TIES483 Epälineaarinen optimointi. Monitavoiteoptimointi Syksy 2012

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "TIES483 Epälineaarinen optimointi. Monitavoiteoptimointi Syksy 2012"

Transkriptio

1 TIES483 Epälineaarinen optimointi Monitavoiteoptimointi Syksy 2012

2 Sisältö Johdanto monitavoiteoptimointiin Monitavoiteoptimoinnin käsitteitä Menetelmätyypit Käytännön sovellusesimerkkejä (Monitavoiteoptimoinnin ohjelmistoja)

3 Mitä monitavoitteisuus tarkoittaa? Halutaan saavuttaa useita tavoitteita samanaikaisesti Tavoitteet voivat olla ristiriitaisia (esim. yleensä hyvää ei saa halvalla) kaikkia tavoitteita ei voi saavuttaa samanaikaisesti Joudutaan tyytymään kompromisseihin

4 Monitavoitteinen päätöksentekoprosessi tarpeen tunnistaminen optimointehtävän muotoilu tehtävän (matemaattinen) mallinnus päätöksenteko parhaan ratkaisun implementointi & testaus

5 Optimointitehtävän muotoilu Optimoimalla vain yhtä tavoitetta muut jäävät huomiotta Tavoite vs. rajoite Tavoitteiden summaus Lasketaan yhteen appelsiineja ja omenoita Tavoitteiden muuntaminen Sisältää epävarmuuksia Monitavoitteinen muotoilu tuo esille tavoitteiden keskinäiset riippuvuudet

6 Esimerkki 1: Teräksen jatkuvavalu Teräksen jatkuvavalun toisiojäähdytysprosessin optimisäätö Tutkittu tietotekniikan laitoksella intensiivisesti mallinnus (1988) yksitavoiteoptimointi ( ) monitavoiteoptimointi ( )

7 Teräksen jatkuvavalu sula teräs sisään (tundish) 1. vesijäähdytteinen muotti ohut kuori etenemistä tuetaan rullilla 2. jäähdytys vesisuihkuilla loppu jäähtyminen lämpösäteilynä

8 Teräksen jatkuvavalu Lämpötilan mittaaminen valussa hankalaa lämpötilajakauma numeerisesti Prosessi mallinnettu monifaasilämpöyhtälöä kuvaavilla osittaisdifferentiaaliyhtälöillä (kiinteä ja neste faasi) lämpötilajakauma Numeerinen malli käyttäen elementtimenetelmää (Finite Element method, FEM) Dynaaminen prosessi, riippuu siis ajasta

9 Teräksen jatkuvavalu Toisiojäähdytys merkittävä: vesisuihkujen intensiteetti (helppo säädellä) vaikuttaa merkittävästi teräksen jähmettymiseen Tavoite: minimoida virheiden määrä teräksessä Laatu riippuu mm. lämpötilan käyttäytymisestä teräksen pinnalla liian pieni jäähdytys liian pitkä nestemäinen osa liian suuri jäähdytys teräkseen muodostuu vikoja Objektifunktio: pitää pintalämpötila lähellä haluttua profiilia Rajoitteita mm. lämpötilan muutokselle teräksen pinnalla sekä itse lämpötilalle kriittisissä kohdissa

10 Teräksen jatkuvavalu Yksitavoitteisen optimointitehtävän tarkastelu: rajoitteet tiukkoja ei sallittuja ratkaisuita mistä antaa periksi? Muutetaan rajoitteet objektifunktioiksi (yht. 5) mahdollistaa eri rajoitteiden samanaikaisen relaksoinnin tietoa eri rajoitteiden toteutumisesta ja niiden vuorovaikutuksista

11 Teräksen jatkuvavalu Laitinen & Neittaanmäki, Control Theory and Advanced Technology, 4 (1988) Männikkö & Mäkelä, In Proc. of the 1 st Intl. Conf. on Advanced Computational Methods in Heat Transfer (1990) Männikkö & Mäkelä, In Proc. of the Conf. on Numerical Methods for Free Boundary Problems (1991) Mäkelä & Männikkö, Advances in Mathematical Sciences and Applications, 4 (1994) Miettinen, Mäkelä & Männikkö, Computational Optimization and Applications, 11 (1998)

12 Esimerkki 2: Vesikiertojen optimointi

13 Vesikiertojen optimointi Paperinvalmistusprosessi käyttää paljon vettä (nykyään n m 3 /paperitonni) Vettä voi kierrättää eri puolilla prosessia, kunhan se pysyy riittävän puhtaana liuennut orgaaninen aine kasaantuu Puhdas vesi maksaa Prosessi mallinnettu käyttäen VTT:n Balasprosessisimulaattoria ( Miten muotoilla optimointitehtävä?

14 Vesikiertojen optimointi Tavoitteena minimoida prosessiin tarvittava puhdas vesi Objektifunktio: minimoidaan puhtaan veden määrä Rajoitteet liuenneen orgaanisen aineen määrä paperikoneen viiravedessä liuenneen orgaanisen aineen määrä valkaisuun menevässä massassa Muuttujat: 5 splitteriä ja 3 venttiiliä

15 Vesikiertojen optimointi Käytännössä siis annetaan orgaanisen aineen pitoisuuksille ylärajat minimoidaan veden kulutus (yksi objektifunktio) Miten määrittää ylärajat? perustuen insinööritietoon ja nykytekniikkaan entäpä, jos rajoja relaksoitaisiin hieman? Monitavoitteinen muotoilu, jossa pitoisuusrajoitteet myös objektifunktioina (3) Hakanen, Miettinen & Mäkelä, In Proc. of ECCOMAS2004 Conference (2004)

16 Esimerkki 3: Kemiallinen erotusprosessi Tarkastellaan kromatografiaan perustuvaa kemiallista erotusprosessia Käytetään moniin tärkeisiin erotusprosesseihin (mm. sokeri-, petrokemian- ja lääketeollisuudessa) Perustuu eri kemiallisten komponenttien nopeuseroon nesteessä *

17 Adapted from Y. Kawajiri, Carnegie Mellon University Kromatografia (yksi kolumni) Liuotin Syöte (2 komponentin sekoitus) Uutto Syöttö 1. Alkutila tuotteen poisto kolumni täytetään liuottimella Pumppu Kromatografinen kolumni (astia täynnä adsorboivan aineen partikkeleita)

18 Adapted from Y. Kawajiri, Carnegie Mellon University Prosessin simulointi Askel Kierros Desorbent Feed Desorbent Desorbent Desorbent Feed Desorbent Feed Desorbent Feed Feed Feed Feed Desorbent Feed Desorbent 16 Liquid Flow Raffinate Extract Raffinate Extract Extract Raffinate Extract Raffinate Extract Raffinate Raffinate Extract Raffinate Extract Raffinate Extract November 11, 2009 Bergische Universität Wuppertal

19 Kemiallinen erotusprosessi Syöte- ja poistovirtojen paikkaa vaihdetaan säännöllisin väliajoin (askelaika) Säätö muuttujat askelaika virtausnopeudet

20 Kemiallinen erotusprosessi Tyypillisesti prosessi optimoidaan maksimoimalla tuottofunktio Tuottofunktion muodostaminen ei ole helppoa Monitavoitteinen muotoilu maksimoi prosessin läpi menevä ainemäärä minimoi käytetyn liuottimen määrä maksimoi tuotteen puhtaus maksimoi erotetun tuotteen määrä Mahdollistaa joustavamman tarkastelun ja paljastaa eri tavoitteiden vaikutukset ratkaisuun Hakanen, Kawajiri, Miettinen & Biegler, Control & Cybernetics, 36 (2007)

21 Mitä tarkoittaa tehtävän ratkaiseminen? Tavoitteena löytää paras kompromissi Mahdollisia kompromisseja paljon, jopa ääretön määrä Perusidea: jos halutaan parantaa jotain tavoitetta, niin jostain joudutaan tinkimään

22 Optimaalisuus usealle tavoitteelle Optimoitavat tavoitteet ristiriitaisia ei yhtä optimaalista ratkaisua vrt. yhden objektifunktion optimointiin Kompromissi Optimaalisia ratkaisuita potentiaalisesti äärettömän paljon

23 Monitavoiteoptimointitehtävä Objektifunktiot, k kappaletta ( k > 1) erikoistapaus: kaksi objektifunktiota pystytään havainnollistamaan vektoreita objektiavaruudessa kun dimensio on 2 tai 3 Muuttujat: kontrolloidaan ratkaisua Rajoitteet: kuten yksitavoitteisissa optimointitehtävissä Sallittu alue S: koostuu pisteistä, jotka toteuttavat kaikki rajoitteet

24 Matemaattinen muotoilu Vektoriarvoinen objektifunktio Objektivektori Sallitun alueen kuva-avaruus

25 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla f 1 min

26 Optimaalisuus Mitkä pisteet ovat optimaalisia? Miten ne löydetään?

27 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla f 1 min

28 Pareto-optimaalisuus (PO) Matemaattinen määritelmä: Toisin sanoen: piste on Pareto-optimaalinen, jos ei ole toista sallittua pistettä, joka antaa vähintään yhtä hyvät arvot kaikille objektifunktioille ja ainakin yhdelle paremman Huomaa: Kaikki Pareto-optimaaliset pisteet ovat matemaattisesti yhtä hyviä

29 Miten valita paras PO-ratkaisu? Kaikki PO-ratkaisut matemaattisesti yhtä hyviä vrt. esim. tason vektorien järjestäminen PO-ratkaisuja mahdollisesti äärettömän monta Tarvitaan lisätietoa liittyen tehtävään, jota ollaan ratkaisemassa

30 Päätöksentekijä Decision maker (DM) Henkilö (tai henkilöt), joka on asiantuntija ratkaistavan tehtävän alalla Kykenee antamaan tietoa tavoitteisiin liittyvistä paremmuussuhteista kykenee esim. vertailemaan PO-ratkaisuja Ei tarvitse olla ammattilainen optimoinnin alalla Auttaa parhaan PO-ratkaisun (kompromissin) löytämisessä

31 Pareto-optimaalinen joukko f 2 Koostuu kaikista tehtävän PO-ratkaisuista Esitetään objektiavaruudessa Esim. k=2 PO-joukko on 2-ulotteisen avaruuden osajoukko f 2 f 2 f 1 diskreetti lineaarinen epälineaarinen f 1 f 1

32 Heikko Pareto-optimaalisuus Jotain tavoitetta voidaan parantaa huonontamatta muita PO-piste on myös heikosti PO PO-pisteet parempia, mutta heikosti PO-pisteitä helpompi tuottaa f 2 Heikosti PO-pisteitä f 1

33 PO-joukon vaihteluvälit Objektifunktion arvojen vaihteluvälit PO-joukossa antavat tietoa olemassaolevista ratkaisuista Ihanteellinen objektivektori (parhaimmat arvot) kertoo miten hyviä arvoja voidaan saavuttaa Nadir-objektivektori (huonoimmat arvot) kertoo miten huonoja arvoja voidaan joutua hyväksymään Hyödyllistä tietoa päätöksenteossa Käytetään apuna myös joissain menetelmissä

34 Ihanteellinen objektivektori Koostuu yksittäisten objektifunktioiden parhaimmista arvoista PO-joukossa minimoitaessa pienimmät arvot Löydetään optimoimalla jokaista objektifunktiota erikseen k objektifunktiota k optimointia Ihanteellinen objektivektori ei ole sallittu!

35 Ihanteellinen objektivektori f 2 min Z = f(s) z * z 2 * z 1 * f 1 min

36 Nadir-objektivektori Koostuu yksittäisten objektifunktioiden huonoimmista arvoista PO-joukossa minimoitaessa suurimmat arvot Ei kyetä laskemaan tarkasti, joudutaan approksimoimaan Huom. k=2 voidaan laskea tarkasti Esim. käyttäen arvotaulukkoa

37 Arvotaulukko (pay-off table) Saadaan laskemalla kaikkien objektifunktioiden arvot pisteissä, jotka saatiin laskettaessa z* i:nnellä rivillä on objektifunktioiden arvot pisteessä, jossa f i saavutti optimin diagonaalilla z* z i nad = i:nnen sarakkeen huonoin arvo Voi antaa joko optimistisen tai pessimistisen arvion (riippuu tehtävästä)

38 Nadir-objektivektori f 2 min z 2 nad Z = f(s) z nad z 2 * z 1 * z 1 nad f 1 min

39 Referenssipiste Referenssipiste = objektiavaruuden piste, joka sisältää tavoiteltavat arvot objektifunktioille Referenssipisteen komponentteja kutsutaan tavoitetasoiksi Eräs tapa päätöksentekijälle antaa preferenssitietoa (intuitiivinen) Hyödynnetään myös joissain monitavoiteoptimoinnin menetelmissä

40 Erikoistapaus: 2 tavoitetta Pareto-optimaalisen joukon voi esittää visuaalisesti (jos saatavilla) Jos toista halutaan parantaa, niin toinen f 2 min huononee Käyrältä voidaan valita haluttu ratkaisu Hyvin yleinen tilanne käytännön sovelluksissa f 1 min

41 Tehtävän skalarisointi Usein monitavoiteoptimoinnissa ideana on muuttaa monitavoitteinen tehtävä yksitavoitteiseksi voidaan hyödyntää yksitavoitteisen optimoinnin menetelmiä Puhutaan tehtävän skalarisoinnista Voidaan tehdä hyvin tai huonosti esimerkkejä myöhemmin

42 Hyvän menetelmän ominaisuuksia Skalarisointiin perustuvat menetelmät tuottavat yleensä yhden ratkaisun kerrallaan Hyvällä menetelmällä on seuraavat ominaisuudet tuottaa (heikosti) Pareto-optimaalisia ratkaisuja pystyy löytämään jokaisen Pareto-optimaalisen ratkaisun (sopivilla menetelmän parametreilla)

43 Lähestymistavat Monitavoiteoptimointiin on lukuisia menetelmiä Monitavoiteoptimoinnin menetelmät voidaan luokitella päätöksentekijän roolin mukaan menetelmät, joissa päätöksentekijää ei tarvita Pareto-optimaalisten pisteiden määräämismenetelmät paremmuussuhteiden ennaltamääräämiseen perustuvat menetelmät interaktiiviset menetelmät

44 Menetelmät, joissa DM:ää ei tarvita DM ei käytettävissä (esim. online-optimointi) Preferenssitietoa ei saatavilla Lasketaan jokin PO ratkaisu Ei ota huomioon ratkaistavan tehtävän luonnetta Nopeita menetelmiä yksi ratkaisu riittää, ei kommunikointia DM:n kanssa

45 Globaalin tavoitteen menetelmä Minimoidaan etäisyys ihanteelliseen kriteerivektoriin Etäisyyttä voidaan mitata monella tavalla, esim. L p -metriikalla, 1 p Ratkaistaan yksitavoitteinen optimointitehtävä

46 Globaalin tavoitteen menetelmä

47 Globaalin tavoitteen menetelmä Kun p=, niin kyseessä on ns. minmaxmetriikka epäsileä optimointitehtävä Jos p <, niin saatu ratkaisu on PO Jos p =, niin ratkaisu on heikosti PO

48 PO pisteiden määräämismenetelmät Idea: tuotetaan erilaisia PO ratkaisuita, joista päätöksentekijä valitsee parhaan Approksimoidaan koko PO joukkoa tai sen osaa Edut soveltuvat hyvin kahden objektifunktion tilanteeseen, koska saadut ratkaisut on helppo esittää päätöksentekijälle saa käsityksen koko PO joukosta

49 PO pisteiden määräämismenetelmät Huonot puolet PO joukon approksimointi usein aikaa vievää DM joutuu valitsemaan parhaan ratkaisun isosta joukosta ratkaisujen visualisointi, kun paljon objektifunktioita

50 ABS-jarrujärjestelmän optimointi ABS: tietokoneohjattu jarrutusjärjestelmä Säätelee jarrujen nesteiden paineistusta hyödyntäen maksimaalisesti olemassa olevan renkaiden pidon Renkaan luistaminen vaikuttaa renkaan tuottamaan jarrutusvoimaan jarrutuksen aikana vapaasti pyörivä rengas ei luistoa lukkiutunut rengas täysi luisto Useimmilla alustoilla renkaan pito on maksimaalinen kun luisto on välillä 10-30% ABS-järjestelmä on suunniteltu pitämään luisto lähellä maksimaalista pitoaluetta ABS tehokkaampi kuin jarrutus ilman säätöä

51 ABS-jarrujärjestelmän optimointi Säätäminen vaikeaa: erilaiset olosuhteet, mittaustulosten epävarmuus, sensoreiden suuret mittausvälit (> 5 ms) ABS-järjestelmän käyttäytyvät erittäin epälineaarisesti Stokastinen optimointi järjestelmä toimii hyvin eri olosuhteissa ja epätarkoilla mittauksilla Otettava huomioon useita suunnittelutavoitteita Monitavoiteoptimointia käytetty vertailemaan eri säätöalgoritmeja (Athan & Papalambros, Engineering Optimization, 27, 1996)

52 ABS-jarrujärjestelmän optimointi Tavoitteet max f 1 =ABS:n tehokkuus (verrattuna ideaalitilanteeseen) min f 2 = keskimääräinen luisto (vaikuttaa ohjaukseen) min f 3 = hidastumisen muutokset (mukavuus) min f 4 = tärinä (lyhentää laitteiston käyttöikää) min f 5 = herkkyys (mittausvirheille) max f 6 = muutosvaste (reagointi keliolosuhteiden muutoksiin)

53 ABS-jarrujärjestelmän optimointi Monitavoiteoptimointimenetelmänä painokerroinmenetelmä min f = -w 1 f 1 + w 2 f 2 + w 3 f 3 + w 4 f 4 + w 5 f 5 - w 6 f 6 Painoja vaihdellaan järjestelmällisesti eri PO ratkaisuja Vaatii globaalia optimointimenetelmää Toimiiko painokerroinmenetelmä hyvin?

54 ABS-jarrujärjestelmän optimointi Spider web visualisointi Jokaiselle tavoitteelle oma akseli Yksi ratkaisu on yksi seitti verkossa

55 Painokerroinmenetelmä Optimoidaan objektifunktioiden painotettua summaa Eri PO ratkaisuja saadaan vaihtamalla painokertoimia w i Eräs tunnetuimmista menetelmistä Gass & Saaty (1955), Zadeh (1963)

56 Painokerroinmenetelmä Hyvät puolet positiivisilla painoilla saadaan PO ratkaisu painokerrointehtävä on helppo ratkaista (yksinkertainen objektifunktio, ei lisärajoitteita) Huonot puolet ei löydä ratkaisuja PO joukon epäkonveksista osasta saatu ratkaisu ei välttämättä kuvaa preferenssejä

57 Konveksi / epäkonveksi PO joukko Painokertoimet = objektifunktion tasa-arvokäyrän kulmakerroin muuttamalla painokertoimia kulmakerroin muuttuu Epäkonveksiin osaan ei pääse millään painokertoimilla! f 2, min w 1 =0.5, w 2 =0.5 w 1 =1/3, w 2 =2/3 f 2, min konveksi PO joukko f 1, min epäkonveksi PO joukko f 1, min

58 Painokerroinmenetelmä Tulos1: Painokerroinmenetelmän antama ratkaisu on heikosti Pareto-optimaalinen. Tulos2: Painokerroinmenetelmän antama ratkaisu on Pareto-optimaalinen, jos kaikki painokertoimet ovat aidosti positiivisia. Tulos3: Painokerroinmenetelmän antama ratkaisu on Pareto-optimaalinen, jos se on yksikäsitteinen Tulos4: Olkoon x* konveksin tehtävän PO ratkaisu. Tällöin on olemassa painokerroinvektori w siten, että x* on painokerrointehtävän ratkaisu.

59 Esimerkki painokertoimista Vaimon valinta (Prof. Pekka Korhonen, Aalto yliopisto) Ulkonäkö Ruuanlaitto Talous Siisteys Martta ,4 Johanna Nina ,6 painoker. 0,4 0,2 0,2 0,2 Parhaimman objektifunktion arvon saanut ehdokas on huonoin tärkeimmän tavoitteen mielessä!

60 Esimerkki 1: Vesikiertojen optimointi

61 Vesikiertojen optimointi Tavoitteena minimoida prosessiin tarvittava puhdas vesi Objektifunktio: minimoidaan puhtaan veden määrä Rajoitteet liuenneen orgaanisen aineen määrä paperikoneen viiravedessä liuenneen orgaanisen aineen määrä valkaisuun menevässä massassa Muuttujat: 5 splitteriä ja 3 venttiiliä

62 Vesikiertojen optimointi Käytännössä siis annetaan orgaanisen aineen pitoisuuksille ylärajat minimoidaan veden kulutus (yksi objektifunktio) Monitavoiteoptimointimenetelmänä rajoiteyhtälömenetelmä Muuttamalla ylärajoja saadaan erilaisia ratkaisuja vaatii uuden optimoinnin Miten valita hyvät ylärajat? liian tiukat ylärajat: ei välttämättä sallittuja ratkaisuita Ei saada ratkaisuja, joissa ylärajoja rikotaan

63 Esimerkki 2: Kemiallinen erotusprosessi Tarkastellaan kromatografiaan perustuvaa kemiallista erotusprosessia Käytetään moniin tärkeisiin erotusprosesseihin (mm. sokeri-, petrokemian- ja lääketeollisuudessa) Perustuu eri kemiallisten komponenttien nopeuseroon nesteessä *

64 Kemiallinen erotusprosessi Syöte- ja poistovirtojen paikkaa vaihdetaan säännöllisin väliajoin (askelaika) Säätömuuttujat askelaika virtausnopeudet

65 Kemiallinen erotusprosessi Tyypillisesti prosessi optimoidaan maksimoimalla tuottofunktio max suhteellinen tuotto =(syötteen kulutus) x (erotetun tuotteen määrä) - (syötteen hinta/tuotteen hinta) x (syötteen kulutus) - (liuottimen hinta/tuotteen hinta) x (liuottimen kulutus) alaraja tuotteen puhtaudelle Tuottofunktion muodostaminen ei ole helppoa sisältää epävarmuuksia (hinnat) hävittää keskinäiset riippuvuudet

66 Kemiallinen erotusprosessi Monitavoitteinen lähestymistapa Voidaan löytää 4 objektifunktiota maksimoi prosessin läpi menevä ainemäärä minimoi käytetyn liuottimen määrä maksimoi tuotteen puhtaus maksimoi erotetun tuotteen määrä Sisältyvät tuottofunktioon

67 Kemiallinen erotusprosessi Glukoosin ja fruktoosin erotus Kawajiri & Biegler, Journal of Chromatography A, 1133 (2006) Halutaan tutkia prosessin läpi menevän ainemäärän ja liuottimen kulutuksen riippuvuutta Käsitellään tuotteen puhtautta ja erotetun tuotteen määrää rajoitteina Maksimoidaan läpi menevää ainemäärää ja annetaan liuottimen kulutukselle eri ylärajoja saadaan approksimaatio PO joukolle 2 objektifunktion tapauksessa Rajoiteyhtälömenetelmä

68 Rajoiteyhtälömenetelmä Valitaan yksi objektifunktioista optimoitavaksi, annetaan muille ylärajat ja käsitellään rajoitteina Eri PO ratkaisuja saadaan vaihtamalla ylärajoja ja optimoitavaa objektifunktiota Haimes, Lasdon & Wismer, IEEE Transactions on Systems, Man and Cybernetics, 1 (1971)

69 Rajoiteyhtälömenetelmä PO ratkaisuja eri ylärajoilla f 2 :lle ε 1 : ei ratkaisuja ε 2 : z 2 ε 3 : z 3 ε 4 : z 4

70 Rajoiteyhtälömenetelmä Hyvät puolet jokainen PO ratkaisu voidaan löytää (myös epäkonvekseille tehtäville) Huonot puolet miten valita ylärajat? ei välttämättä sallittuja ratkaisuja miten valita optimoitava funktio?

71 Rajoiteyhtälömenetelmä Tulos1: Rajoiteyhtälömenetelmän antama ratkaisu on heikosti Pareto-optimaalinen. Tulos2: Rajoiteyhtälömenetelmän antama yksikäsitteinen ratkaisu on Paretooptimaalinen. Tulos3: Sallittu x* on PO jos ja vain jos se on rajoiteyhtälömenetelmän ratkaisu jokaiselle j=1,,k, missä ε i = f i (x*), i j. (jokainen PO ratkaisu voidaan löytää)

72 Rajoiteyhtälömenetelmä PO vs. heikosti PO ε 1 : heikosti PO ε 2 : PO f 2, min heikosti PO PO ε 1 ε 2 =f 2 (x*) f 1, min

73 Tasaväliset PO pisteet? Painokerroinmenetelmä: muutetaan painoja systemaattisesti Kuvan tilanteessa POratkaisut painottuvat PO joukon toiseen päähän Miten saada tasavälinen jako? f 2, min f 1, min

74 Biokemiallisen reaktorin optimointi Putkimainen, vaipallinen reaktori (jacketed tubular reactor) Eksoterminen 1. asteen (palautumaton) reaktio Optimisäätötehtävä tehtävänä on löytää optimaalinen profiili vaipan nesteen lämpötilalle ja sitä vastaava optimaalinen säätö ei optimoida muuttujien, vaan säätöprofiilin (= funktio) suhteen jatkuva profiili täytyy diskretisoida suuri optimointitehtävä

75 Biokemiallisen reaktorin optimointi Logist et al., Chemical Engineering Science, 64 (2009) Tavoitteet minimoi lähtöaineen määrä reaktorin ulostulossa (= maksimoi reaktion konversio) maksimoi lämmön talteenotto (vaikuttaa energiankulutukseen) minimoi reaktorin pituus ( m) Mitä enemmän lämpöä käytetään, sitä parempi konversio; mitä lyhyempi reaktori, sitä huonompi konversio

76 Biokemiallisen reaktorin optimointi Tuotetaan approksimaatio PO joukosta 3 tavoitetta; voidaan visualisoida ja saadaan käsitys koko rintamasta Monitavoiteoptimointimenetelmä: Normal Boundary Intersection ideana tuottaa tasaisesti jakautunut Paretooptimaalinen pisteistö

77 Biokemiallisen reaktorin optimointi

78 Normal Boundary Intersection (NBI) Etsitään PO-joukon ääripisteet Muodostetaan niiden virittämä taso ja siihen tasavälinen pisteistö Etsitään tasoa vastaan kohtisuorassa f 2, min f 1, min

79 Normal Boundary Intersection (NBI) Ideana tuottaa tasaisesti jakautunut pisteistö PO joukosta Pisteet tuotetaan ratkaisemalla yksitavoitteisia optimointitehtäviä askelpituus lähtöpiste suunta Das & Dennis, SIAM Journal of Optimization, 8 (1998)

80 Normal Boundary Intersection (NBI) Ominaisuuksia tasaisesti jakautunut pisteistö PO-joukkoon laskenta-aika lisääntyy merkittävästi useammille tavoitteille voi tuottaa ei-paretooptimaalisia pisteitä epäkonvekseille tehtäville f 2, min f 1, min

81 Tasaväliset PO pisteet? Painokerroinmenetelmä Normal Boundary Intersection f 2, min f 2, min f 1, min NBI antaa tasaisemmin jakaantuneen pisteistön f 1, min

82 Paremmuussuhteiden ennaltamääräämiseen perustuvat menetelmät Idea: kysytään ensin DM:ltä preferenssejä, optimoidaan sen jälkeen Pyritään tuottamaan vain sellaisia PO ratkaisuja, jotka kiinnostavat DM:ää Hyvät puolet Lasketut PO ratkaisut perustuvat DM:n preferensseihin (ei turhia ratkaisuja) Huonot puolet DM:n hankala antaa preferenssejä ennen kuin on nähnyt yhtään ratkaisua

83 Jalostamon tuoton herkkyyden optimointi Bensiinin tuotto eri öljyjen sekoituksesta Tavoitteena tuottaa 3 laatua: premium, korkea- ja matalaoktaaninen Kapasiteetti barrelia /päivä

84 Jalostamon tuoton herkkyyden Tavoitteet optimointi maksimoi jalostamon tuotto minimoi tuoton herkkyys (jalostamon toimintaolosuhteiden suhteen) Tuotto lineaarinen Herkkyys: minimoidaan tuoton osittaisderivaatat epälineaarinen optimointitehtävä Seinfeld & McBride, Ind. Eng. Chem. Process Des. Develop., 9 (1970)

85 Jalostamon tuoton herkkyyden optimointi 2 menetelmää painokertoimet järjestetään tavoitteet tärkeyden mukaan: 1. tuotto, 2. herkkyys leksikografinen optimointi Strategia ottamalla herkkyys huomioon saadaan pienempi tuotto, jos muutoksia olosuhteissa ei tapahdu toisaalta jos olosuhteet muuttuvat, niin tuotto ei putoa niin paljoa, kuin ilman herkkyyksien huomioimista

86 Leksikografinen optimointi Järjestetään objektifunktiot tärkeysjärjestykseen Optimoidaan ensin tärkeimmän suhteen ja jatketaan optimointia saatujen optimiratkaisujen joukossa seuraavaksi tärkeimmän suhteen jne. Vaatii DM:ltä tärkeysjärjestyksen ennen optimointia Saatu ratkaisu on Pareto-optimaalinen

87 Leksikografinen optimointi 2 tavoitetta: 1. tärkeämpi Optimoidaan 1. suhteen, saadaan z 1 ja z 2 Optimoidaan 2. suhteen: valitaan parempi z 1 Käytännössä jokin toleranssi optimaalisille arvoille

88 Interaktiiviset menetelmät Idea: päätöksentekijää hyödynnetään aktiivisesti ratkaisuprosessin aikana Ratkaisuprosessi iteratiivinen: 1. Alustus: tuotetaan jokin PO ratkaisu(ja) 2. Esitetään PO ratkaisu(t) DM:lle 3. Onko DM tyytyväinen? Jos ei, niin pyydetään DM:ää antamaan uudet preferenssit. Muuten lopetetaan, paras ratkaisu on löytynyt. 4. Tuotetaan uusi PO ratkaisu(t) ottamalla huomioon uudet preferenssit. Jatketaan kohdasta 2. Prosessi päättyy kun DM on tyytyväinen löydettyyn PO ratkaisuun

89 Interaktiiviset menetelmät Hyvät puolet tuotetaan vain DM:ää kiinnostavia PO ratkaisuita DM pystyy ohjaamaan ratkaisuprosessia omilla preferensseillään DM voi oppia tehtävän käyttäytymisestä preferenssitiedon avulla saatujen ratkaisujen perusteella auttaa säätämään preferenssejä Huonot puolet DM joutuu käyttämään paljon aikaa prosessiin Jos PO ratkaisuiden tuottaminen kestää kauan, DM ei välttämättä enää muista mitä aiemmin on tapahtunut

90 Referenssipistemenetelmä Interaktiivinen menetelmä, perustuu referenssipisteen käyttöön Referenssipiste intuitiivinen tapa ilmaista preferenssejä DM antaa referenssipisteen, jota käytetään skalarisoidussa optimointitehtävässä Eri PO ratkaisuita saadaan muuttamalla referenssipistettä Wierzbicki, The Use of Reference Objectives in Multiobjective Optimization, In: Multiple Criteria Decision Making, Theory and Applications, Springer (1980)

91 Referenssipistemenetelmä Referenssipiste koostuu tavoitetasoista objektifunktioille voi kuulua sallitun alueen kuvajoukkoon (Z = f(s)) tai ei Painot vaikuttavat saatuun ratkaisuun

92 Painojen vaikutus f 2, min z 2 nad z w w i w i 1 1 i 1 z z z i i i nad nad z i * z z i i * * z 1 z f 1, min

93 Referenssipistemenetelmä Tuloksia: referenssipistemenetelmä tuottaa heikosti Paretooptimaalisen ratkaisun jokainen heikosti Pareto-optimaalinen ratkaisu voidaan löytää Referenssipistemenetelmän skalarisoitua optimointitehtävää voidaan muuttaa siten, että se tuottaa PO ratkaisun

94 Referenssipistemenetelmä Referenssipistemenetelmän optimointitehtävä ei ole differentioituva (minimoidaan maksimia) Voidaan muotoilla differentioituvaan muotoon ylimääräinen muuttuja ja lisää rajoitteita

95 STOM-menetelmä Satisficing Trade-Off Method, STOM Interaktiivinen menetelmä, perustuu objektifunktioiden luokitteluun Lähellä referenssipistemenetelmän ideaa Nakayama & Sawaragi, Satisficing Trade-Off Method for Multiobjective Programming, In: Interactive Decision Analysis, Springer-Verlag (1984)

96 STOM-menetelmä DM luokittelee objektifunktiot 3 luokkaan nykyisessä PO ratkaisussa funktiot, joiden arvoa halutaan parantaa funktiot, joiden arvo on tällä hetkellä hyvä funktiot, joiden arvo voi huonontua Luokittelun perusteella muodostetaan referenssipiste DM määrittää tavoitetasot ensimmäisen luokan funktioille tavoitetasot toisen luokan funktioille ovat nykyiset arvot tavoitetasot kolmannen luokan funktioille lasketaan automaattisen vaihtosuhteen avulla helpotetaan DM:n työtä

97 STOM-menetelmä Tavoitetasojen pitää olla aidosti isompia kuin ihanteellisen objektivektorin komponentit muuten nollalla jakaminen vaarana STOM-menetelmän skalarisoidun tehtävän ratkaisu on Pareto-optimaalinen (jos täydennystermi on mukana)

98 STOM-menetelmä f 2, min z 2 nad z w 1 i z i z i * * z 1 z f 1, min

99 NIMBUS-menetelmä Interaktiivinen menetelmä, perustuu objektifunktioiden luokitteluun Luokittelu: tarkastellaan nykyistä PO ratkaisua ja asetetaan jokainen objektifunktio johonkin luokkaan Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic Publishers (1999) Miettinen & Mäkelä, Synchronous Approach in Interactive Multiobjective Optimization, European Journal of Operational Research, 170 (2006)

100 NIMBUS-menetelmä 5 luokkaa koostuvat funktioista f i, joiden arvoa tulee parantaa mahd. paljon (i є I imp ) arvoa tulee parantaa annettuun rajaan asti (i є I asp ) arvo on hyvä tällä hetkellä (i є I sat ) arvo voi huonontua annettuun rajaan asti (i є I bound ) arvo voi vaihdella vapaasti (i є I free ) i z i

101 NIMBUS-menetelmä Luokittelu sallittu jos Luokittelun pohjalta muodostetaan skalarisoitu optimointitehtävä, missä x c on nykyinen PO ratkaisu

102 NIMBUS-menetelmä Tuloksia: NIMBUS-menetelmän skalarisointi tuottaa heikosti PO ratkaisun ilman täydennystermiä ratkaisu on PO, jos täydennystermi on mukana Uusimmassa synkronisessa NIMBUS-versiossa tehtävä skalarisoidaan (maksimissaan) 4 eri tavalla erilaisia ratkaisuita samalle preferenssitiedolle ei yhtä ja oikeaa tapaa skalarisoida, DM saa valita saaduista ratkaisuista

103 WWW-NIMBUS on verkossa toimiva toteutus NIMBUS-menetelmästä 1. verkossa toimiva monitavoiteoptimointiohjelmisto (2000) Kaikki laskenta tapahtuu JY:n serverillä, vain selain tarvitaan Aina uusin versio saatavilla Lomakepohjainen käyttöliittymä Vapaasti käytettävissä akateemisiin tarkoituksiin

104 Esimerkki: Kemiallinen erotusprosessi Tarkastellaan kromatografiaan perustuvaa kemiallista erotusprosessia Käytetään moniin tärkeisiin erotusprosesseihin (mm. sokeri-, petrokemian- ja lääketeollisuudessa) Perustuu eri kemiallisten komponenttien nopeuseroon nesteessä *

105 Kemiallinen erotusprosessi Monitavoitteinen lähestymistapa 4 objektifunktiota maksimoi prosessin läpi menevä ainemäärä [m/h] minimoi käytetyn liuottimen määrä [m/h] maksimoi tuotteen puhtaus [%] maksimoi erotetun tuotteen määrä [%] Glukoosin ja fruktoosin erotus Ratkaisu NIMBUS-menetelmällä Hakanen et al., Control & Cybernetics, 36 (2007)

106 Ratkaisuprosessi DM oli asiantuntija kyseisissä prosesseissa

107 MCDM ja EMO Monitavoiteoptimointi kuuluu monitavoitteisen päätöksenteon (Multiple Criteria Decision Making, MCDM) kenttään MCDM sisältää ns. perinteiset menetelmät monitavoitteisten tehtävien ratkaisemiseen Kurssilla tähän asti esitellyt monitavoiteoptimointimenetelmät kuuluvat MCDM:n alle Viimeisten parin vuosikymmenen aikana evoluutiopohjainen monitavoiteoptimointi (Evolutionary Multiobjective Optimization, EMO) on noussut erittäin suosituksi tavaksi ratkoa monitavoitteisia tehtäviä

108 MCDM ja EMO Suurin ero MCDM- ja EMO-lähestymistavoissa MCDM käsittelee yhtä ratkaisua kerralla, yleensä deterministisillä menetelmillä EMO käsittelee kerralla useaa ratkaisua (populaatio) käyttäen stokastisia menetelmiä, jotka ovat saaneet vaikutteita evoluutiosta MCDM on vanhempi tieteenala MCDM ja EMO ovat kehittyneet itsenäisesti Viimeisen vuosikymmenen aikana ne ovat lähestyneet toisiaan ja alkaneet tekemään yhteistyötä

109 Ratkaisujen visualisointi f 2, min Pareto-optimaalisten ratkaisujen visualisointi DM arvioi ja vertailee saatuja ratkaisuja Objektifunktioita 2, visualisointi helppoa voidaan esittää tason pisteinä f 1, min

110 Ratkaisujen visualisointi Objektifunktioita 3, onnistuu mutta tulkinta hankalampaa PO joukko on pinta 3-D:ssä

111 Ratkaisujen visualisointi Objektifunktioita > 3, visualisointi hankaloituu PO joukon approksimaatiota ei voi suoraan visualisoida Voidaan visualisoida esim. PO joukon projektioita 2:n tai 3:n objektifunktion suhteen (vrt. kemiallisen erotusprosessin optimointi edellä) kaikki PO pisteet eivät näytä Pareto-optimaalisilta projektioissa

112 Ratkaisujen visualisointi Yleensä visualisoidaan vain pientä joukkoa PO ratkaisuja kun objektifunktioita > 3 Käytetään erilaisia tapoja visualisoida yksittäisiä ratkaisuja paras visualisointi riippuu tietenkin DM:stä Tavoitteena pystyä vertailemaan ratkaisuja

113 Ratkaisujen visualisointi Esimerkkejä: 3D palkit Yksi ratkaisu on yksi väri

114 Ratkaisujen visualisointi Arvopolut: yksi ratkaisu on yksi murtoviiva

115 Ratkaisujen visualisointi Petal diagram: yksi ratkaisu on yksi kiekko Mitä enemmän väriä sitä huonompi arvo

116 Ratkaisujen visualisointi Whisker plot: yksi ratkaisu on yksi kiekko Mitä enemmän väriä sitä huonompi arvo

117 Käytännön optimointiongelmien ratkaiseminen

118 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin asioihin 1. Tehtävän mallinnus 2. Optimointitehtävän muotoilu 3. Soveltuvan optimointiohjelmiston valinta 4. Optimointiohjelmiston ja mallinnustyökalun kytkeminen 5. Optimointi ja saadun ratkaisun analysointi Käydään tarkemmin läpi esimerkkitehtävän avulla

119 Esimerkkisovellus Jätevedenpuhdistamon optimaalinen suunnittelu

120 Jätevedenpuhdistus Jätevedenpuhdistuslaitosten (Wastewater treatment plant, WWTP ) matemaattinen mallinnus alkoi yleistyä 1990-luvulla Mallinnus keskittyi pääasiassa aktiivilieteprosessiin (activated sludge process, ASP), joka on maailmanlaajuisesti yleisin puhdistustapa käsiteltävä jätevesi johdetaan ilmastettuun bioreaktoriin, jossa viljellään biomassaa jätevesi puhdistetaan eli siitä poistetaan orgaanista hiiltä, typpeä ja fosforia bioreaktorissa reaktorin jälkeen biomassaa sisältävä jätevesi johdetaan selkeyttimeen, jossa biomassa poistuu painovoiman vaikutuksesta ja se johdetaan takaisin reaktoriin puhdistettu jätevesi johdetaan lisäkäsittelyyn tai poistetaan laitoksesta

121 Jätevedenpuhdistamon suunnittelu Nykyään puhdistamon suunnittelussa on useita haasteita toiminnalliset vaatimukset kiristyvät koko ajan (erityisesti typen ja fosforin poistovaatimukset) taloudellinen tehokkuus korostuu (tehtaan koon sekä käytettävän energian ja kemikaalien minimointi) toiminnallista luotettavuutta tulee korostaa Vaaditaan entistä monipuolisempia jätevedenkäsittely prosesseja Useita ristiriitaisia tavoitteita!

122 PROSIM-projekti Pöyry Oy:n vetämä projekti Tekesin Mallinnus ja simulointi ohjelmassa Tarkoituksena mallintaa muutamia suomalaisia puhdistamoja tuloksena simulointimallit, joita voidaan käyttää suunnittelun ja optimoinnin tukena Lisäksi selvittää kuinka monitavoiteoptimointi voisi hyödyttää suunnittelua (JY mukana)

123 1. Tehtävän mallinnus Vaatii yhteistyötä sovellusalan ammattilaisen kanssa Tehtävän esittäminen matemaattisesti todellisuuden approksimointi Mallin numeerinen esitys käyttäen simulaattoria tai muuta mallinnustyökalua mahdollistaa numeerisen simuloinnin kiinnitetyillä muuttujien arvoilla Erittäin tärkeää luotettavien tulosten saamiseksi!

124 Tehtävän mallinnus projektissa Tehtävän mallinnuksesta vastasi puhdistamojen suunnittelun asiantuntija Pöyryllä kokemusta simuloinnista muttei monitavoiteoptimoinnista Mallinnukseen käytettiin kaupallista prosessisimulaattoria (GPS-X) Kaksi tapausta: yksinkertainen ja monimutkaisempi

125 GPS-X Kaupallinen prosessisimulaattori, kehitetty erityisesti jätevedenpuhdistuksen simulointiin myyjä Kanadalainen Hydromantis Pöyry käyttää simulaattoria suunnittelussa valmistajan tekninen tuki saatavilla 1 lisenssi n. 17k$, akateeminen lisenssi 2k$ sisältää vuoden teknisen tuen ja päivitykset Pöyryltä JY:lle lisenssi projektin ajaksi

126 Screenshot GPS-X

127 Case 1: Aktiivilieteprosessi

128 Case 1: Aktiivilieteprosessi Nitrifioiva aktiivilieteprosessi Prosessissa ammonium vety (ammonium nitrogen) hapettuu nitraatiksi (nitrate nitrogen) biokemiallisessa reaktiossa Tarkasteltava jätevesi vastaa tyypillistä suomalaista mekaanisesti ja kemiallisesti esikäsiteltyä kunnallista jätevettä 1 simulaatio vie n. 5 sekuntia

129 Case 2: Toiminta-asetusten optimointi

130 Case 2: Toiminta-asetusten optimointi Malli kuvaa modernia puhdistamoa (kemiallinen ja biokemiallinen puhdistus) esikäsittely (hiekan poisto, kiinteän aineen erotus) typen poisto (nitrifioiva ASP) lietteen käyminen (hiilen lähde denitrifikaatioon) lietteen anaerobinen mädätys (biokaasua sähkön tai lämmön tuottoon) ylijäämäliete ja lietteen käsittelyn hylky kierrätetään sekoittamalla tulevaan jäteveteen 1 simulaatio vie n. 11 sekuntia

131 2. Optimointitehtävän muotoilu Optimoinnin tarkoitus tulee olla selvä mitä oikeasti halutaan? Tavoitteiden/objektifunktioiden määrittely Muuttujien valinta ja rajojen asettaminen pyritään rajaamaan kiinnostava alue Rajoitteiden määrittely Optimoinnin ja sovellusalan asiantuntijoiden yhteistyötä

132 Jätevedenpuhdistamon suunnittelu Perinteisesti WWTP on suunniteltu vertaamalla muutamia prosessivaihtoehtoja käyttäen simulointia ja insinööritietämystä tai käyttäen yksitavoitteista optimointia, missä kokonaiskustannukset on minimoitu muuttamalla kaikki tavoitteet rahaksi Heikkoudet ensimmäinen tapa ei ole systemaattinen toinen piilottaa tavoitteiden keskinäiset riippuvuudet ja sisältää epävarmuuksia Ainoastaan 2 artikkelia, joissa monitavoiteoptimointia käytetty; ei interaktiivisia lähestymistapoja

133 Optimointitehtävän muotoilu projektissa Optimointitehtävät muotoiltiin yhteistyössä Pöyryn asiantuntijan kanssa Molemmille tapauksille selvät tavoitteet Muuttujien vaihteluvälejä säädettiin projektin kuluessa realistisempi alue, tehostaa optimointia

134 Case 1: Aktiivilieteprosessi Biokemialliset reaktiot käyttävät paljon happea ja alkaliteettia Happea tuotetaan ilmastuskompressoreilla ja alkaliteettia saadaan käsiteltävän jäteveden lisäksi lisäämällä kemikaaleja Ilmastus kuluttaa paljon energiaa ja kemikaalit maksavat Biomassan konsentraatio tulisi pitää mahdollisimman alhaalla (prosessi toimii paremmin)

135 Case 1: Aktiivilieteprosessi Kolme (ristiriitaista) minimoitavaa objektifunktiota ammoniumtypen määrä vedessä käytetyn alkaliteettikemikaalin määrä ilmastuksen kuluttama energia Kolme päätösmuuttujaa biomassan konsentraatio käytetyn alkaliteettikemikaalin määrä O 2 -konsentraatio reaktorin viimeisessä osassa Rajoite: puhdistetun jäteveden alkaliteetti tulee olla annetuissa rajoissa (ala- ja yläraja)

136 Case 2: Toiminta-asetusten optimointi Kokonaistavoite on minimoida typen määrä puhdistetussa jätevedessä ja minimoida käyttökustannukset Käyttökustannukset koostuvat 4 eri objektifunktiosta minimoi ilmastuksen tarve aktiivilieteprosessissa minimoi ylimääräisen hiilen lähteen käyttö denitrifikaatiossa minimoi ylimääräisen lietteen tuotto maksimoi biokaasun tuotto yhteensä 5 objektifunktiota

137 Case 2: Toiminta-asetusten optimointi Viisi ristiriitaista objektifunktiota Neljä päätösmuuttujaa fermentointiin menevän lietteen pumppaus ylimääräisen lietteen pumppaus O 2 -konsentraatio valitussa reaktorin osassa lisä hiilenlähteen käyttö (metanoli) Rajoitteita (ala- ja ylärajat) puhdistetun veden ammonium pitoisuudelle biomassan konsentraatiolle kokonaistypenpoistolle (%)

138 3. Soveltuvan optimointiohjelmiston valinta Mitä tehtävän luonteesta tiedetään? Onko gradientteja saatavilla? Onko tehtävä mahdollisesti epäkonveksi? Onko funktioiden arvojen laskeminen (=tehtävän simulointi) aikaa vievää? Useita tavoitteita, onko päätöksentekijä käytettävissä?

139 Simulaatiopohjainen optimointi Suljettu (Black-box) ensin simuloidaan, sitten optimoidaan optimoija kutsuu simulaattoria, aina steady-state ratkaisu (kaikki rajoitteet toteutuvat) aikaavievä, ei vaadi juurikaan tietoa optimoitavasta mallista Avoin samanaikainen simulointi ja optimointi hyödynnetään tietoa optimoitavasta prosessista steady-state (kaikki rajoitteet toteutuvat) vasta optimaalisen ratkaisun löytyessä

140 Optimoinnin haasteet Puhdistamon suunnittelutehtävän ominaisuuksia simulaatiopohjainen (usein black-box) ei gradientteja saatavilla laskennallisesti vaativa (simulointi vie aikaa) sisältää jatkuvia muuttujia ja epälineaarisia funktioita tulee ottaa huomioon useita näkökulmia (monitavoitteinen) vaatii insinööritietämystä (päätöksentekijä) Tarvitaan tehokkaita optimointityökaluja päätöksenteon tueksi

141 Projektissa käytetyt työkalut Käytettiin interaktiivista lähestymistapaa Prosessi mallinnettiin käyttäen GPS-X prosessisimulaattoria GPS-X kytkettiin IND-NIMBUS optimointiohjelmistoon yksitavoitteisessa optimoinnissa käytettiin globaalin optimoinnin menetelmiä Päätöksentekijä oli asiantuntija puhdistamojen suunnittelussa

142 IND-NIMBUS Interaktiivisen NIMBUS-menetelmän toteutus

143 4. Optimointiohjelmiston ja mallinnustyökalun kytkeminen Mitä ohjelmistoja on saatavilla? optimointimenetelmien eri toteutukset Mitä tietoa ohjelmistojen välillä pitää kulkea? Mitkä ovat rajapinnat? rajapintojen muokkausmahdollisuus auttaa kaupallisten mallinnustyökalujen kytkeminen usein hankalaa, ei mahdollista vaikuttaa rajapintaan Kokonaisuuden testaaminen kytkemisen jälkeen ennen optimointia esim. yksinkertaisilla tehtävillä

144 Kytkeminen projektissa Käytössä kaupallinen simulaattori (GPS-X) ja JY:ssä kehitetty optimointityökalu (IND- NIMBUS) Mahdollisuus vaikuttaa ainoastaan optimointiohjelmiston rajapintaan Simulaattorin rajapinnasta ja sen käytöstä tietoa tekniseltä tuelta

145 Kytkeminen projektissa Simulaattori tekee mallista suoritettavan tiedoston (.exe) Input simulaattorille komentojonotiedosto (.cmd), joka lukee muuttujien arvot tekstitiedostosta komentojonotiedostolle oma formaatti Output simulaattorille tekstitiedosto sisältäen simuloidut arvot

146 Kytkeminen projektissa Optimoija haluaa laskea funktioiden arvot (objektit ja rajoitteet) tietyillä muuttujien arvoilla muuttujien arvot kirjoitetaan tekstitiedostoon (values.in) simulointi käynnistetään suorittamalla simulointi systeemikutsuna simulaattori lukee muuttujien arvot ja suorittaa simuloinnin tulokset kirjoitetaan tekstitiedostoon (values.out) optimoija lukee simuloidut arvot tiedostosta

147 5. Optimointi ja saadun ratkaisun analysointi Sopivien parametrien määrittäminen (mallinnustyökalu, optimointiohjelmisto) Sovellusalan ammattilaisen hyödyntäminen (mm. päätöksentekijänä) Tehtävän käyttäytymisestä oppiminen Optimointia voidaan myös käyttää mallin testaamisessa Analysoi ja varmista saatujen tulosten järkevyys (yhdessä ammattilaisen kanssa)

148 Päätöksentekoprosessi Voidaan jakaa kahteen osaan oppimisvaihe päätösvaihe Interaktiivisessa monitavoiteoptimoinnissa oppimisvaiheessa tutustutaan tehtävän käyttäytymiseen antamalla eri preferenssejä ja arvioidaan näiden pohjalta tuotettuja ratkaisuja nähdään mitä voidaan saavuttaa, mitkä ovat kiinnostavia alueita PO joukossa päätösvaiheessa haetaan paras kompromissi kiinnostavalta alueelta tarkennetuilla preferensseillä

149 Case 1: Aktiivilieteprosessi

150 Case 1: Aktiivilieteprosessi Kaikkiaan laskettiin 11 PO ratkaisua Viisi näistä oli käytännössä relevanttia (eli nitrifiointi toimii) Pienimmän ammoniumnitraatti pitoisuuden ratkaisu käytti liian paljon energiaa ja kemikaaleja antamatta riittävää parannusta veden laatuun Jäljelle jäävät 4 ratkaisua olivat käytännössä yhtä hyviä energian ja kemikaalien kulutuksen suhteen (mikä tahansa voitaisiin valita) Näistä valittiin ratkaisu, jossa biomassan konsentraatio oli pienin parempi prosessin käytettävyys

151 Case 1: Aktiivilieteprosessi Hakanen, Miettinen & Sahlstedt, Wastewater Treatment: New Insight Provided by Interactive Multiobjective Optimization, Decision Support Systems, To appear

152 Case 2: Toiminta-asetusten optimointi

153 Case 2: Toiminta-asetusten optimointi Alussa DM käytti insinööritietoon perustuvia arvoja tavoitteille ( alustava referenssipiste ) DM pystyi tutkimaan käyttökustannusten välisiä riippuvuuksia (4 eri objektifunktiota) Kaikkiaan laskettiin 10 PO ratkaisua Kokeiltiin IND-NIMBUkSen tarjoamia eri (globaaleja) yksitavoiteoptimoijia Paras kompromissi antoi selvästi paremmat arvot kolmelle objektifunktiolle (11, 15 and 45%) ja vain vähän huonommat arvot muille kahdelle (13 and 7%) verrattuna insinööritietoon Selkein parannus saatiin kemikaalien kulutuksessa

154 Case 2: Toiminta-asetusten optimointi Sahlstedt, Hakanen & Miettinen, Interactive Multiobjective Optimization in Wastewater Treatment Plant Operation and Design, In Proceedings of ECWATECH 2010, IWA Specialist Conference: Water and Wastewater Treatment Plants in Towns and Communities of the XXI Century: Technologies, Design and Operation, Moscow, Russia

155 MO kirjallisuutta esim. V. Changkong & Y. Haimes, Multiobjective Decision Making: Theory and Methodology (1983) Y. Sawaragi, H. Nakayama & T. Tanino, Theory of Multiobjective Optimization (1985) R.E. Steuer, Multiple Criteria Optimization: Theory, Computation and Applications (1986) K. Miettinen, Nonlinear Multiobjective Optimization (1999) K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (2001)

156 MO kirjallisuutta esim. M. Ehrgott, Multicriteria Optimization (2005) J. Branke, K. Deb, K. Miettinen & R. Slowinski (eds): Multiobjective Optimization: Interactive and Evolutionary Approaches (2008) G.P. Rangaiah (editor), Multi-Objective Optimization: Techniques and Applications in Chemical Engineering (2009) E. Talbi, Metaheuristics: from Design to Implementation (2009)

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 PO pisteiden määräämismenetelmät Idea: tuotetaan erilaisia PO ratkaisuita, joista

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Käytännön optimointiongelmien ratkaiseminen Käytännön optimointiongelmien ratkaiseminen

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Monitavoiteoptimointi Mitä monitavoitteisuus tarkoittaa? Halutaan saavuttaa

Lisätiedot

TIES483 Epälineaarinen optimointi

TIES483 Epälineaarinen optimointi TIES483 Epälineaarinen optimointi Käytännön optimointiongelmien ratkaiseminen jussi.hakanen@jyu.fi Syksy 2012 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla

Lisätiedot

TIES483 Epälineaarinen optimointi

TIES483 Epälineaarinen optimointi TIES483 Epälineaarinen optimointi Käytännön optimointiongelmien ratkaiseminen jussi.hakanen@jyu.fi Syksy 2012 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Tasaväliset PO pisteet? Painokerroinmenetelmä: muutetaan painoja systemaattisesti

Lisätiedot

TIES483 Epälineaarinen optimointi. Syksy 2012

TIES483 Epälineaarinen optimointi. Syksy 2012 TIES483 Epälineaarinen optimointi jussi.hakanen@jyu.fi Syksy 2012 Yleistä Tietotekniikan syventävä kurssi, 5 op Pakollinen laskennallisten tieteiden FMopinnoissa (ent. simulointi ja optimointi) https://korppi.jyu.fi/kotka/r.jsp?course=134562

Lisätiedot

Monitavoiteoptimointi

Monitavoiteoptimointi Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 NSGA-II Non-dominated Sorting Genetic Algorithm (NSGA) Ehkä tunnetuin EMO-menetelmä

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Käytännön optimointiongelmien ratkaiseminen Käytännön optimointiongelmien ratkaiseminen

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Evoluutiopohjainen monitavoiteoptimointi MCDM ja EMO Monitavoiteoptimointi kuuluu

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen

Lisätiedot

Luento 6: Monitavoiteoptimointi

Luento 6: Monitavoiteoptimointi Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman

Lisätiedot

TIEA382 Lineaarinen ja diskreetti optimointi

TIEA382 Lineaarinen ja diskreetti optimointi TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen

Lisätiedot

Osakesalkun optimointi

Osakesalkun optimointi Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien

Lineaaristen monitavoiteoptimointitehtävien Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

Mat Optimointiopin seminaari

Mat Optimointiopin seminaari Lähde: Preferenssi-informaatio DEA-malleissa: Value Efficiency Analysis (VEA) -menetelmä Mat-2.4142 Optimointiopin seminaari 23.3.2011 Halme, M., Joro, T., Korhonen, P., Wallenius, J., 1999. A Value Efficiency

Lisätiedot

Miksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon

Miksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon Miksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon Kaisa Miettinen Johdantoa optimointiin Optimointi tarkoittaa systemaattisia tapoja taata parhaan mahdollisen

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Erkki Heikkola Numerola Oy, Jyväskylä Laskennallisten tieteiden päivä 29.9.2010, Itä-Suomen yliopisto, Kuopio Putkistojen äänenvaimentimien suunnittelu

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Kimppu-suodatus-menetelmä

Kimppu-suodatus-menetelmä Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.

Lisätiedot

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet Mat-2.142 Optimointiopin seminaari kevät 2000 Monitavoiteoptimointi Optimointiopin seminaari - Kevät 2000 / 1 Tavoitteet Monitavoitteisten optimointitehtävien ratkaisukäsitteet ja soveltamismahdollisuudet

Lisätiedot

Matemaattinen optimointi I -kurssin johdantoluento Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos

Matemaattinen optimointi I -kurssin johdantoluento Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos Matemaattinen optimointi I -kurssin johdantoluento 10.1.2017 Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos Optimointi: Parhaan mahdollisen ratkaisun etsimistä sallituissa

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 3. luento 17.11.2017 Neuroverkon opettaminen (ohjattu oppiminen) Neuroverkkoa opetetaan syöte-tavoite-pareilla

Lisätiedot

Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu

Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu (Valmiin työn esittely) 11.4.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Työn tavoite Tutkia evoluutioalgoritmia (Lee

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.01.2013 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.1.213 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA

MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA Hannu Poutiainen, FT PUHDAS VESI JA YMPÄRISTÖ TUTKIMUSAVAUKSIA MAMKISSA Mikpoli 8.12.2016 Mitä mallit ovat? Malli on arvioitu kuvaus todellisuudesta joka on rakennettu

Lisätiedot

Referenssipiste- ja referenssisuuntamenetelmät

Referenssipiste- ja referenssisuuntamenetelmät Referenssipiste- ja referenssisuuntamenetelmät Optimointiopin seminaari - Kevät 2000 / 1 Esitelmän sisältö Menetelmien ideat Menetelmien soveltaminen Menetelmien ominaisuuksia Optimointiopin seminaari

Lisätiedot

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization 7.5.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Tausta Ilmavoimilla tärkeä rooli maanpuolustuksessa Rauhan aikana

Lisätiedot

Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely)

Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Vilma Virasjoki 23.01.2012 Ohjaaja: Jouni Pousi Valvoja: Raimo P. Hämäläinen Työn saa tallentaa

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2

ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2 ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI Tuomas Airaksinen 1, Erkki Heikkola 2 1 Jyväskylän yliopisto PL 35 (Agora), 40014 Jyväskylän yliopisto tuomas.a.airaksinen@jyu.fi

Lisätiedot

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi Optimointi Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa Ongelman mallintaminen Mallin ratkaiseminen Ratkaisun analysointi 1 Peruskäsitteitä Muuttujat: Sallittu alue: x = (x 1, x 2,...,

Lisätiedot

Yhden muuttujan funktion minimointi

Yhden muuttujan funktion minimointi Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän

Lisätiedot

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely)

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) 17.09.2015 Ohjaaja: TkT Eeva Vilkkumaa Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2. a m1 x 1 + a m2 x 2 + + a mn x n b m x 1, x 2,..., x n 0 1

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min! Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely)

Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely) Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely) Esitelmöijä Olli Rentola päivämäärä 21.1.2013 Ohjaaja: TkL Anssi Käki Valvoja: Prof. Ahti Salo Työn saa tallentaa

Lisätiedot

Kon Konepajojen tuotannonohjaus: ILOG CPLEX Studion käyttö

Kon Konepajojen tuotannonohjaus: ILOG CPLEX Studion käyttö Kon-15.4199 Konepajojen tuotannonohjaus: ILOG CPLEX Studion käyttö 22.1.2016 Harjoituksessa 1. Varmistetaan että kaikilla on pari! Ilmoittautukaa oodissa etukäteen! 2. Tutustutaan ensimmäiseen tehtävään

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Optimointitehtävät, joissa muuttujat tai osa niistä voivat saada vain kokonaislukuarvoja Puhdas kokonaislukuoptimointitehtävä: Kaikki muuttujat kokonaislukuja Sekoitettu kokonaislukuoptimointitehtävä:

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat

Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat 1 Tukivektoriluokittelija Tukivektorikoneeseen (support vector machine) perustuva luoikittelija on tilastollisen koneoppimisen teoriaan perustuva lineaarinen luokittelija. Perusajatus on sovittaa kahden

Lisätiedot

Teollinen optimointi: avain yritysten kilpailukykyyn

Teollinen optimointi: avain yritysten kilpailukykyyn Teollinen optimointi: avain yritysten kilpailukykyyn Professori Kaisa Miettinen, JY, virkaanastujaisesitelmä 14.5.2008 Johdattelu optimointiin Teollinen optimointi viittaa optimoinnin soveltamiseen erityisesti

Lisätiedot

Mat Työ 1: Optimaalinen lento riippuliitimellä

Mat Työ 1: Optimaalinen lento riippuliitimellä Mat-2.132 Työ 1: Optimaalinen lento riippuliitimellä Miten ohjaan liidintä, jotta lentäisin mahdollisimman pitkälle?? 1 työssä Konstruoidaan riippuliitimen malli dynaamisen systeemin tilaesitys Simuloidaan

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Nelli Salminen nelli.salminen@helsinki.fi D433 Neuraalimallinnuksen osuus neljä luentokertaa, muutokset alla olevaan suunnitelmaan todennäköisiä

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

JOHDANTO PERUSTIETOA MBR- TEKNIIKASTA

JOHDANTO PERUSTIETOA MBR- TEKNIIKASTA JOHDANTO PERUSTIETOA MBR- TEKNIIKASTA Membraanibioreaktori Aktiivilieteprosessi Membraanisuodatus CAS + = Jätevedenkäsittely (orgaanisten partikkeleiden pilkkoutuminen) tehdään aktiivilieteprosessissa

Lisätiedot

Ilmastuksen energiankulutuksen ja typenpoiston optimointi Turun Kakolanmäen jätevedenpuhdistamolla

Ilmastuksen energiankulutuksen ja typenpoiston optimointi Turun Kakolanmäen jätevedenpuhdistamolla Ilmastuksen energiankulutuksen ja typenpoiston optimointi Turun Kakolanmäen jätevedenpuhdistamolla Envieno, Turun seudun puhdistamo Oy, Esa Malmikare Jouko Tuomi Vesihuolto 2015 KAKOLANMÄEN JÄTEVEDENPUHDISTAMO

Lisätiedot

Sekalukuoptimointi. Lehtonen, Matti Matemaattisen ohjelmoinnin seminaari, Tietojenkäsittelytieteen laitos Helsingin Yliopisto

Sekalukuoptimointi. Lehtonen, Matti Matemaattisen ohjelmoinnin seminaari, Tietojenkäsittelytieteen laitos Helsingin Yliopisto Sekalukuoptimointi Lehtonen, Matti Matemaattisen ohjelmoinnin seminaari, 2000-10-11 Tietojenkäsittelytieteen laitos Helsingin Yliopisto 1 Tiivistelmä Seminaarin aihe käsittelee globaalin optimoinnin erästä

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Arkkitehtuurien tutkimus Outi Räihä. OHJ-3200 Ohjelmistoarkkitehtuurit. Darwin-projekti. Johdanto

Arkkitehtuurien tutkimus Outi Räihä. OHJ-3200 Ohjelmistoarkkitehtuurit. Darwin-projekti. Johdanto OHJ-3200 Ohjelmistoarkkitehtuurit 1 Arkkitehtuurien tutkimus Outi Räihä 2 Darwin-projekti Darwin-projekti: Akatemian rahoitus 2009-2011 Arkkitehtuurisuunnittelu etsintäongelmana Geneettiset algoritmit

Lisätiedot

Projektiportfolion valinta

Projektiportfolion valinta Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Harjoitus 9: Optimointi I (Matlab)

Harjoitus 9: Optimointi I (Matlab) Harjoitus 9: Optimointi I (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien

Lisätiedot

TTY Porin laitoksen optimointipalvelut yrityksille

TTY Porin laitoksen optimointipalvelut yrityksille TTY Porin laitoksen optimointipalvelut yrityksille Timo Ranta, TkT Frank Cameron, TkT timo.ranta@tut.fi frank.cameron@tut.fi Automaation aamukahvit 28.8.2013 Optimointi Tarkoittaa parhaan ratkaisun valintaa

Lisätiedot

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Mat-2.4142 Optimointiopin seminaari kevät 2011 Esityksen rakenne I osa Tehokkuudesta yleisesti DEA-mallin perusajatus CCR-painotus II osa

Lisätiedot

Lentotuhkan hyödyntämisen mahdollisuudet metsäteollisuuden jätevesien käsittelyssä

Lentotuhkan hyödyntämisen mahdollisuudet metsäteollisuuden jätevesien käsittelyssä Lentotuhkan hyödyntämisen mahdollisuudet metsäteollisuuden jätevesien käsittelyssä Sakari Toivakainen RAE-projekti, RAKEISTAMINEN AVARTAA EKOLOGISUUTTA MINISEMINAARI 16.10.2014, Oulu. Clean Technologies

Lisätiedot

Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen

Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen 16.06.2014 Ohjaaja: Urho Honkanen Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset 30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset Mitä on lineaarinen optimointi (LP)? LP= lineaarinen optimointiongelma (Linear Programming) Menetelmä, jolla etsitään

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.3140 Lineaarinen ohjelmointi 4.10.2007 Luento 4 Ekstreemipisteiden optimaalisuus ja Simplex (kirja 2.4-2.6, 3.1-3.2) Lineaarinen ohjelmointi - Syksy 2007 / 1 Luentorunko Degeneroituvuus Ekstreemipisteiden

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI 2008-2009 Muutokset on hyväksytty teknillisen tiedekunnan tiedekuntaneuvostossa 13.2.2008 ja 19.3.2008. POISTUVAT OPINTOJAKSOT:

Lisätiedot

FCP=Massavirta*Ominais- lämpökapasitetti. Lämpöteho= FCP*(Tin-Tout) Lisäksi tarvitaan kunkin virran lämmönsiirtokerroin h 40 C 40 C 100 C FCP=1 FCP=1

FCP=Massavirta*Ominais- lämpökapasitetti. Lämpöteho= FCP*(Tin-Tout) Lisäksi tarvitaan kunkin virran lämmönsiirtokerroin h 40 C 40 C 100 C FCP=1 FCP=1 Lämmönsiirtoverkkojen monitavoiteoptimointi virtojen ryhmittelyyn perustuvalla kaksitaso- optimointimenetelmällä TkL Timo Laukkanen TKK Energiatekniikan laitos LÄMMÖNSIIRTOVERKOT Lämmönsiirtoverkkojen

Lisätiedot

Jätevesiprosessien monitoroinnin ja ohjauksen tulevaisuus

Jätevesiprosessien monitoroinnin ja ohjauksen tulevaisuus Jätevesiprosessien monitoroinnin ja ohjauksen tulevaisuus Kolme havaintoesimerkkiä Henri Haimi Sisältö Case 1: Viikinmäen jälkisuodatusprosessin nitraattipitoisuuksien estimointi n malliprediktiivinen

Lisätiedot

Paretoratkaisujen visualisointi

Paretoratkaisujen visualisointi Paretoratkaisujen visualisointi Optimointiopin seminaari - Kevät 2000 / 1 Esityksen sisältö Vaihtoehtoisten kohdevektorien visualisointi Arvopolut Palkkikaaviot Tähtikoordinaatit Hämähäkinverkkokaavio

Lisätiedot

Piiri K 1 K 2 K 3 K 4 R R

Piiri K 1 K 2 K 3 K 4 R R Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

PROSESSIMALLINNUKSEN HYÖDYNTÄMINEN KAKOLANMÄEN JÄTEVEDENPUHDISTAMON PROSESSIAJOSSA

PROSESSIMALLINNUKSEN HYÖDYNTÄMINEN KAKOLANMÄEN JÄTEVEDENPUHDISTAMON PROSESSIAJOSSA PROSESSIMALLINNUKSEN HYÖDYNTÄMINEN KAKOLANMÄEN JÄTEVEDENPUHDISTAMON PROSESSIAJOSSA Vesihuoltopäivät 10.5.2017 KAKOLANMÄEN JÄTEVEDENPUHDISTAMO 14 kunnan omistama osakeyhtiö AVL 300 000 keskivirtaama noin

Lisätiedot

Lineaarisen ohjelman määritelmä. Joonas Vanninen

Lineaarisen ohjelman määritelmä. Joonas Vanninen Lineaarisen ohjelman määritelmä Joonas Vanninen Sisältö Yleinen optimointitehtävä Kombinatorinen tehtävä Optimointiongelman tapaus Naapurusto Paikallinen ja globaali optimi Konveksi optimointitehtävä Lineaarinen

Lisätiedot

Paretoratkaisujen visualisointi. Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L

Paretoratkaisujen visualisointi. Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L Paretoratkaisujen visualisointi Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L 1. Johdanto Monitavoiteoptimointitehtävät ovat usein laajuutensa takia vaikeasti hahmotettavia

Lisätiedot

Likimääräisratkaisut ja regularisaatio

Likimääräisratkaisut ja regularisaatio Luku 3 Likimääräisratkaisut ja regularisaatio Käytännön inversio-ongelmissa annettu data y ei aina ole tarkkaa, vaan sisältää häiriöitä. Tuntemattomasta x on annettu häiriöinen data y F (x + }{{}}{{} ε.

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot