031021P Tilastomatematiikka (5 op)

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "031021P Tilastomatematiikka (5 op)"

Transkriptio

1 031021P Tilastomatematiikka (5 op) Jukka Kemppainen Mathematics Division

2 Yleinen todennäköisyys Kertausmateriaalissa esiteltiin koulusta tuttuja todennäköisyysmalleja. Tällä kurssilla todennäköisyys on (abstrakti) funktio P, joka on määritelty tapahtumasysteemissä E ja joka toteuttaa todennäköisyyden perusominaisuudet kuten esimerkiksi P(A) = 1 P(A) tai P(A B) = P(A)+P(B) P(A B). Tapahtumasysteemiltä vaaditaan riittävästi rakennetta, jotta todennäköisyys on hyvin määritelty. Esitetään seuraavassa venäläisen matemaatikon Andrei Kolmogorovin ( ) esittämä todennäköisyyden matemaattinen malli. On ehkä hämmästyttävää, että matemaattisen mallin määrittelyyn riittää kolme ehtoa. Jukka Kemppainen Mathematics Division 2 / 32

3 Yleinen todennäköisyys Tapahtumasysteemiltä vaaditaan σ-algebran rakenne. Määr. 1 Tapahtumasysteemi E on σ-algebra, jos 1.,S E 2. A E = A E 3. A,B E = A B E 4. A,B E = A B E 5. A i E kaikilla i N i=1 A i E. Nyt voidaan esitellä Kolmogorovin todennäköisyyden aksioomat, jotka antavat todennäköisyyden matemaattisen mallin. Jukka Kemppainen Mathematics Division 3 / 32

4 Todennäköisyyden aksioomat Määr. 2 Todennäköisyysavaruus on kolmikko {S, E, P}, missä S on epätyhjä joukko, E on σ-algebra ja kuvaus P : E R toteuttaa ehdot 1. 0 P(A) 1 2. P(S) = 1 3. Jos A i E ja A i A j = aina, kun i j ja i,j = 1,2,..., niin P ( ) A i = P(A i ). i=1 Ehtoja 1 3 sanotaan todennäköisyyslaskennan aksioomiksi ja kuvausta P, joka toteuttaa ehdot 1 3, sanotaan todennäköisyydeksi. i=1 Jukka Kemppainen Mathematics Division 4 / 32

5 Todennäköisyydestä Huomautus 1 Todennäköisyys voi siis olla periaatteessa mikä tahansa funktio, kunhan se toteuttaa Määritelmän 2 ehdot. Todennäköisyys riippuu mm. otosavaruuden S valinnasta. Huomautus 2 Todennäköisyys voi olla subjektiivinen eli riippua siitä, kuka sen määrittelee. Eri henkilöillä voi olla erilainen näkemys samasta satunnaiskokeesta. Tapahtuman todennäköisyys voi olla vaikkapa 90%, mutta jos kysytään Stubbilta, saman tapahtuman tn. voi olla 10%. Myös eri rahapelitoimistot voivat antaa erilaisia voittokertoimia (so. erilaisia voittotodennäköisyyksiä) samoille kohteille. Jukka Kemppainen Mathematics Division 5 / 32

6 Todennäköisyyden perusominaisuudet Lause 1 Todennäköisyydelle on voimassa: (i) P( ) = 0; (ii) P(A) = 1 P(A); (iii) Jos tapahtumat {A 1,A 2,...,A n } ovat erillisiä, ts. A i A j =, kun i j, niin P(A 1 A 2 A n ) = P(A 1 )+ +P(A n ); (iv) P(A) P(B) aina, kun A B; (v) P(A B) = P(A) P(A B); (vi) P(A B) = P(A)+P(B) P(A B). Jukka Kemppainen Mathematics Division 6 / 32

7 Esimerkkejä Todennäköisyyksien laskemisessa voidaan (ja on suotavaa) käyttää Lauseen 1 tuloksia. Lisäksi joukko-opista tutut De Morganin kaavat A B A B = A B = A B voivat olla hyödyksi. Esim. 1 Olkoon P(A) = 3 5, P(B) = 1 2 ja P(A B) = 1 5. Laske todennäköisyydet P(A B), P(A), P(B), P(A B), P(A B) ja P(A B). Jukka Kemppainen Mathematics Division 7 / 32

8 Ehdollinen todennäköisyys Todennäköisyys riippuu vähintäänkin otosavaruuden valinnasta. Esimerkiksi eri sairauksen esiintyvyys voi poiketa hyvinkin paljon eri alueilla. Jos vaikkapa analysoidaan tuberkuloositartuntaa, on eri asia tutkitaanko sitä Suomessa tai esimerkiksi Venäjällä. Käytännöllisesti katsoen kaikki todennäköisyydet ovat ehdollisia. Ehdollisen todennäköisyyden käsite on eräs todennäköisyysteorian tärkeimmistä käsitteistä. Esitetään seuraavaksi ehdollisen todennäköisyyden määritelmä. Jukka Kemppainen Mathematics Division 8 / 32

9 Ehdollinen todennäköisyys Määr. 3 Olkoon S otosavaruus, A, B S tapahtumia ja P todennäköisyys. Tapahtuman A ehdollinen todennäköisyys ehdolla B on jos P(B) > 0. P(A B) = P(A B), P(B) Ehdollista todennäköisyyttä ei ole määritelty, kun P(B) = 0. Tilastollisessa päättelyssä ehdollinen tn. P(A B) on tapahtuman A tn:n P(A) päivitys, kun on havaittu informaatio B. Tapahtuma B voidaan ottaa uudeksi otosavaruudeksi, jolloin funktio P : A P(A B) kaikilla tapahtumilla A on todennäköisyys B:ssä. Jukka Kemppainen Mathematics Division 9 / 32

10 Ehdolllisen todennäköisyyden ominaisuudet Ehdollinen tn. P on siis tn. B:ssä ja P on tn. S:ssä sekä P voidaan laskea alkuperäisen tn:n P avulla. Ehdollinen tn. P täyttää kaikki todennäköisyydeltä vaadittavat ominaisuudet. Esimerkiksi 1. 0 P(A) = P(A B) 1 kaikilla tapahtumilla A 2. P(B) = P(B B) = 1; 3. P(A 1 A 2 ) = P(A 1 A 2 B) = P(A 1 B)+P(A 2 B) aina, kun A 1 A 2 =. = P(A 1 )+ P(A 2 ). Jukka Kemppainen Mathematics Division 10 / 32

11 Huomioita Esitetään joitakin tärkeitä huomioita ehdolliseen todennäköisyyteen liittyen. Todennäköisyydessä P(A B) A on tapahtuma, jonka tn. halutaan laskea, ja B on ehto, jonka suhteen tn. lasketaan. Yleisesti P(A B) P(B A). Todennäköisyyden tulkinnassa täytyy olla varovainen. Yleisesti P(A B) P(A). Käsitellään näitä tarkemmin esimerkeissä. Jukka Kemppainen Mathematics Division 11 / 32

12 Kertolaskusääntö Ehdollisen todennäköisyyden määritelmä voidaan esittää kahtena kertosääntönä P(A B) = P(B)P(A B),jos P(B) > 0 P(A B) = P(A)P(B A),jos P(A) > 0 Samaa periaatetta voidaan soveltaa myös useammalle tapahtumalle. Jos esimerkiksi tapahtumia on kolme ja P(B C) > 0, saadaan P(A B C) = P(A (B C)) = P(A B C)P(B C) = P(A B C)P(B C)P(C). Jukka Kemppainen Mathematics Division 12 / 32

13 Kertolaskusääntö Samaa kertolaskusääntöä voidaan käyttää kuinka monelle tapahtumalle hyvänsä. Täydellisellä induktiolla voidaan todistaa: Lause 2 Olkoot A 1,A 2,...,A n E siten, että P(A 1 A n 1 ) > 0. Tällöin on voimassa P(A 1 A 2 A n ) =P(A 1 )P(A 2 A 1 )P(A 3 A 2 A 1 ) P(A n A 1 A n 1 ). Jukka Kemppainen Mathematics Division 13 / 32

14 Esimerkkejä Esim. 2 Tuotteessa voi olla materiaalivika (tapahtuma A) tai käsittelyvika (tapahtuma B). Tuote on susi, jos siinä on molemmat viat. Olkoot P(A) = 0,1, P(B) = 0,06 ja P(A B) = 0,005. Mikä on todennäköisyys, että (a) tuote on susi ehdolla, että siinä on ainakin yksi vika? (b) tuotteessa on materiaalivika ehdolla, että siinä on tarkalleen yksi vika? Esim. 3 Pokerissa kullekin pelaajalle jaetaan viisi korttia. Jos pelaajia on 2, niin millä todennäköisyydellä molemmat saavat 2 ässää? Jukka Kemppainen Mathematics Division 14 / 32

15 Kokonaistodennäköisyys Olkoon {A 1,A 2 } on otosavaruuden S ositus eli A 1 A 2 = ja A 1 A 2 = S. Oletetaan, että P(A i ) > 0, i = 1,2. Olkoon B tapahtuma, jolle P(B) > 0. Tällöin (A 1 B) (A 2 B) = B (A 1 B) (A 2 B) = ja P(B) = P(A 1 B)+P(A 2 B). Toisaalta kertolaskusäännön nojalla i = 1, 2: P(A i B) = P(B A i )P(A i ). (1) Jukka Kemppainen Mathematics Division 15 / 32

16 Kokonaistodennäköisyys Edellä osituksen {A 1,A 2 } tapauksessa saadaan kokonaistodennäköisyydeksi P(B) = P(A 1 )P(B A 1 )+P(A 2 )P(B A 2 ) Yleisesti, jos {A 1,A 2,...,A n } on ositus, saadaan Lause 3 (Kokonaistodennäköisyyden kaava) n P(B) = P(A k )P(B A k ). k=1 Jukka Kemppainen Mathematics Division 16 / 32

17 Puukaavio (1/3) Kokonaistodennäköisyyttä kannattaa usein hahmotella puukaavion avulla. Useinkaan emme tiedä jonkin tapahtuman B todennäköisyyttä suoraan, jolloin B kannattaa ehdollistaa sellaisilla tapahtumilla A k, jotka muodostavat osituksen ja ehdolliset todennäköisyydet P(B A k ) voidaan laskea. Erityisesti {A,A} muodostaa S:n osituksen, jolloin tapahtuman B todennäköisyyttä voidaan hahmottaa seuraavan puukaavion avulla. Jukka Kemppainen Mathematics Division 17 / 32

18 Puukaavio (2/3) p 1 p 2 A A q 1 q 2 q 1 q 2 B B B B Jukka Kemppainen Mathematics Division 18 / 32

19 Puukaavio (3/3) Puukaaviossa kustakin lehdestä (ympyrästä) lähtevien oksien todennäköisyyksien summa on yksi eli p 1 + p 2 = q 1 + q 2 = q 1 + q 2 = 1. Todennäköisyys voidaan laskea tuloperiaatteella. Esimerkiksi punaista reittiä pitkin laskettu todennäköisyys on P(B A)P(A) = q 1 p 1, ja tapahtuman B kokonaistodennäköisyydeksi saadaan P(B) = P(B A)P(A)+P(B A)P(A) = p 1 q 1 + p 2 q 1. Jukka Kemppainen Mathematics Division 19 / 32

20 Esimerkki Esim. 4 Korttipakan 52 kortista nostetaan umpimähkään takaisinpanematta kaksi korttia. Mikä on todennäköisyys, että toinen kortti on pata? Jukka Kemppainen Mathematics Division 20 / 32

21 Bayesin kaava Käyttämällä kaavaa (1) saadaan ehdolliselle todennäköisyydelle Bayesin kaava P(A k B) = P(A k B) P(B) = P(B A k)p(a k ), P(B) joka kokonaistodennäköisyyden kaavaan mukaan voidaan kirjoittaa muodossa Lause 4 (Bayesin kaava) P(A k B) = P(B A k )P(A k ) n k=1 P(A k)p(b A k ). Jukka Kemppainen Mathematics Division 21 / 32

22 Bayesin kaava (2/2) Todennäköisyyttä P(A k ) sanotaan priori-todennäköisyydeksi. - prior (lat.) (edeltävä, aikaisempi) - Käsityksemme tapahtuman A k tn:stä ennen kuin tiedetään, onko B sattunut vai ei. P(A k B) sanotaan posteriori-todennäköisyydeksi - posterior (lat.) (jälkeen tuleva, myöhempi) - Päivitetään tapahtuman A k tn., kun tiedetään, että B on sattunut. P(B A k ) sanotaan uskottavuudeksi (likelihood) - Mikä on tapahtuman B tn., kun havaitaan A k, eli B:n uskottavuus ehdolla A k ). Jukka Kemppainen Mathematics Division 22 / 32

23 Esimerkkejä Esim. 5 Neljä teknikkoa tekee säännöllisesti korjauksia, kun eräällä automaatiolinjalla ilmenee vika. Teknikko 1 tekee 20% korjauksista, mutta tekee virheen keskimäärin yhdessä korjauksessa suorittamissaan 20 korjauksessa, teknikko 2 tekee 60% korjauksista ja tekee yhden virheen 10 korjauksessa, teknikko 3 tekee 15% korjauksista ja tekee virheen 1 tapauksessa 10:stä ja teknikko 4 tekee 5% korjauksista ja virheen 1 tapauksessa 20:sta. Automaatiolinjalla ilmenee vika ja sen diagnosoidaan johtuvan virheellisestä korjauksesta. Millä todennäköisyydellä korjauksen on tehnyt teknikko 1? Jukka Kemppainen Mathematics Division 23 / 32

24 Esimerkkejä Esim. 6 Tutkimusten mukaan HIV esiintyy väestössä todennäköisyydellä 0,0004. Sairautta tutkitaan verikokeella, jossa on seuraavat virhemahdollisuudet: (i) sairaan henkilön testitulos on negatiivinen todennäköisyydellä 0,001; (ii) terveen henkilön testitulos on positiivinen todennäköisyydellä 0,002. Millä todennäköisyydellä satunnaisesti valitulla, positiivisen testituloksen saaneella henkilöllä todella on HIV? Jukka Kemppainen Mathematics Division 24 / 32

25 Esimerkkejä Esim. 7 Tenttitehtävässä on väittämiä, joista kuhunkin tenttijän pitää vastata valitsemalla toinen kahdesta vaihtoehdosta (kyllä tai ei). Turo Teekkarin asiat ovat niin kehnosti, että hän tietää vastauksen vain 60 % väittämistä ja loput hän veikkaa täysin umpimähkään. (a) Millä todennäköisyydellä Turo vastaa oikein (tietämällä tai veikkaamalla) satunnaisesti valittuun väittämään? (b) Jos Turo vastasi oikein satunnaisesti valittuun väittämään, niin mikä on todennäköisyys, että hän päätyi oikeaan vastaukseen tietämällä eikä veikkaamalla? Jukka Kemppainen Mathematics Division 25 / 32

26 Riippumattomuus Määr. 4 Tapahtumat A ja B ovat riippumattomia, jos Huomautus 3 P(A B) = P(A)P(B). (2) Tulosääntöä (2) voidaan käyttää vain riippumattomille tapahtumille! Tilastollinen riippumattomuus on todennäköisyysfunktion ominaisuus ja on eri asia kuin joukko-opillinen erillisyys. Jukka Kemppainen Mathematics Division 26 / 32

27 Esimerkki Esim. 8 Valitaan korttipakasta satunnaisesti yksi kortti. Olkoot A = kortti on pata ; B = kortti on ässä ; C = kortti on hertta. tapahtumia. Tutki, ovatko (a) A ja B riippumattomia. (b) A ja C riippumattomia. (c) B ja C riippumattomia. Jukka Kemppainen Mathematics Division 27 / 32

28 Riippumattomien tapahtumien ominaisuuksia Jos P(B) = 0, niin B on riippumaton mistä tahansa tapahtumasta A. Jos P(B) > 0, niin Lause 5 A ja B ovat riippumattomia P(A B) = P(A). eli B:n esiintyminen ei vaikuta tapahtuman A todennäköisyyteen. Tapahtumat A ja B ovat riippumattomia, jos ja vain jos mikä tahansa seuraavista ominaisuuksista on voimassa (a) A ja B ovat riippumattomia. (b) A ja B ovat riippumattomia. (c) A ja B ovat riippumattomia. Jukka Kemppainen Mathematics Division 28 / 32

29 Usean tapahtuman riippumattomuus Määr. 5 Tapahtumat A 1,...,A n ovat (keskinäisesti) riippumattomia, jos kaikille indeksijoukoille {i 1,...,i k } {1,...,n} P(A i1 A ik ) = P(A i1 )P(A i2 )...P(A in ). Tulosääntö pätee kaikille osajoukoille. Ei riitä, että tulosääntö pätee pareittain P(A i A j ) = P(A i )P(A j ) kaikillai j. Jukka Kemppainen Mathematics Division 29 / 32

30 Riippumattomien tapahtumien yhdiste ja leikkaus Usean tapahtuman leikkauksen ja yhdisteen todennäköisyyden laskeminen helpottuu huomattavasti riippumattomien tapahtumien tapauksessa. Olkoot tapahtumat A 1,A 2,...,A n riippumattomia. Todennäköisyys tapahtumalle kaikki tapahtumat A i sattuvat on (vrt. Lause 2) P(A 1 A 2 A n ) = P(A 1 )P(A 2 ) P(A n ) Todennäköisyys tapahtumalle "ainakin yksi tapahtumista A i sattuu" P(A 1 A 2 A n ) =1 P(A 1 A 2 A n ) ( ) ( ) =1 1 P(A 1 ) 1 P(A n ). Jukka Kemppainen Mathematics Division 30 / 32

31 Esimerkki Edellä olevia ominaisuuksia tarvitaan esimerkiksi komponenttien luotettavuuden arvioinnissa. Esim. 9 Systeemi koostuu kolmesta rinnankytketystä identtisestä komponentista. Systeemi toimii, jos ainakin yksi kolmesta rinnakkaisesta komponentista on toimiva. Jokaisen komponentin kestoikä on yli 10 viikkoa todennäköisyydellä 0.2. Millä todennäköisyydellä kokonaissysteemin virheetön toiminta-aika on yli 10 viikkoa? Jukka Kemppainen Mathematics Division 31 / 32

32 Riippumattomuus käytännössä Usein riippumattomuus on käytännössä oletus, joka on ilmiselvästi voimassa. Esimerkiksi kolikon tai nopan heitto. Heittojen tulokset eivät riipu toisistaan. ottelukierroksen tulokset (vakioveikkauksessa). Pelien lopputulokset ovat riippumattomia toisistaan. Näin oletamme, ellei toisin mainita. Joskus oletukset on syytä asettaa kyseenalaiseksi. Esimerkiksi havaitaan epätavalliset vetosuhteet ottelukierroksella (sopupeli). Riippumattomuus helpottaa laskentaa, mutta oletus riippumattomuudesta on syytä asettaa kyseenalaiseksi. Jukka Kemppainen Mathematics Division 32 / 32

031021P Tilastomatematiikka (5 op)

031021P Tilastomatematiikka (5 op) 031021P Tilastomatematiikka (5 op) Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 11 4 h) ti 12-14 ja to 8-10 (ks. tarkempi opetusohjelma Oodista tms.) Harjoitukset (yht. 11 2 h)

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1 Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi M-0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 1: Todennäköisyyslaskennan peruskäsitteet; Todennäköisyyden aksioomat; Todennäköisyyslaskennan peruslaskusäännöt; Kokonaistodennäköisyyden

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt - Satunnaiskokeet, otosavaruudet ja tapahtumat - Todennäköisyyden määritteleminen KE (2014) 1 Satunnaiskokeet, otosavaruudet ja tapahtumat

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan

Lisätiedot

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä

Lisätiedot

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja. Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Kurssi käsittelee todennäköisyyslaskentaa ja tilastotiedettä. Laaditaan satunnaisilmiöille todennäköisyysmalleja. Miten hyvin mallit kuvaavat todellisuutta?

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden peruslaskusäännöt >> Uusien tapahtumien muodostaminen

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyslaskenta ja puudiagrammit >> Puutodennäköisyydet

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyslaskenta ja puudiagrammit Puutodennäköisyydet Todennäköisyyslaskennan laskusääntöjen

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskenta ja puudiagrammit iite: Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskenta ja puudiagrammit: Mitä opimme? Verkkoteoria

Lisätiedot

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

1. Matkalla todennäköisyyteen

1. Matkalla todennäköisyyteen 1. Matkalla todennäköisyyteen Wovon man nicht sprechen kann, darüber muss man schweigen (Ludwig Wittgenstein, Tractatus Logico-Philosophicus 1921) Miten ihmeessä tämä liittyy tähän kurssiin????!?? 1.1

Lisätiedot

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta 031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 7 4 h) ke 12-14 ja pe 8-10 (ks. tarkemmin Oodista tai Nopasta) Harjoitukset

Lisätiedot

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku Harjoitus 2 (vko 39/2003) (ihe: tapahtumien todennäköisyys, Laininen luvut 1.6 2.4) 1. Tarkastellaan rinnan- ja sarjaankytketyistä

Lisätiedot

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat jen Kahden joukon A ja B samuutta todistettaessa kannattaa usein osoittaa, että A on B:n osajoukko ja että B on A:n osajoukko. Tällöin sovelletaan implikaation ja ekvivalenssin yhteyttä. Lause 5. (s. 50).

Lisätiedot

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto Todennäköisyyslaskenta /7 Sisältö ESITIEDOT: joukko-oppi, n laskeminen, käsite Hakemisto Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennassa tarkastelun kohteena ovat satunnaisilmiöt.esimerkkejä

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden aksioomat >> Todennäköisyyden määritteleminen Todennäköisyyden

Lisätiedot

Todennäköisyyslaskenta I

Todennäköisyyslaskenta I Todennäköisyyslaskenta I Ville Hyvönen, Topias Tolonen 1 Kesä 2017 1 Luentomateriaali alun perin Villen käsialaa kesältä 2016, materiaalia muokataan kesän 2017 luentojen mukana ajan tapaa ja luennoitsijan

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,

Lisätiedot

Todennäköisyyslaskenta I. Ville Hyvönen

Todennäköisyyslaskenta I. Ville Hyvönen Todennäköisyyslaskenta I Ville Hyvönen Kesä 2016 Sisältö 1 Todennäköisyys 3 1.1 Klassinen todennäköisyys............................ 3 1.2 Kombinatoriikkaa................................ 6 1.2.1 Tuloperiaate...............................

Lisätiedot

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Kertaus Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Luokiteltu aineisto. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Hajontaluvut luokittelemattomalle

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden peruslaskusäännöt Tapahtumat Peruslaskusäännöt todennäköisyydelle Ehdollinen todennäköisyys

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt: Esitiedot

Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt: Esitiedot TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskennan peruslaskusäännöt Johdatus todennäköisyyslaskentaan Todennäköisyyslaskennan peruslaskusäännöt TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskennan

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2005) 1 Verkot ja todennäköisyyslaskenta >> Puudiagrammit todennäköisyyslaskennassa:

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden aksioomat Todennäköisyyden määritteleminen Todennäköisyyden aksioomat äärellisissä otosavaruuksissa

Lisätiedot

Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61

Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61 3.3. Satunnaismuuttujien ominaisuuksia 61 Odotusarvo Määritelmä 3.5 (Odotusarvo) Olkoon X diskreetti satunnaismuuttuja, jonka arvojoukko on S ja todennäköisyysfunktio f X (x). Silloin X:n odotusarvo on

Lisätiedot

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

Todennäköisyyden käsite ja laskusäännöt

Todennäköisyyden käsite ja laskusäännöt Luku 1 Todennäköisyyden käsite ja laskusäännöt Lasse Leskelä Aalto-yliopisto 12. syyskuuta 2017 1.1 Todennäköisyyden käsite Todennäköisyys on tapa kuvailla kvantitatiivisesti jonkin tapahtuman uskottavuutta,

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 Aiheet: Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Klassinen

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Mallintamisesta. Mallintamisesta

Mallintamisesta. Mallintamisesta Laajasti ymmärtäen jonkin tarkasteltavan ilmiön kuvaamista (esim. matemaattista) kuhunkin tarkoitukseen (ennustaminen, analysointi, visualisointi) parhaiten sopivalla tavalla. Ilmiön pukemista helposti

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2004) 1 Verkot ja todennäköisyyslaskenta Puudiagrammit todennäköisyyslaskennassa: Johdatteleva esimerkki Todennäköisyyslaskenta

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 13. syyskuuta 2007 Antti Rasila () TodB 13. syyskuuta 2007 1 / 21 1 Klassinen todennäköisyys 2 Kombinatoriikkaa Kombinatoriikan perusongelmat Permutaatiot

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Todennäköisyyslaskenta

Todennäköisyyslaskenta Todennäköisyyslaskenta Syksy 2017 Kerkko Luosto 14. syyskuuta 2017 Kerkko Luosto Todennäköisyyslaskenta 14. syyskuuta 2017 1 / 26 Johdanto Johdantoesimerkki Esimerkki Hannu Huijari ostaa Keijo Kelmiltä

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta:

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta: RMS22 Päätöksenteko epävarmuuden vallitessa Syksy 28 Harjoitus 8 Ratkaisuehdotuksia Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta: Pankki harkitsee myöntääkö 5. euron lainan asiakkaalle 12%

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Martingaalit ja informaatioprosessit

Martingaalit ja informaatioprosessit 4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu

Lisätiedot

Tilastomatematiikka Kevät 2008

Tilastomatematiikka Kevät 2008 Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/73 Johdanto Moderni yhteiskunta: Todellisuuden tilastollinen malli Kolme

Lisätiedot

Tilastomatematiikka. Jukka Kemppainen Oulun yliopisto Tekniikan matematiikka

Tilastomatematiikka. Jukka Kemppainen Oulun yliopisto Tekniikan matematiikka Tilastomatematiikka Jukka Kemppainen Oulun yliopisto Tekniikan matematiikka 20. tammikuuta 2017 2 3 2.5 Deterministinen Stokastinen 2 1.5 1 0.5 0 0 0.2 0.4 0.6 0.8 1 Tämä luentomoniste on tehty professori

Lisätiedot

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu 1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

52746 Geneettinen analyysi

52746 Geneettinen analyysi 52746 Geneettinen analyysi Kaikille yhteiset luennot (3 kpl) Maanantai 3.2. Klo 10.15-12 Biokeskus 2 auditorio 1041 Todennäköisyyslaskennan kertaus, merkitys perinnöllisyystieteessä! Keskiviikko 5.2. Tilastotiede

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

1. Logiikan ja joukko-opin alkeet

1. Logiikan ja joukko-opin alkeet 1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

A. Jos A on niiden perusjoukon S alkioiden x joukko, jotka toteuttavat ehdon P(x) eli joille lause P(x) on tosi, niin merkitsemme

A. Jos A on niiden perusjoukon S alkioiden x joukko, jotka toteuttavat ehdon P(x) eli joille lause P(x) on tosi, niin merkitsemme Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 Aiheet: Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Klassinen todennäköisyys

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS PINGVIINI(tweety) :- true. Wulffmorgenthaler HS 14.9.2012 TODENNÄKÖISYYS (TN) EHDOLLINEN TN: P(B A) B:N TODENNÄKÖISYYS, KUN TIEDETÄÄN, ETTÄ A B:N EHDOLLINEN TN ANNETTUNA A

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

(x, y) 2. heiton tulos y

(x, y) 2. heiton tulos y Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava

Lisätiedot

Luku 1. Johdanto. 1.1 Todennäköisyys ja tilastotiede. 1.2 Havaitut frekvenssit ja empiiriset jakaumat

Luku 1. Johdanto. 1.1 Todennäköisyys ja tilastotiede. 1.2 Havaitut frekvenssit ja empiiriset jakaumat Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Tämä kurssi käsittelee sekä todennäköisyyslaskentaa että tilastotiedettä. Uhkapelurien ongelmat inspiroivat todennäköisyyslaskennan uranuurtajien ajattelua,

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 25.10.2016/1 MTTTP5, luento 25.10.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta). Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)

Lisätiedot

1. TILASTOLLINEN HAHMONTUNNISTUS

1. TILASTOLLINEN HAHMONTUNNISTUS 1. TILASTOLLINEN HAHMONTUNNISTUS Tilastollisissa hahmontunnistusmenetelmissä piirteitä tarkastellaan tilastollisina muuttujina Luokittelussa käytetään hyväksi seuraavia tietoja: luokkien a priori tn:iä,

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Joukot. Georg Cantor ( )

Joukot. Georg Cantor ( ) Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Todennäköisyyslaskenta

Todennäköisyyslaskenta Todennäköisyyslaskenta Syksy 2017 Kerkko Luosto 3. lokakuuta 2017 Kerkko Luosto Todennäköisyyslaskenta 3. lokakuuta 2017 1 / 33 Johdanto Johdantoesimerkki Esimerkki Hannu Huijari ostaa Keijo Kelmiltä Hämärätorilla

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

TILASTOLLINEN OPPIMINEN

TILASTOLLINEN OPPIMINEN 301 TILASTOLLINEN OPPIMINEN Salmiakki- ja hedelmämakeisia on pakattu samanlaisiin käärepapereihin suurissa säkeissä, joissa on seuraavat sekoitussuhteet h 1 : 100% salmiakkia h 2 : 75% salmiakkia + 25%

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille

Todennäköisyyslaskenta sivuaineopiskelijoille Todennäköisyyslaskenta sivuaineopiskelijoille Tentit: 4.11.2013 ja 2.12.2013. Loput kaksi tenttiä (vuonna 2014) ilmoitetaan myöhemmin. Tentissä on 4 tehtävää á 8 pistettä, aikaa 4 tuntia. Arvostelu 0 5.

Lisätiedot

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Kurssin puoliväli ja osan 2 teemat

Kurssin puoliväli ja osan 2 teemat Kurssin puoliväli ja osan 2 teemat Kurssin osa 1 keskittyi mittaukseen, tiedonkeruuseen ja kuvailevaan tilastotieteeseen. Osassa 2 painottuu tilastollinen päättely, joka puolestaan rakentuu voimakkaasti

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

1. laskuharjoituskierros, vko 4, ratkaisut

1. laskuharjoituskierros, vko 4, ratkaisut 1. laskuharjoituskierros, vko 4, ratkaisut D1. Heitetään kahta virheetöntä noppaa, joiden kuudella tahkolla on silmäluvut 1, 2, 3, 4, 5 ja 6. Tällöin heittotuloksiin liittyvä otosavaruus on S = {(x, y)

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma

Lisätiedot