Luvun 12 laskuesimerkit
Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine on normaali ja lämpötila on 20 C, jolloin ilman tiheys on n. 1.20 kg/m 3. Huoneen sisältämän ilman massa: m air = ρ air V = 1.20 kg/m 3 (4.0 5.0 3.0)m 3 = 72 kg. Ilman paino: w air = m air g = 72 kg 9.80 m/s 2 = 700 N Eli tällaisen huoneen sisältämän ilman massa/paino vastaa varsin keskimittaisen ihmisen massaa/painoa. Jos huoneen täyttäisi vedellä, niin sen massa olisi 6.0 10 4 kg! Ts. pyöreillä numeroilla puhuttaessa vesi on noin tuhat kertaa tiheämpää kuin ilma.
Sitten paineen kimppuun. p = F A F = pa F = 1.013 10 5 Pa 20 m 2 = 2.0 10 6 N mikä vastaa 200 tuhannen kilon massan aiheuttamaa painoa! Miksi lattia ei romahda kasaan?
Esimerkki 12.2 Vettä seisoskelee 12.0 m syvässä säiliössä, jonka katto on avonainen. Mikä on absoluuttinen paine ja mittapaine säiliön pohjalla? Nyt siis h = 12.0 m ja p 0 = 1.01 10 5 Pa. Absoluuttinen paine: p = p 0 +ρgh = 1.01 10 5 Pa+1000 kg/m 3 9.80 m/s 2 12.0 m p = 2.19 10 5 Pa. Mittapaine: p p 0 = (2.19 1.01) 10 5 Pa = 1.18 10 5 Pa.
Esimerkki 12.3 U-kirjaimen muotoinen päistään avoin putki on täytetty osittain kahdella nesteellä vasemmanpuoleinen osa vedellä, oikeanpuoleinen öljyllä (joka ei sekoitu veteen). Nesteiden rajapinta on putken keskikohdalla. Mikä yhteys on nestepatsaiden korkeuksilla?
Kummankin nesteosion pohjalla vallitsee sama paine p, sillä ne ovat yhteydessä ja tasapainossa, toisaalta molempiin vaikuttaa ylhäällä sama ilmanpaine p 0. Kummallekin nestepatsaalle voidaan kirjoittaa: p = p 0 + ρ water gh water ja p = p 0 + ρ oil gh oil. Nämä kaksi paineen lauseketta ovat siis yhtä suuret, joten h oil = ρ water ρ oil h water Koska veden tiheys (ρ water = 1000 kg/m 3 ) on suurempi kuin öljyn (ρ oil 850 kg/m 3 ), on h oil suurempi kuin h water.
Esimerkki 12.4 Jäävuori (ρ j = 920 kg/m 3 ) kelluu valtameressä ρ v = 1025 kg/m 3 ). Kuinka iso osa jäävuoresta on pinnan alla? Jäävuori kelluu, koska noste on yhtäsuuri kuin kappaleen paino. Arkhimedeen periaatteen mukaan noste on: F B = m v g = ρ v V v g, missä V v on jään syrjäyttämän vesimäärän tilavuus. Toisaalta jäävuoren paino on w j = m j g = ρ j V j g, missä V j on jäävuoren koko tilavuus. Koska meillä on nyt tasapainotilanne, F B = w j : ρ j V j g = ρ v V v g
V v V j = ρ j ρ v = 3 920 kg/m 1025 kg/m = 3 0.8976 Eli sopivalla tarkkuudella ilmaistuna 90% jäävuoresta on pinnan alla.
Esimerkki 12.5 Öljyä, jonka tiheys on 850 kg/m 3 pumpataan tilavuusvirtausnopeudella 9.5 l/s putkeen, jonka halkaisija on 8.0 cm. a) Mikä on öljyn nopeus putkessa? b) Kun putki kapenee 4.0 cm halkaisijaltaan olevaksi, mikä on öljyn tilavuusvirtausnopeus? a) Kuten nesteet yleensäkin, öljy on käytännössä kokoonpuristumatonta. Ts. öljyn tiheys kautta tehtävän on ρ 1 = 850 kg/m 3. Tilavuusvirtausnopeus: dv dt = 9.5 l/s Yksi litra on 1.0 dm 3 = 10 3 m 3. Putken säde on nyt r 1 = 4.0 cm, poikkipinta-ala taas A 1 = πr 2 1, mikä on siis v 1?
v 1 = dv dt = A 1v 1 v 1 = 1 dv A 1 dt 1 π (0.04 m) 2 9.5 10 3 m 3 /s = 1.9 m/s b) Nyt putken poikkipinta-ala pienenee kun säde muuttuu arvoon r 2 = 2.0 cm. Jatkuvuusyhtälön mukaan tilavuusvirtausnopeus on vakio, joten A 1 v 1 = A 2 v 2 v 2 = A 1 A 2 v 1 = ( ) 4.0 cm 2 1.9 m/s = 7.6 m/s 2.0 cm
Esimerkki 12.6 Ison polttoainesäiliön poikkipinta-ala on A 1 ja korkeus h. Nestepinnan yläpuolella on ilmaa paineessa p 0. Säiliön alaosassa on pieni reikä, jonka poikkipinta-ala on A 2. Johda yhtälö öljyn virtausnopeudelle ja tilavuusvirtausnopeudelle.
Voimme tarkastella koko virtaavaa nestemäärää yksittäisenä vuoputkena kokoonpuristumatonta nestettä, jonka sisäinen kitka on olematon. Toisin sanoen voimme hyödyntää Bernoullin yhtälöä. Olkoon piste 1 nesteen pinnalla, piste 2 taas ulosvirtauspisteessä. Pisteessä 1 paine on p 0, jonka oletamme nyt olevan vakio tarkastelumme aikavälillä. Pisteessä 2 paine on sama kuin ilmakehän paine p atm. Olkoo y = 0 ulosvirtauspisteessä, tällöin y 1 = h ja y 2 = 0. Koska reiän poikkipinta-ala on pieni verrattuna säiliön poikkipinta-alaan, säiliön pinta laskee hitaasti ja v 1 voidaan olettaa likipitäen nollaksi. Soveltamalla Bernoullin yhtälöä saamme p 0 + 1 2 ρv 2 1 + ρgh = p atm + 1 2 ρv 2 2 + ρg 0 ( ) v 2 2 = v 2 1 + p0 2 p atm + 2gh ρ
Olettamalla nyt v 1 = 0 saamme ( ) p0 p atm v 2 = 2 + 2gh ρ Tilavuusvirtausnopeus on puolestaan dv /dt = v 2 A 2. Jos myös tankin yläosan ilma on ilmakehän paineessa, niin p 0 = p atm ja saamme yksinkertaisesti v 2 = 2gh. Tämä tulos tunnetaan nimellä Torricellin teoreema. Se pätee myös tilanteessa, jossa virtausaukko ei ole säiliön pohjassa, vaan on syvyydellä h oleva reikä säiliön kyljessä.