PUURAKENTAMISESSA

TUULIKKI TANSKA ALGORITMIT PUURAKENTAMISESSA TUULIKKI TANSKA ALGORITMIT PUURAKENTAMISESSA Tarkoituksena kehittää ja tutkia puurakenteita ja puurakentamista julkisen rakennuksen mittakaavassa käyttäen algoritmisia suunnittelumenetelmiä, sekä tietokoneavusteisia

Lisätiedot

Internet of Things. Ideasta palveluksi 17.4.2015. Omat tiedot ja niiden tietosuoja. Petteri Järvinen. # IoTidea

Internet of Things. Ideasta palveluksi 17.4.2015. Omat tiedot ja niiden tietosuoja. Petteri Järvinen. # IoTidea Internet of Things Ideasta palveluksi 17.4.2015 Omat tiedot ja niiden tietosuoja Petteri Järvinen Paljonko dataa olen tänään jo tuottanut? Sähköpostit, tekstiviestit, puhelut, some-käyttö, nettisurffailu

Lisätiedot

Liikehavaintojen estimointi langattomissa lähiverkoissa. Diplomityöseminaari Jukka Ahola

Liikehavaintojen estimointi langattomissa lähiverkoissa. Diplomityöseminaari Jukka Ahola Liikehavaintojen estimointi langattomissa lähiverkoissa Diplomityöseminaari Jukka Ahola ESITYKSEN SISÄLTÖ Työn tausta Tavoitteen asettelu Johdanto Liikehavaintojen jakaminen langattomassa mesh-verkossa

Lisätiedot

Metropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne

Metropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne Seuraavista tehtävistä saatu yhteispistemäärä (max 7 pistettä) jaetaan luvulla 3.5 ja näin saadaan varsinainen kurssipisteisiin laskettava pistemäärä. Bonustehtävien pisteet jaetaan luvulla 4 eli niistä

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t),

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t), Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.4129 Systeemien Identifiointi 1. harjoituksen ratkaisut 1. Tarkastellaan maita X ja Y. Olkoon näiden varustelutaso

Lisätiedot

Matemaattinen optimointi I -kurssin johdantoluento Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos

Matemaattinen optimointi I -kurssin johdantoluento Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos Matemaattinen optimointi I -kurssin johdantoluento 10.1.2017 Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos Optimointi: Parhaan mahdollisen ratkaisun etsimistä sallituissa

Lisätiedot

JOHDANTO SENAATTI-KIINTEISTÖJEN SISÄILMATIETOISKUJEN SARJAAN

JOHDANTO SENAATTI-KIINTEISTÖJEN SISÄILMATIETOISKUJEN SARJAAN JOHDANTO SENAATTI-KIINTEISTÖJEN SISÄILMATIETOISKUJEN SARJAAN SISÄLLYS 1. Artikkelin tarkoitus ja sisältö...3 2. Johdanto...4 3. Sisäilma syntyy monen tekijän summana...5 4. Sisäilmatietoiskujen teemat...6

Lisätiedot

SAK:N NÄKEMYKSET HYVÄSTÄ TYÖSTÄ JA UUSI HYVÄN TYÖN MITTARI

SAK:N NÄKEMYKSET HYVÄSTÄ TYÖSTÄ JA UUSI HYVÄN TYÖN MITTARI SAK:N NÄKEMYKSET HYVÄSTÄ TYÖSTÄ JA UUSI HYVÄN TYÖN MITTARI LÄHTÖKOHDAT SAK:n tavoitteena on hyvinvointia rakentava työelämä SAK:n edustajakokous 2011: Työelämän ihmisoikeudet toteutuvat silloin, kun tärkeäksi

Lisätiedot

Limsan sokeripitoisuus

Limsan sokeripitoisuus KOHDERYHMÄ: Työn kohderyhmänä ovat lukiolaiset ja työ sopii tehtäväksi esimerkiksi työkurssilla tai kurssilla KE1. KESTO: N. 45 60 min. Työn kesto riippuu ryhmän koosta. MOTIVAATIO: Sinun tehtäväsi on

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely)

Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely) Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely) Jussi Hirvonen 23.03.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

testo 610 Käyttöohje

testo 610 Käyttöohje testo 610 Käyttöohje FIN 2 Pikaohje testo 610 Pikaohje testo 610 1 Suojakansi: käyttöasento 2 Kosteus- ja lämpötilasensori 3 Näyttö 4 Toimintonäppäimet 5 Paristokotelo (laitteen takana) Perusasetukset

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

Suomen Kettuterrierit ry:n kilpailujen säännöt

Suomen Kettuterrierit ry:n kilpailujen säännöt Suomen Kettuterrierit ry:n kilpailujen säännöt Kilpailut Suomen Kettuterrierit ry järjestää vuosittain: Vuoden Kettuterrieri, Vuoden Metsästyskettuterrieri, Vuoden Näyttelykettuterrieri (erikseen molemmille

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf

Lisätiedot

11. Tilavuusrenderöinti

11. Tilavuusrenderöinti 11. Tilavuusrenderöinti Tilavuusrenderöinti tarkoittaa vokseliperusteisen datan käsittelyä tai visualisointia. Luvussa 2 esitettiin vokselien merkintään perustuvia tiedonesitysmenetelmiä. Suuret homogeeniset

Lisätiedot

Vanhojen ihmisten asuminen yhteiskuntapoliittisena kysymyksenä

Vanhojen ihmisten asuminen yhteiskuntapoliittisena kysymyksenä Vanhojen ihmisten asuminen yhteiskuntapoliittisena kysymyksenä Teppo Kröger Ikäasumisen valinnat ja mahdollisuudet -seminaari Helsinki 17.8.2015 Ikäasumisen suuret kysymykset Yksin vai yhdessä? Eläkejärjestelmän

Lisätiedot

KEMIJÄRVEN SELLUTEHTAAN BIOJALOSTAMOVAIHTOEHDOT

KEMIJÄRVEN SELLUTEHTAAN BIOJALOSTAMOVAIHTOEHDOT KEMIJÄRVEN SELLUTEHTAAN BIOJALOSTAMOVAIHTOEHDOT Julkisuudessa on ollut esillä Kemijärven sellutehtaan muuttamiseksi biojalostamoksi. Tarkasteluissa täytyy muistaa, että tunnettujenkin tekniikkojen soveltaminen

Lisätiedot

Kosteikkojen toiminta Kemiallinen saostuskokeilu (Hulevesien käsittely Kuopion Saaristokaupungissa osaprojektit) Suunnittelu/Petri Juntunen 1

Kosteikkojen toiminta Kemiallinen saostuskokeilu (Hulevesien käsittely Kuopion Saaristokaupungissa osaprojektit) Suunnittelu/Petri Juntunen 1 Kosteikkojen toiminta Kemiallinen saostuskokeilu (Hulevesien käsittely Kuopion Saaristokaupungissa osaprojektit) Suunnittelu/Petri Juntunen 1 Kosteikkojen rakentaminen Lähtökohta Kuopiossa paljon herkkiä

Lisätiedot

Turvallisuus prosessien suunnittelussa ja käyttöönotossa. 1. Luennon aiheesta yleistä 2. Putkisto- ja instrumentointikaavio 3. Poikkeamatarkastelu

Turvallisuus prosessien suunnittelussa ja käyttöönotossa. 1. Luennon aiheesta yleistä 2. Putkisto- ja instrumentointikaavio 3. Poikkeamatarkastelu Turvallisuus prosessien suunnittelussa ja käyttöönotossa Moduuli 2 Turvallisuus prosessilaitoksen suunnittelussa 1. Luennon aiheesta yleistä 2. Putkisto- ja instrumentointikaavio 3. Poikkeamatarkastelu

Lisätiedot

T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi

T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi Johdantoluento (22.1.2008) Nikolaj Tatti ntatti@cc.hut.fi Johdantoluento Kurssijärjestelyt ja vaatimukset. Kurssin sisällöstä. Hyvä esitelmä

Lisätiedot

Lilliputtiturnaus 2015 Turnaussäännöt

Lilliputtiturnaus 2015 Turnaussäännöt Lilliputtiturnaus 2015 OTTELUIDEN PELAAMINEN PELIALUE Ottelut pelataan puolikkaassa kaukalossa kaukalon suuntaisesti. Kotijoukkueeksi merkityn joukkueen maali on kaukalon varsinaisessa päädyssä ja vierasjoukkueen

Lisätiedot

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Graafin 3-värittyvyyden tutkinta T-79.165 Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Mikko Malinen, 36474R 29. maaliskuuta, 2005 Tiivistelmä Artikkelissa käydään läpi teoriaa, jonka avulla

Lisätiedot

Kuvioton metsäsuunnittelu Paikkatietomarkkinat, Helsinki Tero Heinonen

Kuvioton metsäsuunnittelu Paikkatietomarkkinat, Helsinki Tero Heinonen Paikkatietomarkkinat, Helsinki 3.11.2009 Tero Heinonen Sisältö Kuvioton metsäsuunnittelu Optimointi leimikon suunnittelumenetelmänä Verrataan optimointi lähestymistapaa diffuusiomenetelmään Muuttuvat käsittely-yksiköt

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT HAJAUTUS, JÄRJESTÄMISESTÄ HAJAUTTAMISEN IDEA Jos avaimet (tai data) ovat kokonaislukuja välillä 1 N, voidaan niitä käyttää suoraan indeksointiin Järkevä rakenne on

Lisätiedot

Differentiaaliyhtälöryhmä

Differentiaaliyhtälöryhmä Differentiaaliyhtälöryhmä Ensimmäisen kertaluvun differentiaaliyhtälöryhmä vaikkapa korkeamman kertaluvun yhtälöä vastaava normaaliryhmä voidaan ratkaista numeerisesti täsmälleen samanlaisilla kaavoilla

Lisätiedot