Luento 7 Luotettavuus Koherentit järjestelmät

Samankaltaiset tiedostot
Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

Otantajakauman käyttö päättelyssä

Tilastollinen päättely II, kevät 2017 Harjoitus 3B

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?

8. laskuharjoituskierros, vko 11, ratkaisut

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai

Tilastollinen todennäköisyys

Markov-ketjun hetkittäinen käyttäytyminen

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =

Mat Sovellettu todennäköisyyslasku A

****************************************************************** ****************************************************************** 7 Esim.

1 Eksponenttifunktion määritelmä

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta

Markov-ketjun hetkittäinen käyttäytyminen

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi

Insinöörimatematiikka IA

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen

Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.

Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.

Mat Lineaarinen ohjelmointi

Luento 5 Yhteisvikojen analyysi PSA:n sovelluksia

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

S Laskennallinen systeemibiologia

Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin yliopisto Harjoitus 3, ratkaisuehdotuksia

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät

Tilastollinen päättömyys, kevät 2017 Harjoitus 5b

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

HEIJASTUMINEN JA TAITTUMINEN

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...

Parametrien oppiminen

Tunnuslukuja 27 III TUNNUSLUKUJA

4.0.2 Kuinka hyvä ennuste on?

sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat

Osa 2: Otokset, otosjakaumat ja estimointi

Matematiikan tukikurssi

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot

Todennäköisyyslaskenta I. Heikki Ruskeepää

TILASTOT: johdantoa ja käsitteitä

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1

2 avulla. Derivaatta on nolla, kun. g( 3) = ( 3) 2 ( 3) 5 ( 3) + 6 ( 3) = 72 > 0. x =

6. laskuharjoitusten vastaukset (viikot 10 11)

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:

Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet

Koodausteoria, Kesä 2014

ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla:

Luento 4 Vikapuuanalyysit

Aritmeettinen jono

tilavuudessa dr dk hetkellä t olevien elektronien

Mat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit

Kokonaislukuoptimointi

Rekursioyhtälön ratkaisu ja anisogamia

Ominaisvektoreiden lineaarinen riippumattomuus

5.3 Matriisin kääntäminen adjungaatilla

n = 100 x = %:n luottamusväli µ:lle Vastaus:

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

3 10 ei ole rationaaliluku.

Luento 5 Vikapuuanalyysit

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Digitaalinen signaalinkäsittely Signaalit, jonot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

Tehtäviä neliöiden ei-negatiivisuudesta

Kompleksilukujen alkeet

j = I A = 108 A m 2. (1) u kg m m 3, (2) v =

Epälineaaristen yhtälöiden ratkaisumenetelmät

Pistetulo eli skalaaritulo

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu

Matematiikan tukikurssi

5. Lineaarisen optimoinnin perusprobleemat

Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ,, x1 x. Matriiseihin perehtyminen voidaan perustella useilla järkisyillä.

Luento 4 Vikapuuanalyysit

Insinöörimatematiikka A

Transkriptio:

Lueto 7 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio Aalto-yliopisto perustieteide korkeakoulu PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi

Määritelmä Tarkasteltava yksikö luotettavuus O se todeäköisyys, että yksikkö suorittaa tarkoitetulla tavalla sille kuuluvat tehtävät tarkasteltavaa ajajaksoa täsmeettyje ympäristöolosuhteide vallitessa. Huomioita Tarkasteltava yksikkö riippuu tilateesta» Toisiaa kyse kompoetista, toisiaa koko järjestelmästä vrt. vikapuut ja tapahtumapuut Tarkoitettu suorittamie kuvattava yksiselitteisesti» Tarpee esimerkiksi vahigokorvausvaatimuste ja viraomaisvaatimuste tulkitsemiseksi sopimus-juridiikka ja säädökset (direktiivit je.)» Tolerassirajat yleisiä esim. vaa a tarkkuude oltava 0 ± 0.00 kg Tarkoitettu yksikkö ja tehtävä kuvattava myös» Esim. auto hads free hajoamie ei estä kuljetustehtävä suorittamista, mutta työpuhelut jäävät soittamatta Ajajakso ohella voidaa käyttää muitaki suureita» Esim. ajokilometrit, virtakytkime kytkemiskerrat Olosuhteet rajattava myös» Esim. vuoristorajoitukset autovuokraajalle Islaissa Laatu vs. luotettavuus» Laatu staattie käsite viittaa omiaisuuksii joaki hetkeä, luotettavuus huomioi aja ja olosuhteet» Luotettavuus implikoi laadu, ei välttämättä toisi päi

Koheretit järjestelmät (/) Kompoeti x i, i =,, tila 0, jos kompoetti ei toimi x i = ቊ, jos kompoetti toimii :stä kompoetista koostuva järjestelmä tilavektori o x = (x,, x ) Järjestelmä rakeefuktio 0, jos järjestelmä ei toimi tilavektorilla x φ(x) = ቊ, jos järjestelmä toimii tilavektorilla x Huom! sama muuttujie loogiste arvoje tulkita kui logiikkakaavioissa, se sijaa vikapuissa tarkoitti via esiitymistä! Esimerkkejä Sarjajärjestelmä - kompoetit peräkkäi» Kaikkie toimittava, jotta virta meisi läpi φ x = mi x,, x = x i i= Riakkaisjärjestelmä kompoetit ria» Yhdeki toimimie riittää φ x = max x,, x k/-järjestelmä φ x = 0,, = i= i= i= x i < k x i k x i

Koheretit järjestelmät (/) Kompoetti o irrelevatti, jos sillä ei ole vaikutusta rakeefuktioo Esim. kompoetti o alla olevassa järjestelmässä irrelevatti φ x = x ( x )( x ) Järjestelmä o koheretti joss siiä ei ole irrelevatteja kompoetteja ja φ x,, x i, 0, x i+,, x φ x,, x i,, x i+,, x Ts. rakeefuktio o jokaise kompoeti osalta eiväheevä Yksittäise kompoeti muuttamie viallisesta toimivaksi voi tehdä järjestelmä toimivaksi, mutta ei toisi päi Yleesä pyritää raketamaa koheretteja järjestelmiä, koska äissä kompoetteja voidaa korjata ilma, että tämä voi aiheuttaa vikoja Kaikki järjestelmät eivät ole koheretteja: esimerkiksi yksikompoettie rakeefuktio o ei-koheretti φ x = x 4

Kompoettie kahdetamie (/) Luotettavuutta voidaa parataa kahdetamalla joko koko järjestelmä tai se osat mutta kumpi o parempi? a b a a b b Lause. Jos järjestelmä o koheretti ja x ja y ovat tilavektoreita, ii φ x y,, x y φ x φ y. Epäyhtälö pätee yhtäsuuruutea, ku φ x = i=? a b x i = ሡ x i i= a b a b Ts. kaattaa kahdetaa kompoetteja, ei järjestelmiä! 5

Kompoettie kahdetamie (/) Todistus. Kaikille i =,, pätee x i y i x i Järjestelmä o koheretti, jote rakeefuktio o argumettiesa suhtee ei-väheevä ja φ x y,, x y φ(x) Vastaavasti pätee φ x y,, x y φ(y) Saadaa siis φ x y,, x y max φ x, φ y = [ φ(x)][ φ(y)] Rakeefuktiolle pätee φ x = i= x i Toisaalta φ x y,, x y = i= x i y i Tämä vastaa riakkaisjärjestelmää, jossa kahdetamistavalla ei siis väliä φ x φ y = i= x i y i 6

Raketeellie tärkeys (/) Kompoeti merkitys luotettavuude kaalta riippuu se sijaiista Esim. järjestelmässä kompoetti äyttää tärkeämmältä, koska se hajoamie väistämättä vikaauttaa koko järjestelmä; äi ei ole kompoettie ja osalta Kompoetti o toimivaa kolmessa tilavektorissa (,,), (,0,), (,,0), (,0,0) Järjestelmä toimii äistä kolmessa Jos x tilavektori, ii ( i, x i ) o tilavektori, jossa kompoetti i o toimii ja muut kompoetit saavat samat arvot kui mitä iillä o tilavektorissa x Vastaavasti (0 i, x i ) o tilavektori, jossa kompoetti i ei toimi, mutta muut saavat tilavektori x mukaiset arvot Määritelmä. Kompoeti i raketeellie tärkeys koheretissa järjestelmässä o I φ i = φ i, x i φ(0 i, x i ) x x = Tämä o suhteellie osuus iistä muide kompoettie tiloista, joissa kompoeti vikaatumie vikaauttaa koko järjestelmä Myös todeäköisyys, jos muut kompoetit vikaatuvat riippumattomasti yhtä isolla t:llä 7

Raketeellie tärkeys (/) Esimerkkijärjestelmä Kompoetti toimivaa mukaa tilavektoreissa (,,), (,0,), (,,0), (,0,0) Järjestelmä toimii äistä kolmessa esimmäisessä Kompoeti vikaatumie johtaa tilavektoreihi (0,,), (0,0,), (0,,0), (0,0,0) Järjestelmä ei toimi äistä missää I φ = + + + 0 = 4 Vastaavasti kompoetille saadaa tilavektorit (,,),(,0,),(0,,),(0,0,) (kaksi toimii) (,,0),(,0,0),(0,,0),(0,0,0) (yksi toimii) I φ = 0 + + 0 + 0 = 4 Symmetriasyistä kompoeti raketeellie tärkeys sama kui kompoeti 8

Miimitoimitapolut ja -katkosjoukot Merkitää x < y joss x i y i kaikille i =,, ja x i < y i jolleki i:lle Tarkastellaa seuraavassa koherettia järjestelmää Tilavektori x o toimitapolku, joss φ x = (joss = jos ja vai jos) Toimitapolku x o miimitoimitapolku, joss φ y = 0, y < x So. yhdeki miimitoimitapolulla oleva kompoeti hajoamie vikaauttaa järjestelmä Tilavektori x o katkosjoukko, joss φ x = 0 Katkosjoukko x o miimikatkosjoukko, joss φ y =, y > x So. yhdeki miimikatkosjoukkoo kuuluva kompoeti korjaamie palauttaa järjestelmä toimivaksi 9

Esimerkki Järjestelmä Vikapuu T + + Lasketaa huipputapahtuma Boole algebralla saadaa katkosjoukot {}, {,} ja {,}, {,} Miimikatkosjoukot (,0,0) ja (0,,) Miimitoimitapolut (,,0) ja (,0,) 0

Rakeefuktio ja toimitapolut Olkoot P,, P s kohereti järjestelmä miimitoimitapolut ja α j (x) = jos kaikki P j: kompoetit toimivat 0, jos joki P j : kompoetti ei toimi Pätee α j (x) = mi i P j x i = i P j x i Järjestelmä toimii, jos joki toimitapolu kompoetit toimivat φ x = jos α j(x)=0 jolleki toimitapolulle 0, jos α j (x)= kaikille toimitapoluille Saadaa siis φ x = max α j (x) = max x i = x i j j i P j j= i P j Rakeefuktio siis yksikäsitteisesti esitettävissä miimitoimitapolkuje riakkaisjärjestelmää Ks. esim. miimitoimitapolut (,,0), (,0,) s φ x = ( x x )( x x ) = x x + x x x x x

Rakeefuktio ja katkosjoukot Olkoot C,, C k kohereti järjestelmä miimikatkosjoukot ja β j (x) = jos aiaki yksi kompoetti C j:ssä toimii 0, jos mikää kompoetti C j :ssä ei toimi Pätee β j x = max i C j x i = i C j x i Järjestelmä ei toimi, jos joki miimikatkosjouko kaikki kompoetit pettävät φ x = jos β j(x)= kaikille toimitapolulle 0, jos β j (x)=0 jolleki toimitapoluille Tällöi φ x = mi j k β j (x) = β j (x) = j= k j= i C j x i Rakeefuktio siis yksikäsitteisesti esitettävissä miimikatkosjoukkoje sarjajärjestelmää Ks. esim. miimikatkosjoukot (,0,0,), (0,,) φ x = ( x ) ( x )( x ) = x x + x x x = x x + x x x x x

Järjestelmä luotettavuus Kompoeti i tila o satuaismuuttuja 0, jos kompoetti i ei toimi X i = ቊ, jos kompoetti i toimii Kompoeti i luotettavuus p i = P X i = Tilavektorista vastaavasti saadaa siis t-vektori p i = (p,, p ) Huom! Tarkasteluajakohta täsmeettävä, muute ei mielekäs määritelmä Järjestelmä luotettavuus r p = P[φ(x) =

Luotettavuude laskeasta (/) Toimitapolut Järjestelmä toimii, jos joki toimitapolku kuossa Luotettavuus o siis t sille, että tilavektoria o toimitapolku Järjestelmä luotettavuus = toimitapolkuje t:ie summa Esim. /-järjestelmä toimitapolut (0,,), (,0,), (,,0), (,,) r p = p p p + p p p + p p p + p p p = p p + p p + p p p p p T:ie p i sijoittamie X i :ide paikalle rakeefuktiossa φ X = ( X X )( X X )( X X ) ei aa oikeaa odotusarvoa, koska tällöi tulee vääriä tulotermejä (p ). Ts. biäärimuuttujille pätee E X i = E X i = p i Sama luotettavuus saadaa odotusarvoa E[φ X ] = E[ ( X X )( X X )( X X )] = E[X X + X X + X X X X X X X X X X X + X X X ] = E X X + X X + X X X X X = r(p) 4

Luotettavuude laskeasta (/) Katkosjoukot Järjestelmä ei toimi, jos joku katkosjoukko toteutuu Luotettavuus saadaa siis vähetämällä yhdestä t sille, että tilavektori o katkosjoukko» Katkosjoukot (0,0,0,0), (0,0,0,), (0,0,,0), (0,0,,) ja (0,,0,0)» Näi luotettavuudeksi saadaa r p = p p p p 4 p p p p 4 p p p p 4 p p p p 4 p p p p 4 Ehdollistamie Järjestelmä toimita voidaa ehdollistaa joku avaikompoeti toimialle r p = P φ i, x i P x i = + P φ 0 i, x i P x i = 0 = r i, p i p i + r 0 i, p i ( p i ) 4 5

Luotettavuude laskeasta (/) Ehdollistamie (jatk.) Tarkastellaa järjestelmää 4 Ehdollistetaa järjestelmä kompoetille A: Kompoetti toimii B: Ei toimi 4 A: luotettavuus r p A = p p 4 B: luotettavuus r p B = p p p 4 Koko järjestelmä luotettavuus siis r p = ( p p 4 )p + ( p p p 4 )( p ) 4 6

Luotettavuude tärkeys Koheretissa järjestelmässä kompoeti luotettavuude tärkeyttä kuvaa I r i = r(p), i =,, p i Ts. mite paljo järjestelmä luotettavuus muuttuu, jos yksittäiste kompoeti luotettavuus muuttuu? Luotettavuude ehdollistamiskaavaa käyttäe tämä voidaa kirjoittaa muodossa I r i = r i, p i r 0 i, p i Kuossapito kaattaa pyrkiä kohdetamaa luotettavuudeltaa tärkeimpii kompoetteihi Esim. sarjajärjestelmässä i:e kompoeti luotettavuus r p = j= I r i = r(p) p j p i = j i p j Ts. tärkeys suuri kompoetille, joka luotettavuus piei (tällöi muide tulo suuri) ketju o yhtä vahva kui se heikoi lekki 7

Lasketa-approksimoieista (/) Huomioita Rakeefuktio käyttöö perustuvat em. laskutavat atavat tarka luotettavuusarvo Kompoettie oletetaa kuiteki oleva toisistaa riippumattomia vailla yhteisiä vikaatumissyitä Isoissa järjestelmissä tarkka lasketa tulee raskaaksi tarvitaa approksimaatioita Koherettie järjestelmie approksimaatioide ääripäiä sarja- ja riakkaisjärjestelmät, jote i= p i r p i= ( p i )» Ei kuitekaa kovi käyttökelpoie jos esim. eljä kompoettia yhteisellä t:llä p = 0.9, ii rajoiksi saadaa 0.9 4 = 0.656 ja -(-0.9) 4 = 0.9999, mitkä ovat liia väljät Miimitoimitapolut ja -katkosjoukot Järjestelmä voidaa kuvata sarjaakytkettyiä miimikatkosjoukkoia tai riakkaikytkettyiä miimitoimitapolkuia Näistä saadaa luotettavuusrajat k j= i C j ( p i ) r p s j= i P j p i Kompoetit voivat olla useilla toimitapoluilla ja useissa katkosjoukoissa, kyse approksimaatiosta A B 8

Lasketa-approksimoieista (/) Esimerkki Miimitoimitapolut {}, {,},{,4} Miimikatkosjoukot {,},{,,4} Miimitoimitapoluista saadaa luotettavuudelle yläraja r p = p p p p p 4 Miimikatkosjoukoista saadaa luotettavuudelle alaraja r p = p p p p p 4 Jos kaikkie kompoettie t:t samoja, ii p p r p ( p)( p ) 4 Tarkka arvo voidaa laskea seuraavista toisesa poissulkevista katkosvektoreista (0,0,0,0),(0,0,,0),(0,0,0,),(0,0,,),(0,,0,0) 9