Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun"

Transkriptio

1 Jälki- ja herkkyysanalyysi Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun 1

2 Hinnat ja varjohinnat Objektifunktio c T x = Kerroin c j ilmoittaa, paljonko muuttujan x j muutos maksaa = Kertoimia c sanotaan hinnoiksi Optimissa c T x = u T b = Duaalimuuttuja u i ilmoittaa, paljonko vakion b i muutos maksaa = Duaalimuuttujia u sanotaan varjohinnoiksi 2

3 Esimerkki Maksimointitehtävä ja epäyhtälörajoitteet: max 4x 1 + 5x 2 + 9x x 4 kun x 1 + x 2 + x 3 + x x 1 + 5x 2 + 3x 3 + 2x x 1 + 5x x x x 1, x 2, x 3, x 4 0 3

4 Muunnetaan maksimointi minimoinniksi ja epäyhtälörajoitteet yhtälörajoitteiksi: min 4x 1 5x 2 9x 3 11x 4 kun x 1 + x 2 + x 3 + x 4 + s 1 = 15 7x 1 + 5x 2 + 3x 3 + 2x 4 + s 2 = 120 3x 1 + 5x x x 4 + s 3 = 100 x 1, x 2, x 3, x 4, s 1, s 2, s 3 0 Nyt tehtävä on aloitusperusmuodossa, perusmuuttujina puutemuuttujat s 1, s 2 ja s 3 4

5 Aloitusperusmuodon simplex-taulukko: x 1 x 2 x 3 x 4 s 1 s 2 s

6 Optimaalinen simplex-taulukko: x 1 x 2 x 3 x 4 s 1 s 2 s 3 0 3/7 0 11/7 13/7 0 5/7 695/7 1 5/7 0 5/7 10/7 0 1/7 50/7 0 6/7 0 13/7 61/7 1 4/7 325/7 0 2/7 1 12/7 3/7 0 1/7 55/7 Ratkaisu:(x 1, x 2, x 3, x 4 ) = (50/7,0,55/7,0) ja (s 1, s 2, s 3 ) = (0,325/7,0) Minimointitehtävän objektifunktion arvo: 695/7 = alkuperäisen maksimointitehtävän objektifunktion arvo: 695/7 6

7 Muutos objektifunktion kertoimissa Muutos ei-perusmuuttujan kertoimessa: max 4x 1 + (5 + δ)x 2 + 9x x 4 kun x 1 + x 2 + x 3 + x x 1 + 5x 2 + 3x 3 + 2x x 1 + 5x x x x 1, x 2, x 3, x 4 0 7

8 = Optimaalinen simplex-taulukko muuttuu muotoon: x 1 x 2 x 3 x 4 s 1 s 2 s δ 0 11/7 13/7 0 5/7 695/7 1 5/7 0 5/7 10/7 0 1/7 50/7 0 6/7 0 13/7 61/7 1 4/7 325/7 0 2/7 1 12/7 3/7 0 1/7 55/7 = Ratkaisu pysyy optimaalisena, jos 3/7 δ 0 δ 3/7 8

9 Muutos perusmuuttujan kertoimessa: max (4 + δ)x 1 + 5x 2 + 9x x 4 kun x 1 + x 2 + x 3 + x x 1 + 5x 2 + 3x 3 + 2x x 1 + 5x x x x 1, x 2, x 3, x 4 0 9

10 = Optimaalinen simplex-taulukko muuttuu muotoon: x 1 x 2 x 3 x 4 s 1 s 2 s 3 δ 3/7 0 11/7 13/7 0 5/7 695/7 1 5/7 0 5/7 10/7 0 1/7 50/7 0 6/7 0 13/7 61/7 1 4/7 325/7 0 2/7 1 12/7 3/7 0 1/7 55/7 Taulukko ei ole kuitenkaan perusmuodossa 10

11 Muunnetaan perusmuotoon: = δ 3/7 0 11/7 13/7 0 5/7 695/7 1 5/7 0 5/7 10/7 0 1/7 50/7 0 6/7 0 13/7 61/7 1 4/7 325/7 0 2/7 1 12/7 3/7 0 1/7 55/ δ δ δ δ δ 1 5/7 0 5/7 10/7 0 1/7 50/7 0 6/7 0 13/7 61/7 1 4/7 325/7 0 2/7 1 12/7 3/7 0 1/7 55/7 11

12 = Ratkaisu pysyy optimaalisena, jos δ δ δ δ δ 0 12

13 Muutos oikean puolen vakioissa Muutos rajoitteen oikean puolen vakiossa = Vaikutus optimaaliseen simplex-taulukkoon näkyy siitä sarakkeesta, josta löytyy kyseisen rajoiterivin perusmuuttuja aloitusperusmuodossa b 1 + δ b b 3 =... c j... z + c j δ... ā 1j... b 1 + ā 1j δ... ā 2j... b 2 + ā 2j δ... ā 3j... b 3 + ā 3j δ 13

14 Esimerkki: max 4x 1 + 5x 2 + 9x x 4 kun x 1 + x 2 + x 3 + x x 1 + 5x 2 + 3x 3 + 2x δ 3x 1 + 5x x x x 1, x 2, x 3, x

15 = Aloitusperusmuodon simplex-taulukko: δ = Optimaalinen simplex-taulukko: 0 3/7 0 11/7 13/7 0 5/7 695/7 1 5/7 0 5/7 10/7 0 1/7 50/7 0 6/7 0 13/7 61/7 1 4/ δ 0 2/7 1 12/7 3/7 0 1/7 55/7 15

16 = Ratkaisu pysyy sallittuna, jos 325/7 + δ 0 δ 325/7 16

17 Esimerkki: max 4x 1 + 5x 2 + 9x x 4 kun x 1 + x 2 + x 3 + x δ 7x 1 + 5x 2 + 3x 3 + 2x x 1 + 5x x x x 1, x 2, x 3, x

18 = Aloitusperusmuodon simplex-taulukko: δ = Optimaalinen simplex-taulukko: 0 3/7 0 11/7 13/7 0 5/7 1 5/7 0 5/7 10/7 0 1/7 0 6/7 0 13/7 61/7 1 4/7 0 2/7 1 12/7 3/7 0 1/ δ δ δ δ 18

19 = Ratkaisu pysyy sallittuna, jos δ δ 0 5 δ δ 0 19

20 Duaalitehtävän ratkaiseminen Primaalin simplex-taulukko: c 1... c n z a a 1n b 1... a m1... a mn b m Duaalin simplex-taulukko: b 1... b m z a a m1 c 1... a 1n... a mn c n Duaaliteoria = Kun primaalin perusratkaisu saavuttaa optimaalisuuden, niin duaalitehtävän perusratkaisu saavuttaa samalla sallittavuuden 20

21 Primaalitehtävä: max c T x min ( c) T x kun Ax b kun Ax + Is = b x 0 x,s 0 Duaalitehtävä: min u T b max u T ( b) kun u T A c T kun u T A r T I = c T u 0 u,r 0 Duaaliteoria = Optimissa on: c T x + 0 T s = z + r T x + u T s 21

22 = Optimaalisessa simplex-taulukossa on: x 1... x n s 1... s m r 1... r n u 1... u m z Primaalin varsinaisten muuttujien suhteelliset hintakertoimet = duaalin ylijäämämuuttujien arvot optimissa Primaalin puutemuuttujien suhteelliset hintakertoimet = duaalimuuttujien arvot optimissa 22

23 Esimerkkitehtävän duaalitehtävä: min 15u u u 3 kun u 1 + 7u 2 + 3u 3 4 u 1 + 5u 2 + 5u 3 5 u 1 + 3u u 3 9 u 1 + 2u u 3 11 u 1, u 2, u

24 Primaalin optimaalinen simplex-taulukko: x 1 x 2 x 3 x 4 s 1 s 2 s 3 0 3/7 0 11/7 13/7 0 5/7 695/7 1 5/7 0 5/7 10/7 0 1/7 50/7 0 6/7 0 13/7 61/7 1 4/7 325/7 0 2/7 1 12/7 3/7 0 1/7 55/7 Duaalitehtävän ratkaisu: (u 1, u 2, u 3 ) = (13/7,0,5/7) Duaalin objektifunktion arvo optimissa: 695/7 Duaalin ylijäämämuuttujien arvot optimissa: (r 1, r 2, r 3, r 4 ) = (0,3/7,0,11/7) 24

25 Uuden muuttujan lisääminen Primaalin simplex-taulukko: c 1... c n c n+1 z a a 1n a 1,n+1 b a m1... a mn a m,n+1 b m Duaalin simplex-taulukko: b 1... b m z a a m1 c 1... a 1n... a mn c n a 1,n+1... a m,n+1 c n+1 Uusi muuttuja Uusi rajoite primaaliin duaaliin 25

26 Esimerkki: max 4x 1 + 5x 2 + 9x x 4 + c 5 x 5 kun x 1 + x 2 + x 3 + x 4 + x x 1 + 5x 2 + 3x 3 + 2x 4 + 4x x 1 + 5x x x 4 + 8x x 1, x 2, x 3, x 4, x 5 0 Uusi duaalirajoite: u 1 + 4u 2 + 8u 3 c 5 26

27 Duaalirajoite on voimassa optimissa, jos c 5 c = Jos c 5 53/7, ratkaisu säilyy optimaalisena Jos c 5 > 53/7, ratkaisu ei ole enää optimaalinen 27

28 Muutos rajoitteen ei-perusmuuttujan kertoimissa Esimerkki: max 4x 1 + 5x 2 + 9x x 4 kun x 1 + x 2 + x 3 + x x 1 + 5x 2 + 3x 3 + 2x x 1 + 5x x 3 + (15 + δ)x x 1, x 2, x 3, x 4 0 Vastaava duaalirajoite: u 1 + 2u 2 + (15 + δ)u

29 Duaalirajoite on voimassa optimissa, jos (15 + δ) δ 11 5 = Jos δ 11/5, ratkaisu säilyy optimaalisena Jos δ < 11/5, ratkaisu ei ole enää optimaalinen [ Muutos rajoitteen perusmuuttujan kertoimissa on hankalampi tutkia ] 29

30 Uuden rajoitteen lisääminen Esimerkki: max 4x 1 + 5x 2 + 9x x 4 kun x 1 + x 2 + x 3 + x x 1 + 5x 2 + 3x 3 + 2x x 1 + 5x x x a 41 x 1 + a 42 x 2 + a 43 x 3 + a 44 x 4 b 4 x 1, x 2, x 3, x 4 0 Uusi rajoite on voimassa optimissa, eli ratkaisu säilyy optimaalisena, jos a a a a 44 0 b 4 30

31 Parametrinen optimointi Parametrisoidaan tehtävän kertoimia ja/tai vakioita, ja ratkaistaan tehtävä parametrisoidussa muodossa 31

32 Esimerkki Regular Super Luxus Resurssit Puutyöpv Metallityöpv Tuotto max 6x x x 3 kun 0.5x 1 + 2x 2 + x 3 24 x 1 + 2x 2 + 4x 3 60 x 1, x 2, x

33 Muutetaan maksimointi minimoinniksi, lisätään puutemuuttujat, ja parametrisoidaan oikean puolen vakiot: min 6x 1 14x 2 13x 3 kun 0.5x 1 + 2x 2 + x 3 + s 1 = 24 + t x 1 + 2x 2 + 4x 3 + s 2 = 60 t x 1, x 2, x 3, s 1, s

34 Aloitusperusmuodon simplex-taulukko: x 1 x 2 x 3 s 1 s / t t Tehdään simplex-iteraatiot, kun t = 0, mutta pidetään t mukana kaikissa muunnoksissa 34

35 Optimaalinen simplex-taulukko (kun t = 0): x 1 x 2 x 3 s 1 s / t t / t Ratkaisu pysyy sallittuna, jos t t t 4 35

36 Jos t < 36/5, täytyy x 1 poistaa perusmuuttujien joukosta Jos t > 4, täytyy x 3 poistaa perusmuuttujien joukosta Uusi perusmuuttuja valitaan siten, että ratkaisu säilyy optimaalisena = Tarvitaan duaali-simplex-iteraatio 36

37 Duaali-simplex-algoritmi Duaalitehtävän simplex-algoritmin mukaiset iteraatiot, jotka kuitenkin toteutetaan primaalitehtävän simplex-taulukossa Primaalin simplex-taulukko: c 1... c n z a a 1n b 1... a m1... a mn b m Duaalin simplex-taulukko: b 1... b m z a a m1 c 1... a 1n... a mn c n 37

38 Primaali-simplex ( tavallinen simplex): Pivot-rivi p valitaan siten, että missä q on pivot-sarake b p = min a pq j { bj a jq a jq > 0 } Perusratkaisut ovat sallittuja, mutta eivät välttämättä optimaalisia 38

39 Duaali-simplex: Pivot-sarake p valitaan siten, että missä q on pivot-rivi c p = min a qp j { cj a qj a qj < 0 } Perusratkaisut ovat optimaalisia, mutta eivät välttämättä sallittuja 39

40 Esimerkki jatkuu Optimaalinen simplex-taulukko (kun t = 0): x 1 x 2 x 3 s 1 s / t t / t Ratkaisu pysyy sallittuna, jos 36/5 t 4 40

41 Jos t < 36/5, niin t < 0 = / t t / t = 1/ t t 1/ t Ratkaisu pysyy sallittuna, jos 24 t 36/5 41

42 Jos t < 24, niin 24 + t < 0 = 1/ t t 1/ t Toisella rajoiterivillä kaikki a ij :t ovat ei-negatiivisia = Ei saada pivot-alkiota = Ei ole olemassa sallittuja ratkaisuja 42

43 Optimaalinen simplex-taulukko (kun t = 0): x 1 x 2 x 3 s 1 s / t t / t Ratkaisu pysyy sallittuna, jos 36/5 t 4 43

44 Jos t > 4, niin t < 0 = / t t / t = t t / t Ratkaisu pysyy sallittuna, jos 4 t 18 44

45 Jos t > 18, niin 72 4t < 0 = t t / t = t 1/ t 1/ / t Ratkaisu pysyy sallittuna, jos 18 t 60 45

46 Jos t > 60, niin t < 0 = t 1/ t 1/ / t Toisella rajoiterivillä kaikki a ij :t ovat ei-negatiivisia = Ei saada pivot-alkiota = Ei ole olemassa sallittuja ratkaisuja 46

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat

Lisätiedot

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2. a m1 x 1 + a m2 x 2 + + a mn x n b m x 1, x 2,..., x n 0 1

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lineaarinen ohjelmointi..7 Luento 7 Duaalisimple ja herkkyysanalyysi (kirja 4.5, 5., 5.5-5.6) Lineaarinen ohjelmointi - Syksy 7 / Duaalisimple Herkkyysanalyysi Luentorunko Parametrinen ohjelmointi

Lisätiedot

Luento 4: Lineaarisen tehtävän duaali

Luento 4: Lineaarisen tehtävän duaali Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea

Lisätiedot

8. Ensimmäisen käyvän kantaratkaisun haku

8. Ensimmäisen käyvän kantaratkaisun haku 38 8. Ensimmäisen käyvän kantaratkaisun haku Edellä kuvattu simplex-algoritmi tarvitsee alkuratkaisuksi käyvän kantaratkaisun eli käyvän joukon kärkipisteen. Sellaisen voi konstruoida seuraavilla tavoilla:

Lisätiedot

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min! Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x

Lisätiedot

Piiri K 1 K 2 K 3 K 4 R R

Piiri K 1 K 2 K 3 K 4 R R Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä

Lisätiedot

Malliratkaisut Demot 6,

Malliratkaisut Demot 6, Malliratkaisut Demot 6, 19.2.21 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös

Lisätiedot

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi.

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. 5..0 Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (c) (d) Arvostelu Kanta on degeneroitunut jos ja vain jos sitä vastaava kantamatriisi on singulaarinen. Optimissa muuttujan

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 4

MS-C2105 Optimoinnin perusteet Malliratkaisut 4 MS-C2105 Optimoinnin perusteet Malliratkaisut 4 Ehtamo Duaalin muodostamisen muistisäännöt Duaalin muodostamisessa voidaan käyttää muistisääntötaulukkoa, jota voidaan lukea vasemmalta oikealle tai oikealta

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 2.2.217 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös muotoon

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen 4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 5..7 Luento Kertausta Lineaarinen ohjelmointi - Syksy 7 / LP ja Simplex Kurssin rakenne Duaalisuus ja herkkyysanalyysi Verkkotehtävät Kokonaislukutehtävät Lineaarinen ohjelmointi

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.

Lisätiedot

3 Simplex-menetelmä. c T x = min! Ax = b (x R n ) (3.1) x 0. Tarvittaessa sarakkeiden järjestystä voidaan vaihtaa, joten voidaan oletetaan, että

3 Simplex-menetelmä. c T x = min! Ax = b (x R n ) (3.1) x 0. Tarvittaessa sarakkeiden järjestystä voidaan vaihtaa, joten voidaan oletetaan, että 3 Simplex-menetelmä Lähdetään jostakin annettuun LP-tehtävään liittyvästä käyvästä perusratkaisusta x (0) ja pyritään muodostamaan jono x (1), x (2),... käypiä perusratkaisuja siten, että eräässä vaiheessa

Lisätiedot

TIEA382 Lineaarinen ja diskreetti optimointi

TIEA382 Lineaarinen ja diskreetti optimointi TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/

Lisätiedot

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala Simplex-algoritmi T-6.5 Informaatiotekniikan seminaari..8, Susanna Moisala Sisältö Simplex-algoritmi Lähtökohdat Miten ongelmasta muodostetaan ns. Simplextaulukko Miten haetaan käypä aloitusratkaisu Mitä

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 6 24.4.2017 Tehtävä 1 Määritelmän (ks. luentomonisteen s. 107) mukaan yleisen muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on min θ(u,v)

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku

Lisätiedot

Kirjallisuuskatsaus sisäpistemenetelmiin ja niiden soveltamiseen eri optimointiluokille (valmiin työn esittely)

Kirjallisuuskatsaus sisäpistemenetelmiin ja niiden soveltamiseen eri optimointiluokille (valmiin työn esittely) Kirjallisuuskatsaus sisäpistemenetelmiin ja niiden soveltamiseen eri optimointiluokille (valmiin työn esittely) Ilari Vähä-Pietilä 28.04.2014 Ohjaaja: TkT Kimmo Berg Valvoja: Prof. Harri Ehtamo Työn saa

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento : Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli simerkki: Maalifirma Sateenkaari valmistaa ulko- ja sisämaalia raaka-aineista M ja M. Sisämaalin maksimikysyntä on tonnia/päivä.

Lisätiedot

Harjoitus 1 (17.3.2015)

Harjoitus 1 (17.3.2015) Harjoitus 1 (17.3.2015) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Helsinki 4 = Kuopio 5 = Joensuu. a) Tehtävänä on ratkaista Bellman

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Luento 3: Simplex-menetelmä

Luento 3: Simplex-menetelmä Luento 3: Simplex-menetelmä Kuten graafinen tarkastelu osoittaa, LP-tehtävän ratkaisu on aina käyvän alueen kulmapisteessä, eli ekstreemipisteessä (extreme point). Simplex-menetelmässä ekstreemipisteitä,

Lisätiedot

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio Ellipsoidimenetelmä Kokonaislukuoptimointi Sovelletun matematiikan lisensiaattiseminaari Kevät 2008 / 1 Sisällys Ellipsoidimenetelmän geometrinen perusta ja menetelmän idea Formaali ellipsoidimenetelmä

Lisätiedot

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n. TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin

Lisätiedot

Monitavoiteoptimointi

Monitavoiteoptimointi Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa

Lisätiedot

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).

Lisätiedot

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Duaalisuus kokonaislukuoptimoinnissa Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Duaalisuus binäärisissä optimointitehtävissä Lagrangen duaalisuus Lagrangen

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) () = 2+1. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että minimoinnin suhteen. Funktio on konveksi ja konkaavi. b) () = (suurin kokonaisluku

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

1 Rajoitettu optimointi I

1 Rajoitettu optimointi I Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause

Lisätiedot

4.6 Matriisin kääntäminen rivioperaatioilla

4.6 Matriisin kääntäminen rivioperaatioilla Vaasan liopiston julkaisuja 9 kuva.plot(,n, k-o,,n, k-s,,n3, k-d ); kuva.set_label( kausi ); kuva.set_label( lkm ); kuva.ais([,,,8]); kuva = fig.add_subplot(); kuva.plot(,tulo, k-o ); kuva.set_label( kausi

Lisätiedot

OPERAATIOANALYYSI ORMS.1020

OPERAATIOANALYYSI ORMS.1020 VAASAN YLIOPISTO Talousmatematiikka Prof. Ilkka Virtanen OPERAATIOANALYYSI ORMS.1020 Tentti 2.2.2008 1. Yrityksen tavoitteena on minimoida tuotannosta ja varastoinnista aiheutuvat kustannukset 4 viikon

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Harjoitus 1 (20.3.2014)

Harjoitus 1 (20.3.2014) Harjoitus 1 (20.3.2014) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Hämeenlinna 4 = Imatra 5 = Jyväskylä. 5 2 149(5) 190(4) 113(1)

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

λ T b = max! λ T A c T (5.2)

λ T b = max! λ T A c T (5.2) 5 LP tehtävän duaalitehtävä Annettuun LP-tehtävään liittyy duaalinen tehtävä, jolla on usein käytännön sovellutuksissa hyödyllinen (taloudellinen) tulkinta ja jota voidaan käyttää simplex menetelmän yhteydessä

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot

URN: NBN:fi-fe19991228

URN: NBN:fi-fe19991228 URN: NBN:fi-fe19991228 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

Lisätiedot

Kimppu-suodatus-menetelmä

Kimppu-suodatus-menetelmä Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

MAT-21241 OPERAATIOTUTKIMUS Kevät 2013, periodi 4. Martti Lehto TTY/ Matematiikan laitos

MAT-21241 OPERAATIOTUTKIMUS Kevät 2013, periodi 4. Martti Lehto TTY/ Matematiikan laitos MAT-4 OPERAATIOTUTKIMUS Kevät 03, periodi 4 Martti Lehto TTY/ Matematiikan laitos SISÄLLYSLUETTELO. Johdantoa ja terminologiaa 3. Lineaarinen optimointi ja graafinen ratkaisu 0 3. Simplex-algoritmi 30

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Luetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Luetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Luetteloivat ja heuristiset menetelmät Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Branch and Bound sekä sen variaatiot (Branch and Cut, Lemken menetelmä) Optimointiin

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3 7.3.07 Tehtävä Olkoon tilamuuttujat Tällöin saadaan rekursioyhtälö f n (x n ) = max yn {0,} ynwn xn f 0 ( ) = 0. x n = vaiheessa n jäljellä oleva paino, n =,...,N, esine n pakataan

Lisätiedot

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS 1. Suorakaiteen muotoisen lämmönvaraajan korkeus on K, leveys L ja syvyys S yksikköä. Konvektiosta ja säteilystä johtuvat lämpöhäviöt ovat verrannollisia lämmönvaraajan lämpötilan T ja ympäristön lämpötilan

Lisätiedot

1 Rajoitettu optimointi III - epäyhtälörajoitteet, teoriaa

1 Rajoitettu optimointi III - epäyhtälörajoitteet, teoriaa Taloustieteen mat.menetelmät syksy27 materiaali II-3 Rajoitettu optimointi III - epäyhtälörajoitteet, teoriaa. Perustehtävä Maksimoi f(x) ehdoilla g i (x), i = ; : : : ; k tässä f; g i : R n 7! R, i =

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Optimointitehtävät, joissa muuttujat tai osa niistä voivat saada vain kokonaislukuarvoja Puhdas kokonaislukuoptimointitehtävä: Kaikki muuttujat kokonaislukuja Sekoitettu kokonaislukuoptimointitehtävä:

Lisätiedot

Kokonaislukuoptiomointi Leikkaustasomenetelmät

Kokonaislukuoptiomointi Leikkaustasomenetelmät Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Este- ja sakkofunktiomenetelmät

Este- ja sakkofunktiomenetelmät Este- ja sakkofunktiomenetelmät Keijo Ruotsalainen Mathematics Division Luennon kulku Este- ja sisäpistemenetelmät LP-ongelmat ja logaritminen estefunktio Polun seuranta Newtonin menetelmällä Sakkofunktiomenetelmistä

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi Optimointi Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa Ongelman mallintaminen Mallin ratkaiseminen Ratkaisun analysointi 1 Peruskäsitteitä Muuttujat: Sallittu alue: x = (x 1, x 2,...,

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien

Lineaaristen monitavoiteoptimointitehtävien Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

2 Konveksisuus ja ratkaisun olemassaolo

2 Konveksisuus ja ratkaisun olemassaolo 2 Konveksisuus ja ratkaisun olemassaolo Ratkaisun olemassaolon tutkimiseen tarvitaan perustietoja konvekseista joukoista ja lineaarialgebrasta. Niitä tarvitaan myös ratkaisualgoritmin ymmärtämiseen. Tutkitaan

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.01.2013 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

TIES483 Epälineaarinen optimointi

TIES483 Epälineaarinen optimointi TIES483 Epälineaarinen optimointi Käytännön optimointiongelmien ratkaiseminen jussi.hakanen@jyu.fi Syksy 2012 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Luento 6: Monitavoiteoptimointi

Luento 6: Monitavoiteoptimointi Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 5 10.4.2017 Tehtävä 1 x 2 7 0,7 9,8 6 5 4 x 1 x 2 7 x 1 x 2 1 3 2 x 1 0 4,3 x 1 9 1 0,0 x 2 0 9,0 1 2 3 4 5 6 7 8 9 x 1 Kuva 1: Tehtävän 1 sallittu joukko S Optimointitehtävän sallittu

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100 HARJOITUS, RATKAISUEHDOTUKSET, YLE 07.. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 0x +0xy +5y (b.) f(x,y) = 4x y xy +x+y +00 (a.) Funktion kriittiset pisteet ratkaisevat

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja 811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A

Lisätiedot

Kokonaislukuoptimointi hissiryhmän ohjauksessa

Kokonaislukuoptimointi hissiryhmän ohjauksessa Kokonaislukuoptimointi hissiryhmän ohjauksessa Systeemianalyysin laboratorio Teknillinen Korkeakoulu, TKK 3 Maaliskuuta 2008 Sisällys 1 Johdanto Taustaa Ongelman kuvaus 2 PACE-graafi Graafin muodostaminen

Lisätiedot

T : Max-flow / min-cut -ongelmat

T : Max-flow / min-cut -ongelmat T-61.152: -ongelmat 4.3.2008 Sisältö 1 Määritelmät Esimerkki 2 Max-flow Graafin leikkaus Min-cut Max-flow:n ja min-cut:n yhteys 3 Perusajatus Pseudokoodi Tarkastelu 4 T-61.152: -ongelmat Virtausverkko

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)

Lisätiedot

Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan.

Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan. 5. EPÄTÄYDELLINEN KILPAILU Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan. Epätäydellinen kilpailu: markkinoilla yksi tai vain muutama

Lisätiedot

Harjoitus 7: vastausvihjeet

Harjoitus 7: vastausvihjeet Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.

Lisätiedot

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi). Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki

Lisätiedot

Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä

Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Vesa Husgafvel 19.11.2012 Ohjaaja: DI Mirko Ruokokoski Valvoja: Prof. Harri Ehtamo Työn

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

Osakesalkun optimointi

Osakesalkun optimointi Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän

Lisätiedot

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset 30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset Mitä on lineaarinen optimointi (LP)? LP= lineaarinen optimointiongelma (Linear Programming) Menetelmä, jolla etsitään

Lisätiedot