Tuotantoprosessin optimaalinen aikataulutus (valmiin työn esittely)
|
|
- Aino Turunen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tuotantoprosessin optimaalinen aikataulutus (valmiin työn esittely) Joona Kaivosoja Ohjaaja: DI Ville Mäkelä Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.
2 Tavoitteet Kehittää lineaarinen sekalukuoptimointimalli (MILP) tuotanto-ohjelman läpäisyajan minimointiin. Tutkia tuotanto-ohjelman koon vaikutusta tehtävän ratkaisuaikaan. Tutkia yksinkertaisten heuristiikkojen toimintaa tehtävän ratkaisussa.
3 Sanasto Tuotanto-ohjelma = joukko tuote-eriä, jotka on valmistettava tuotantosysteemissä Läpäisyaika = tuotanto-ohjelman valmistamiseen kuluva aika Asetusaika = tuotantokoneella puhdistamiseen, osien vaihtoon yms. käytettävä aika, kun tuote-erä koneella vaihtuu Hienosuunnittelu = tuotanto-ohjelman valmistuksen aikataulutus koneille ja muille tarvittaville resursseille
4 Valmistus- & pakkausprosessi Yksilölliset tuotekohtaiset valmistusprosessit K1 Identtiset pakkausprosessit K6 Tuotanto-ohjelma K2 K4 K3 Välivarasto K7 K8 Valmis lopputuote K5 K9
5 Menetelmät ja työkalut Lineaarinen sekalukuoptimointimalli Monte Carlo -algoritmi Geneettinen algoritmi Prioriteettisäännöt SPT ja SST
6 Lineaarinen sekalukuoptimointimalli Päätösmuuttujat: t_i,k = tuote-erän i aloitusaika koneella k x_i,j,k = tuote-erä i edeltää tuote-erää j koneella k C_max = tuotanto-ohjelman läpäisyaika Rajoitusehdot tuote-erien järjestykset koneilla tuote-erien valmistaminen vain tietyillä koneilla vain yksi tuote-erä koneella kerrallaan tuotteiden aloitusta rajoittavat asetusajat Esimerkiksi eräässä 8 tuote-erän tehtävässä 337 päätösmuuttujaa ja 669 rajoitusehtoa.
7 Monte Carlo -algoritmi Epävarma tulos, deterministinen aika Yksinkertainen toteuttaa Arpoo kpl käypiä aikatauluja ja palauttaa läpäisyajaltaan parhaan aikataulun
8 Geneettinen algoritmi Jäljittelee evolutiivisen prosessin ominaisuuksia kromosomeista muodostuva populaatio sopivuusfunktio risteytysoperaattori mutaatio-operaattori Populaation koko 1000 ja sukupolvien määrä 100 Kromosomiesityksenä valmistusaikataulu ja pakkausaikataulu
9 Prioriteettisäännöt Prioriteettisäännöt ovat luokka heuristisia menetelmiä, joissa yksittäiset aikataulutuspäätökset tehdään yksinkertaisten prioriteettisääntöjen perusteella. SPT (Shortest Processing Time) on yksi käytetyimmistä prioriteettisäännöistä, ja sitä käytetään uusien heuristiikkojen benchmarkkaukseen. Työssä SPT:tä sovellettiin siten, että prosessointiaikana käytettiin asetusajan ja prosessiajan summaa. SST (Shortest Setup Time) määrittää tuote-erän prioriteetin sen asetusajan mukaan.
10 Tulokset Tuotantosysteemistä luotiin yhteensä 130 testiongelmaa 10 ongelmaa jokaiselle tuotanto-ohjelman koolle 4-16 tuote-erää 9 konetta 8 erilaista tuotetta Algoritmien suoritusaikoja mitattiin Matlabin funktioilla tic ja toc siten, että muuttujien alustuksiin kuluvaa aikaa ei mitattu. Algoritmeja arvioitiin sekä niiden laskenta-aikojen että tulosten laadun suhteen.
11 Tulokset: lineaarinen sekalukuoptimointimalli
12 Tulokset: Monte Carlo -algoritmi
13 Tulokset: geneettinen algoritmi
14 Tulokset: SPT prioriteettisääntö
15 Tulokset: SST prioriteettisääntö
16 Tulokset: geneettinen algoritmi vs SST
17 Johtopäätökset Lineaarisen sekalukuoptimointimallin tarkka ratkaisu voidaan laskea vain pienille tehtäville. Geneettinen algoritmi oli testien perusteella lupaavin työkalu aikataulutusongelman ratkaisemiseen. Heuristiikkojen tulosten laadun arviointi haastavaa isokokoisilla ongelmilla. Mahdollisia jatkotutkimusten aiheita esimerkiksi erilaiset hybridialgoritmit.
Tuotantoprosessin optimaalinen aikataulutus
Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Tuotantoprosessin optimaalinen aikataulutus Kandidaatintyö 28.11.2014 Joona Kaivosoja Työn saa tallentaa
Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely)
Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely) Markus Losoi 30.9.2013 Ohjaaja: DI Antti Toppila Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Minimilatenssiongelman ratkaisualgoritmeja (valmiin työn esittely)
Minimilatenssiongelman ratkaisualgoritmeja (valmiin työn esittely) Antti Salmela 03.03.2014 Ohjaaja: Harri Ehtamo Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä
Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Vesa Husgafvel 19.11.2012 Ohjaaja: DI Mirko Ruokokoski Valvoja: Prof. Harri Ehtamo Työn
Joonas Haapala Ohjaaja: DI Heikki Puustinen Valvoja: Prof. Kai Virtanen
Hävittäjälentokoneen reitin suunnittelussa käytettävän dynaamisen ja monitavoitteisen verkko-optimointitehtävän ratkaiseminen A*-algoritmilla (valmiin työn esittely) Joonas Haapala 8.6.2015 Ohjaaja: DI
Lineaaristen monitavoiteoptimointitehtävien
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Työvuorosuunnittelun optimointi (valmiin työn esittely)
Työvuorosuunnittelun optimointi (valmiin työn esittely) Pekka Alli 1.12.2015 Ohjaaja: Tuuli Haahtela Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu
Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu (Valmiin työn esittely) 11.4.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Työn tavoite Tutkia evoluutioalgoritmia (Lee
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.01.2013 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely)
Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely) Juha Kännö 23..22 Ohjaajat: TkL Antti Punkka, DI Eeva Vilkkumaa Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa
Vesivoimaketjun optimointi mehiläisalgoritmilla (Valmiin työn esittely)
Vesivoimaketjun optimointi mehiläisalgoritmilla (Valmiin työn esittely) Sakke Rantala 2.12.2013 Ohjaaja: DI Hannu Korva Valvoja: Professori Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely)
Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely) Esitelmöijä Olli Rentola päivämäärä 21.1.2013 Ohjaaja: TkL Anssi Käki Valvoja: Prof. Ahti Salo Työn saa tallentaa
Malliratkaisut Demot
Malliratkaisut Demot 5 10.4.2017 Tehtävä 1 x 2 7 0,7 9,8 6 5 4 x 1 x 2 7 x 1 x 2 1 3 2 x 1 0 4,3 x 1 9 1 0,0 x 2 0 9,0 1 2 3 4 5 6 7 8 9 x 1 Kuva 1: Tehtävän 1 sallittu joukko S Optimointitehtävän sallittu
Search space traversal using metaheuristics
Search space traversal using metaheuristics Mika Juuti 11.06.2012 Ohjaaja: Ville Mattila Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.1.213 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
Lentotiedustelutietoon perustuva tykistön tulenkäytön optimointi (valmiin työn esittely)
Lentotiedustelutietoon perustuva tykistön tulenkäytön optimointi (valmiin työn esittely) Tuukka Stewen 1.9.2017 Ohjaaja: DI Juho Roponen Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Polkuriippuvuus trade-off-painotuksessa (valmiin työn esittely)
Polkuriippuvuus trade-off-painotuksessa (valmiin työn esittely) Riikka Siljander 8.9.2014 Ohjaaja: DI Tuomas Lahtinen Valvoja: prof. Raimo Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely)
Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely) Lauri Nyman 17.9.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely)
Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Jari Hast xx.12.2013 Ohjaaja: Harri Ehtamo Valvoja: Hari Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Kirjallisuuskatsaus sisäpistemenetelmiin ja niiden soveltamiseen eri optimointiluokille (valmiin työn esittely)
Kirjallisuuskatsaus sisäpistemenetelmiin ja niiden soveltamiseen eri optimointiluokille (valmiin työn esittely) Ilari Vähä-Pietilä 28.04.2014 Ohjaaja: TkT Kimmo Berg Valvoja: Prof. Harri Ehtamo Työn saa
Luodin massajakauman optimointi
Luodin massajakauman optimointi Janne Lahti 01.09.2017 Ohjaaja: DI Mikko Harju Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki
Trichoderma reesein geenisäätelyverkoston ennustaminen Oskari Vinko
Trichoderma reesein geenisäätelyverkoston ennustaminen Oskari Vinko 04.11.2013 Ohjaaja: Merja Oja Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely)
Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Riku Hyytiäinen 23.02.2015 Ohjaaja: Harri Ehtamo Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa
Scheduling of Genetic Analysis Workflows on Grid Environments (valmiin työn esittely) Arttu Voutilainen
Scheduling of Genetic Analysis Workflows on Grid Environments (valmiin työn esittely) Arttu Voutilainen 20.4.2015 Ohjaaja: FT Lauri Eronen (Biocomputing Platforms Ltd.) Valvoja: Prof. Harri Ehtamo Työn
Kustannustehokkaat riskienhallintatoimenpiteet kuljetusverkostossa (Valmiin työn esittely)
Kustannustehokkaat riskienhallintatoimenpiteet kuljetusverkostossa (Valmiin työn esittely) Joonas Lanne 23.2.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Tuotannon jatkuva optimointi muutostilanteissa
Tuotannon jatkuva optimointi muutostilanteissa 19.4.2012 Henri Tokola Henri Tokola Esityksen pitäjä 2009 Tohtorikoulutettava Aalto-yliopisto koneenrakennustekniikka Tutkimusaihe: Online-optimointi ja tuotannonohjaus
Vangin dilemma häiriöisessä ympäristössä Markov-prosessina (valmiin työn esittely) Lasse Lindqvist
Vangin dilemma häiriöisessä ympäristössä Markov-prosessina (valmiin työn esittely) Lasse Lindqvist 21.01.2013 Ohjaaja: Kimmo Berg Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely)
Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely) Jussi Hirvonen 23.03.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely)
Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) 17.09.2015 Ohjaaja: TkT Eeva Vilkkumaa Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Informaation leviäminen väkijoukossa matemaattinen mallinnus
Informaation leviäminen väkijoukossa matemaattinen mallinnus Tony Nysten 11.4.2011 Ohjaaja: DI Simo Heliövaara Valvoja: Prof. Harri Ehtamo Väkijoukon toiminta evakuointitilanteessa Uhkaavan tilanteen huomanneen
Harjoitus 5 ( )
Harjoitus 5 (14.4.2015) Tehtävä 1 Figure 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan
Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen
Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen 08.09.2014 Ohjaaja: DI Mikko Harju Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston
Lajittelumenetelmät ilmakehän kaukokartoituksen laadun tarkkailussa (valmiin työn esittely)
Lajittelumenetelmät ilmakehän kaukokartoituksen laadun tarkkailussa (valmiin työn esittely) Viivi Halla-aho 30.9.2013 Ohjaaja: Dos. Johanna Tamminen Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa
Turvallisuudelle tärkeiden laitteiden koestusten merkitys vikojen havaitsemisessa (Valmis työ)
Turvallisuudelle tärkeiden laitteiden koestusten merkitys vikojen havaitsemisessa (Valmis työ) Raul Kleinberg 12.3.2012 Ohjaaja: Suunnittelupäällikkö Kalle Jänkälä Valvoja: Prof. Ahti Salo Työn saa tallentaa
AS Automaation signaalinkäsittelymenetelmät. Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy.
AS-84.161 Automaation signaalinkäsittelymenetelmät Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy. Tämän jälkeen täytyy: 1. Lisätä uusi sisääntulo edit->add input 2. nimetä
Harjoitus 8: Excel - Optimointi
Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen
Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2
Uolevin reitti Kuvaus Uolevi on ruudukon vasemmassa ylänurkassa ja haluaisi päästä oikeaan alanurkkaan. Uolevi voi liikkua joka askeleella ruudun verran vasemmalle, oikealle, ylöspäin tai alaspäin. Lisäksi
Verkko-optimointiin perustuva torjuntatasan laskenta mellakkapoliisin resurssien kohdentamisessa (valmiin työn esittely) Paavo Kivistö
Verkko-optimointiin perustuva torjuntatasan laskenta mellakkapoliisin resurssien kohdentamisessa (valmiin työn esittely) Paavo Kivistö 21.01.2013 Ohjaaja: Kai Virtanen Valvoja: Raimo P. Hämäläinen Työn
Vedonlyöntistrategioiden simulointi ja evaluointi
Vedonlyöntistrategioiden simulointi ja evaluointi Aleksi Avela 15.10.2018 Ohjaaja: Juho Roponen Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin
Epälineaarinen hinnoittelu: Diskreetin ja jatkuvan mallin vertailu
Epälineaarinen hinnoittelu: Diskreetin ja jatkuvan mallin vertailu 11.4.2011 Ohjaaja: TkT Kimmo Berg Valvoja: Prof. Harri Ehtamo Esityksen sisältö: Hinnoittelumallien esittely Menetelmät Esimerkkitehtävän
Valuation of Asian Quanto- Basket Options
Valuation of Asian Quanto- Basket Options (Final Presentation) 21.11.2011 Thesis Instructor and Supervisor: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen
Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen 07.05.2012 Ohjaaja: Raimo Hämäläinen Valvoja: Raimo Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
Puhelintukiasema-antennin säteilykuvion mittaus multikopterilla (Valmiin työn esittely)
Puhelintukiasema-antennin säteilykuvion mittaus multikopterilla (Valmiin työn esittely) Nina Gunell 24.03.2016 Ohjaaja: Yliopistonlehtori Jari Holopainen Valvoja: Professori Harri Ehtamo Työn saa tallentaa
Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu
Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu Vilma Virasjoki 19.11.2012 Ohjaaja: DI Jouni Pousi Valvoja: Professori Raimo P.
Päätösanalyysi Teknologföreningenin kiinteistöuudistuksen tukena (valmiin työn esittely)
Päätösanalyysi Teknologföreningenin kiinteistöuudistuksen tukena (valmiin työn esittely) Sara Melander 1.11.2016 Ohjaaja: DI Malin Östman Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston
Optimization of Duties in Railway Traffic (valmiin työn esittely)
Optimization of Duties in Railway Traffic (valmiin työn esittely) Teemu Kinnunen 03.03.2014 Ohjaaja: Mikko Alanko Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Experiment on psychophysiological responses in an economic game (valmiin työn esittely) Juulia Happonen
Experiment on psychophysiological responses in an economic game (valmiin työn esittely) Juulia Happonen 13.01.2014 Ohjaaja: DI Ilkka Leppänen Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa
Kaksintaistelun approksimatiivinen mallintaminen (valmiin työn esittely)
Kaksintaistelun approksimatiivinen mallintaminen (valmiin työn esittely) Juho Roponen 10.06.2013 Ohjaaja: Esa Lappi Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen
Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen 16.06.2014 Ohjaaja: Urho Honkanen Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Kombinatorinen optimointi
Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein
Projektiportfolion valinta
Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille
Demo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
Simulointimalli mellakkapoliisin resurssien kohdentamiseen (valmiin työn esittely)
Simulointimalli mellakkapoliisin resurssien kohdentamiseen (valmiin työn esittely) Eero Rantala 21.1.2013 Ohjaaja: Kai Virtanen Valvoja: Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
L u e n t o. Töidenjärjestely. Luennon sisältö. Töidenjärjestelyn perusteet Skedulointimallit Työntekijöiden skedulointi
L u e n t o Töidenjärjestely Luennon sisältö Töidenjärjestelyn perusteet Skedulointimallit Työntekijöiden skedulointi Yrityksen suunnittelussa eri tasoja Strategiset päätökset Luennot 1-9 aika vähenee
Malliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
Verkon värittämistä hajautetuilla algoritmeilla
Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)
monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi Ohjaaja: Prof. Kai Virtanen Valvoja: Prof.
Epätäydellisen preferenssiinformaation hyödyntäminen monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi 15.1.2018 Ohjaaja: Prof. Kai Virtanen Valvoja: Prof. Kai Virtanen Tausta Päätöspuu
Miksi teknologia on haastavaa? Perinteinen Bowie & Dick vs elektroninen Bowie & Dick. Bowie & Dick testi : menneestä nykyaikaan
23. VÄLINEHUOLLON VALTAKUNNALLISET KOULUTUSPÄIVÄT 1.10-2.10.2015 Elektroninen Bowie & Dick testi - Eeva Suhonen 1 10/2/2015 Miksi teknologia on haastavaa? Perinteinen Bowie & Dick vs elektroninen Bowie
L u e n t o. Töidenjärjestely. Luennon sisältö. Töidenjärjestelyn perusteet Skedulointimallit Työntekijöiden skedulointi
L u e n t o Töidenjärjestely Luennon sisältö Töidenjärjestelyn perusteet Skedulointimallit Työntekijöiden skedulointi Yrityksen suunnittelussa eri tasoja Strategiset päätökset Luennot 1-9 aika vähenee
6. Luento: Skedulointi eli Vuoronnus. Tommi Mikkonen, tommi.mikkonen@tut.fi
6. Luento: Skedulointi eli Vuoronnus Tommi Mikkonen, tommi.mikkonen@tut.fi Agenda Peruskäsitteet Skedulointialgoritmeja Reaaliaikajärjestelmien skedulointi Skeduloituvuuden analysoinnista Yhteenveto Peruskäsitteet
4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen
4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus
Pakettisynkronointitestauksen automaatio
Pakettisynkronointitestauksen automaatio Risto Hietala valvoja: Prof. Riku Jäntti ohjaaja: DI Jonas Lundqvist ESITYKSEN RAKENNE Tietoverkkojen synkronointi Pakettikytkentäisten verkkojen synkronointi Ohjelmistotestaus
Avainsanojen poimiminen Eeva Ahonen
Avainsanojen poimiminen 5.10.2004 Eeva Ahonen Sisältö Avainsanat Menetelmät C4.5 päätöspuut GenEx algoritmi Bayes malli Testit Tulokset Avainsanat Tiivistä tietoa dokumentin sisällöstä ihmislukijalle hakukoneelle
Kon Konepajojen tuotannonohjaus: ILOG CPLEX Studion käyttö
Kon-15.4199 Konepajojen tuotannonohjaus: ILOG CPLEX Studion käyttö 22.1.2016 Harjoituksessa 1. Varmistetaan että kaikilla on pari! Ilmoittautukaa oodissa etukäteen! 2. Tutustutaan ensimmäiseen tehtävään
Mat Lineaarinen ohjelmointi
Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Evoluutiopohjainen monitavoiteoptimointi MCDM ja EMO Monitavoiteoptimointi kuuluu
Demo 1: Branch & Bound
MS-C05 Optimoinnin perusteet Malliratkaisut 7 Ehtamo Demo : Branch & Bound Ratkaise lineaarinen kokonaislukuoptimointitehtävä käyttämällä Branch & Boundalgoritmia. max x + x s.e. x + 4x 9 5x + x 9 x Z
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 NSGA-II Non-dominated Sorting Genetic Algorithm (NSGA) Ehkä tunnetuin EMO-menetelmä
Suojarakenteiden vaikutus maalin selviytymiseen epäsuoran tulen tai täsmäaseen iskussa
Suojarakenteiden vaikutus maalin selviytymiseen epäsuoran tulen tai täsmäaseen iskussa Patrik Lahti 31.08.2018 Ohjaaja: DI Heikki Puustinen Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston
OPERAATIOANALYYSI ORMS.1020
VAASAN YLIOPISTO Talousmatematiikka Prof. Ilkka Virtanen OPERAATIOANALYYSI ORMS.1020 Tentti 2.2.2008 1. Yrityksen tavoitteena on minimoida tuotannosta ja varastoinnista aiheutuvat kustannukset 4 viikon
Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely)
Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Vilma Virasjoki 23.01.2012 Ohjaaja: Jouni Pousi Valvoja: Raimo P. Hämäläinen Työn saa tallentaa
MS-C2105 Optimoinnin perusteet Malliratkaisut 4
MS-C2105 Optimoinnin perusteet Malliratkaisut 4 Ehtamo Duaalin muodostamisen muistisäännöt Duaalin muodostamisessa voidaan käyttää muistisääntötaulukkoa, jota voidaan lukea vasemmalta oikealle tai oikealta
Esimerkkejä vaativuusluokista
Esimerkkejä vaativuusluokista Seuraaville kalvoille on poimittu joitain esimerkkejä havainnollistamaan algoritmien aikavaativuusluokkia. Esimerkit on valittu melko mielivaltaisesti laitoksella tehtävään
Toimialakohtaisen verkkomarkkinoinnin vaikutus asiakashankinnan tehokkuuteen
Tatu Mäkijärvi 28.4.2015 Espoo Ohjaaja: Mikko Lehmuskoski Valvoja: Heikki Hämmäinen Sisältö Tausta Tavoitteet Toimenpiteet Tulokset Johtopäätökset Jatkotutkimus Oppex 2011 perustettu kasvuyritys 5 työntekijää
Ylikerroinstrategiat ja Poissonmallit vedonlyönnissä (aihe-esittely) Jussi Kolehmainen
Ylikerroinstrategiat ja Poissonmallit vedonlyönnissä (aihe-esittely) Jussi Kolehmainen 23.01.2012 Ohjaaja: Jussi Kangaspunta Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
Osakkeiden tuottojakaumia koskevien markkinaja asiantuntijanäkemysten yhdistely copulafunktioilla
Osakkeiden tuottojakaumia koskevien markkinaja asiantuntijanäkemysten yhdistely copulafunktioilla (valmiin työn esittely) Henri Tuovila 13.01.2014 Ohjaaja: VTM Ville Hemmilä Valvoja: Prof. Ahti Salo Sisältö
Töidenjärjestely. Töidenjärjestelyä tehdään kaikkialla. Luennon sisältö. Töidenjärjestelyn idea, tärkeys ja haastavuus
L u e n t o Töidenjärjestelyä tehdään kaikkialla Töidenjärjestely Luennon sisältö Töidenjärjestelyn perusteet Skedulointimallit Työntekijöiden skedulointi Valmistettavien tuotteiden skedulointi tuotannon
Töidenjärjestely. Töidenjärjestelyn idea, tärkeys ja haastavuus. Luennon sisältö. Töidenjärjestelyä tehdään kaikkialla
L u e n t o Töidenjärjestelyn idea, tärkeys ja haastavuus Töidenjärjestely Luennon sisältö Töidenjärjestelyn perusteet Skedulointimallit Työntekijöiden skedulointi Ideana osoittaa kaikille tilauksille/asiakkaille
110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
Aki Taanila LINEAARINEN OPTIMOINTI
Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen
Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV
Mat-.4 Optimointiopin seminaari, syksy 999 Referaatti 7.0.999 Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV JOHDATO Ross D. Shachter a C. Robert Kenley (989) esittelevät artikkelissaan Gaussian
Harjoitus 10: Optimointi II (Matlab / Excel)
Harjoitus 10: Optimointi II (Matlab / Excel) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen ja ratkaiseminen
Kiinalaisen postimiehen ongelma
Kiinalaisen postimiehen ongelma Kimmo Kontio 1.12.2015 Ohjaaja/Valvoja: Harri Ehtamo [5] Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.
Semifinaalitehtävän tehtäväpohja Taitaja2015 Kondiittorilaji 501 (suomi) Tekijät: Jarmo Paukku Nimi: Oppilaitos: Koulutuskeskus Sedu
Semifinaalitehtävän tehtäväpohja Taitaja2015 Kondiittorilaji 501 (suomi) Tekijät: Jarmo Paukku Nimi: Oppilaitos: Koulutuskeskus Sedu Päiväys: 23.10.2014 1 Sisällysluettelo Kondiittori-lajin semifinaalitehtävä
Harjoitus 4: Matlab - Optimization Toolbox
Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen
Algoritmit 1. Luento 3 Ti Timo Männikkö
Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien
Lineaarisen ohjelman määritelmä. Joonas Vanninen
Lineaarisen ohjelman määritelmä Joonas Vanninen Sisältö Yleinen optimointitehtävä Kombinatorinen tehtävä Optimointiongelman tapaus Naapurusto Paikallinen ja globaali optimi Konveksi optimointitehtävä Lineaarinen
Harjoitus 9: Optimointi I (Matlab)
Harjoitus 9: Optimointi I (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien
Harjoitus 9: Optimointi I (Matlab)
Harjoitus 9: Optimointi I (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen
Kloorianisolien määrittäminen sisäilmasta
14.3.2019 Kloorianisolien määrittäminen sisäilmasta Jani Mäkelä, Tiina Kanniainen ja Marja Hänninen Sisäilmastoseminaari 2019 Kloorianisolit mikrobien tuottamia VOC yhdisteitä kloorifenolipohjaisista puunsuoja-aineista,
Arkkitehtuurien tutkimus Outi Räihä. OHJ-3200 Ohjelmistoarkkitehtuurit. Darwin-projekti. Johdanto
OHJ-3200 Ohjelmistoarkkitehtuurit 1 Arkkitehtuurien tutkimus Outi Räihä 2 Darwin-projekti Darwin-projekti: Akatemian rahoitus 2009-2011 Arkkitehtuurisuunnittelu etsintäongelmana Geneettiset algoritmit
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Pino Pinon määritelmä Pinon sovelluksia Järjestyksen kääntäminen Palindromiprobleema Postfix-lausekkeen laskenta Infix-lausekkeen muunto postfix-lausekkeeksi Sisäkkäiset funktiokutsut
riippumattomia ja noudattavat samaa jakaumaa.
12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta
RAKENNUSTUOTEALAN AMMATTITUTKINTO
1 Tutkintosuorituksen arviointiaineisto RAKENNUSTUOTEALAN AMMATTITUTKINTO 40 Massan valmistus Suorittaja: Järjestäjä: Rakennustuotealan tutkintotoimikunta 9/2009 1(10) Ohjeet tutkinnon osan suorittamiseen
FYSA2031 Potentiaalikuoppa
FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali
f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2
BMA581 - Differentiaalilaskenta ja sovellukset Harjoitus 4, Syksy 15 1. (a) Olisiko virhe likimain.5, ja arvio antaa siis liian suuren arvon. (b) Esim (1,1.5) tai (,.5). Funktion toinen derivaatta saa