Tunnuslukuja 27 III TUNNUSLUKUJA
|
|
- Matilda Penttilä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tuuslukuja 27 III TUNNUSLUKUJA
2 Tuuslukuja 28 Tuuslukuja käytetää, ku tilastoaieistoa havaiollistetaa tiivistetysti yksittäisillä luvuilla. Tuusluvut lasketaa muuttujie arvoje perusteella ja e kuvaavat muuttuja jakaumaa. Tuuslukuje pääryhmät ovat sijaitiluvut ja hajotaluvut. Sijaitiluvut kuvaavat jakauma sijaitia ja hajotaluvut jakauma vaihtelua eli havaitoje poikkeavuutta toisistaa. 5. SIJAINTILUKUJA Tärkeimmät sijaitiluvut ovat keskiarvo, mediaai, moodi ja fraktiilit. Keskiarvo, mediaai ja moodi kuvaavat kuki tavallaa jakauma keskusta ja iitä kutsutaa keskiluvuiksi KESKIARVO Keskiarvo o tuetui tuusluvuista. Keskiarvo voidaa laskea välimatka- tai suhdeasteiko muuttujille. Keskiarvo lasketaa jakamalla havaitoje summa havaitoje lukumäärällä: x1 + x x= x = x i x x 1, x 2,,x = keskiarvo = muuttujie arvot, havaitoarvot = havaitoje lukumäärä = summa : Seuraavassa o lueteltu 7 eri ihmise kuukausipalkat ( /kk): 1 210, 1 429, 1 648, 1 765, 2 320, 4 271, Palkkoje summa: = Havaitoje lukumäärä, : Keskiarvo = Ryhmitellyssä aieistossa havaitoje summa saadaa
3 Tuuslukuja 29 kertomalla muuttuja arvot iide lukumäärillä ja laskemalla äi saadut tulot yhtee. Havaitoje lukumäärä o frekvessie summa. Lasketaa seuraavasta aieistosta keskimääräie poissaolopäivie lukumäärä. Poissaolopäiviä, x i Frekvessi, f i x i f i Keskiarvo: X = 61 2,1 29 Keskiarvo samoi kui muutki tuusluvut pitää laskea aia alkuperäisestä aieistosta, ei luokitellusta aieistosta. Keskiarvo o eite käytetty keskiluku, vaikka se oki herkkä poikkeaville havaioille. Muuta aieistoa selvästi suuremmat tai pieemmät arvot paiavat keskiarvoa omaa suutaasa. Joissaki tilateissa tällaiset äärimmäise poikkeavat havaiot voidaa jättää pois keskiarvoa laskettaessa. Excelissä keskiarvo löytyy Kaavat-valitaauhasta kohdasta Lisää fuktio ja sieltä edellee imellä keskiarvo.
4 Tuuslukuja Paiotettu keskiarvo Joskus havaioiti tehdää osajoukoittai, esim. kuittai ja äide osajoukoista saatuje tietoje perusteella tehdää sitte johtopäätöksiä koko perusjoukosta. Tällöi eri osajoukoilla o erilaie paioarvo, esim. juuri erikokoisilla kuilla o erilaie paioarvo. Isoilla kuilla o suurempi paioarvo kui pieillä. Lasketaa kokoaisarvosaa tietystä opitomoduulista, joka koostuu kolmesta opitojaksosta: OPINTOJAKSO OPINTOPISTEET ARVOSANA A 6 1 B 4 5 C 5 3 6*1+ 4*5 + 5*3 Arvosaa moduulista = = 2, Yleisesti: w1 * x1 + w2 * x w x = w + w w 1 2 * x = w x i w i i missä w i = paiot 5.2. MEDIAANI (Md) Mediaai o suuruusjärjestyksee järjestety aieisto keskimmäie arvo, jos havaitoja o parito määrä. Jos havaitoja o parillie määrä, mediaai o joko kahde keskimmäise arvo keskiarvo tai jompikumpi kahdesta keskimmäisestä arvosta. Mediaaia pieempiä ja suurempia arvoja o 50% havaioista. Koska muuttuja arvot täytyy saada suuruusjärjestyksee, pitää muuttuja olla vähitää välimatka-asteiko muuttuja. Edellisestä aieistosta (palkat) mediaai: 1 210, 1 429, 1 648, 1 765, 1 984, 2 320, havaitoa, keskimmäie eli mediaai o
5 Tuuslukuja 31 Mediaai ei ole samaa tapaa herkkä poikkeaville havaioille kui keskiarvo. Se ei huomioi sitä, mite suuria tai mite pieiä se ympärillä olevat arvot ovat. Tämä äkyy myös edellisessä palkkaesimerkissä. Keskiarvo o ja mediaai Tämä ero johtuu siitä, että keskiarvoa paiaa ylöspäi yksi muita huomattavasti suurempi palkka, Mediaaii se ei vaikuta, ei ole väliä kuika paljo suurempi tuo palkka o muita, joka tapauksessa keskimmäie palkka o Excelissä mediaai lasketaa fuktiolla mediaai MOODI ELI TYYPPIARVO (Mo) Tyyppiarvo o arvo, joka esiityy useimmi. Se voidaa määrittää myös laatueroasteiko muuttujille. Tällaisille muuttujilleha ei voi määrittää tai laskea muita tuuslukuja. Moodi äkee myös frekvessijakaumasta, se o se muuttuja arvo, joka frekvessi o suuri. Näi koska moodi o se muuttuja arvo, joka esiityy useimmi. Jos muuttuja arvoja o paljo tai muuttuja o jatkuva, pitää se luokitella esi. Luokitellusta aieistosta moodi o se luokka tai se luoka keskikohta, joka frekvessi o suuri. Moodi o helppo määrittää, mutta se ei välttämättä kuvaa kovi hyvi jakauma keskimääräistä sijaitia. Excelissä moodi lasketaa fuktiolla moodi FRAKTIILIT Samaa tapaa kui mediaai yhteydessä sitä pieempiä arvoja o 50% havaioista, voidaa vastaavasti valita mikä tahasa prosettiluku ja määrittää se arvo, jota pieempiä o juuri tämä prosettiluvu verra kaikista havaioista. Tällaisia prosettiosuuksia imitetää fraktiileiksi. P%: fraktiili rajaa suuruusjärjestyksessä olevasta aieistosta pois p% havaioista vasemmalta (eli siis rajaa pieemmät arvot pois). Seuraavia fraktiileja käytetää paljo: o Q 1 = alakvartiili, rajaa 25 % havaioista o Q 2 = mediaai, rajaa 50 % havaioista
6 Tuuslukuja 32 o Q 3 = yläkvartiili, rajaa 75 % havaioista o D 9 = yhdeksäs desiili, rajaa 90% havaioista Jotta fraktiilit voidaa laskea, pitää muuttuja olla vähitää järjestysasteiko muuttuja. Excelillä fraktiilit lasketaa fuktiolla prosettipiste. Lasketaa kuta-aieistosta asukasluvu alakvartiili Q 1. Vastaukseksi tulee 2 330,5 eli 25%:ssa Suome kuista o asukkaista korkeitaa 2 330,5. Fraktiileja käytetää ilmoittamaa jakauma sijaiti. Käyttämällä ylä- ja alakvartiilia rajataa pieimmät ja suurimmat 25 % aieistosta pois eli jäljelle jää keskimmäie 50 %:a. Kaikkei suurimmat ja pieimmät arvot o äi rajattu pois. 6. HAJONTALUKUJA Havaitoje keskiäise sijaii ja iide jakautumise kuvaamisee käytetää hajotalukuja. Hajoalla kuvataa sitä, mite laajalle ja millä tavalla havaiot ovat jakaatueet VAIHTELUVÄLI Vaihteluväli ulottuu havaitoaieisto pieimmästä arvosta suurimpaa arvoo. Jos aieisto o luokiteltu, se ulottuu esimmäise luoka alarajasta viimeise luoka ylärajaa. Jotta
7 Tuuslukuja 33 vaihteluväli voidaa ilmoittaa, muuttuja täytyy olla vähitää järjestysasteiko muuttuja. Vaihteluväli pituus o suurimma ja pieimmä arvo erotus. Kegäumerot vaihtelevat 35 ja 46 välillä. Vaihteluväli: (35,46) Vaihteluväli pituus = 11 Vaihteluväli pituus o helppo laskea, mutta ei yksiää aa kovi hyvää kuvaa aieistosta, koska se ottaa huomioo vai aieisto äärimmäiset arvot. Excelissä vaihteluväli voidaa määrittää fuktioide mi ja maks avulla KVARTIILIVÄLI Kvartiiliväli ulottuu alakvartiilista yläkavartiilii. Tämäki vaatii järjestysasteiko muuttuja. Kvartiiliväli ei ole aiva yhtä herkkä muista havaioista poikkeaville havaioille, koska äärimmäiset arvot o rajattu pois. Kvartiilivälii kuuluu puolet havaioista ja se ala- ja yläpuolelle jää 25% havaioista. Samalla tavalla voidaa valita joki muuki prosettiosuus, joka mukaa muodostetaa vastaavasti joki muu väli (esim. 5%) KESKIHAJONTA JA VARIANSSI Keskihajota o eite käytetty hajotaa kuvaava tuusluku. Se ottaa huomioo kaikki havaiot, toisi kui esimerkiksi vaihteluväli, joka ottaa huomioo vai äärimmäiset arvot. Keskihajota voidaa laskea välimatka- ja suhdeasteiko muuttujille. Sitä merkitää tuuksella s. Keskihajoassa otetaa huomioo jokaie havaito ja se poikkeama keskiarvosta. Se mittaa havaitoje ryhmittymistä keskiarvosa ympärille. Seuraavaa kaavaa käytetää yleisesti keskihajoa laskemisee: ( xi x) s = 1 2 Tästä kaavasta ilmeee, että mitä vähemmä havaiot poikkeavat keskiarvosta, sitä pieempi o keskihajota. Jos aieisto o heterogeeista, keskihajota o suurempi kui jos
8 Tuuslukuja 34 aieisto olisi homogeeista. Keskihajota o luotettava hajoa mitta ja se o helppo laskea Excelillä. Excelissä keskihajota lasketaa fuktiolla keskihajota. Kyselyy osallistueide iät olivat: Näide ikie keskiarvo o 22,6 ja keskihajota, 2.5. Keskihajota o suhteellise piei, eli kyselyy vastaeet olivat melko sama ikäisiä. Keskihajoa arvo ei muutu, jos kaikkii lukuihi lisätää tai iistä väheetää sama luku. Jos luvut kerrotaa tai jaetaa samalla luvulla, keskihajoa arvo tulee myös kerrotuksi tai jaetuksi samalla luvulla. Variassi o keskihajoa eliö. 7. KESKIARVON LUOTTAMUSVÄLI Jos tutkimus o tehty otoksesta, oleellista o kertoa, mite luotettavia otoksesta saadut tuusluvut ovat, ku iitä sovelletaa perusjoukkoo. Siksi eustettaessa otoksesta lasketulla keskiarvolla perusjouko keskiarvoa, ilmoitetaa usei myös keskiarvo luottamusväli. Yleisimmi käytetää 95% luottamusväliä. Se tarkoittaa, että perusjouko keskiarvo x ± 2* s sijaitsee 95%: varmuudella tietyllä ilmoitetulla välillä. Keskiarvo 95%: luottamusväli o: Tietystä aieistosta (otoksesta) o laskettu keskiarvoksi 23 ja keskihajoaksi 7. Aieisto koko o 50. Lasketaa luottamusväli: Alaraja: * 21,02 50
9 Tuuslukuja 35 Yläraja: * 24,98 50 Koko perusjouko keskiarvo o 95 %: varmuudella välillä (21,02, 24,98) 8. TUNNUSLUKUJEN VERTAILU Havaitoaieisto voidaa jakaa ryhmii ja laskea äistä eri ryhmistä erilaisia tuuslukuja, esim. sukupuole, pohjakoulutukse yms. perusteella. Excelissä voidaa käyttää suodatusta tai Pivot-taulukoita muuttujie tarkasteluu ryhmittäi. Suodatus tehdää Excelissä Tiedot-valitaauha Suodata-paiikkee kautta.
TILASTOT: johdantoa ja käsitteitä
TILASTOT: johdatoa ja käsitteitä TOD.NÄK JA TILASTOT, MAA10 Tilastotietee tehtävää o esittää ja tulkita tutkimuskohteesee liittyvää havaitoaieistoa eli tilastoaieistoa. Tutkitaa valittua joukkoa ja se
Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä
Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria
Tilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen: Mitä opimme?
TKK (c) Ilkka Melli (004) Tilastolliste aieistoje kuvaamie Tuusluvut Laatueroasteikolliste muuttujie tuusluvut Johdatus tilastotieteesee Tilastolliste aieistoje kuvaamie TKK (c) Ilkka Melli (004) Tilastolliste
Otantajakauman käyttö päättelyssä
Keskiarvo otatajakauma Toisistaa tietämättä kaksi tutkijaa tutkii samaa ilmiötä, jossa perusjoukko koostuu kuudesta tutkittavasta ja tarkoituksea o laskea keskiarvo A: Kokoaistutkimus B: Otatatutkimus
3.2 Sijaintiluvut. MAB5: Tunnusluvut
MAB5: Tuusluvut 3.2 Sijaitiluvut Sijaitiluvut ovat imesä mukaiset: e etsivät muuttuja tyypillise arvo, jos sellaie o olemassa, tai aiaki luvu, joka lähellä muuttuja arvoja o eite. Sijaitiluvut jaetaa kahtee
( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.
Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä
Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.
Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.
Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut
Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,
Mat Tilastollisen analyysin perusteet, kevät 2007
Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa
Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot
TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille
Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma
****************************************************************** ****************************************************************** 7 Esim.
8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut
n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:
1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:
1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
8. laskuharjoituskierros, vko 11, ratkaisut
Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse
1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu
81112A Tietoraketeet ja algoritmit, 217-218, Harjoitus 4, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä 4.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje
pq n s n Kyllä Ei N Jäsenyys 5,4% 94.6 % 1500 Adressi 21,6% 78.4 % 1495 Lahjoitus 23,7% 76.3 % 1495 Mielenosoitus 1,1% 98.9 % 1489
Perusjoukko ja otos Kvatitatiiviset meetelmät Sami Fredriksso Yleie valtio-oppioppi Havaitoyksikkö o empiirise mittaukse kohde Perusjoukko o kaikkie havaitoyksiköide muodostama kokoaisuus Otos o perusjoukkoa
6. Kombinaatio-oppi, todennäköisyys ja tilastot
6. Kombiaatio-oppi, todeäköisyys ja tilastot 6.1 Satuaisotata takaisipaolla Poimimme 3 alkiota takaisipaolla 1 alkio perusjoukosta. Kuika mota erilaista kolme alkio osajoukkoa voimme saada? Ratkaisu. Vastaus:
Taloyhtiöiden jätehuoltopalvelut
Taloyhtiöiden jätehuoltopalvelut Jätehuollon hintakehitys Turussa 2016-2017, KTI Kiinteistötieto Muovinkeräyksen tilannekatsaus Jäteneuvonnan järjestäminen Jätehuollon kustannukset ja muovinkeräys Selvityksessä
Tilastotieteen perusteet
VAASANYLIOPISTO Tilastotieteeperusteet Luetoruko Christia Gustafsso SISÄLLYSLUETTELO. JOHDANTO... 3.. Mitä tilastotiede o?... 3.. Tilastotietee historiaa... 4. HAVAINTOAINEISTO JA MITTAAMINEN... 6.. Peruskäsitteitä...
Til.yks. x y z
Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)
Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4
18.9.2018/1 MTTTP1, luento 18.9.2018 KERTAUSTA Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4 pyöristetyt todelliset luokka- frekvenssi luokkarajat luokkarajat keskus 42 52 41,5
Tilastotieteen johdantokurssi
VAASAN YLIOPISTO Tilastotietee johdatokurssi Luetoruko Christia Gustafsso 1 SISÄLLYSLUETTELO 1. JOHDANTO... 1.1. Mitä tilastotiede o?... 1.. Tilastotietee historiaa... 3. HAVAINTOAINEISTON HANKINNASTA
T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen
T-1.1 Datasta tietoo, syksy 5 Laskuharjoitus.1., ratkaisuja Joui Seppäe 1. Simuloidaa tasoittaista algoritmia. Esimmäisessä vaiheessa ehdokkaia ovat kaikki yhde muuttuja joukot {a}, {b}, {c} ja {d}. Aaltosulkeide
4.3 Signaalin autokorrelaatio
5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.
RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan
RATKAISUT 8 17 8 a) Paraabelie y x ja y x + x + 1 leikkauspisteet saadaa määritettyä, ku esi ratkaistaa yhtälö x x + x + 1, eli x x, joka o yhtäpitävä yhtälö x x. Toise astee yhtälö ratkaisukaavalla saadaa
Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat
811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu
83A Tietoraketeet ja algoritmit 06-07, Harjoitus ratkaisu Harjoitukse aiheea o algoritmie oikeellisuus. Tehtävä. Kahvipurkkiogelma. Kahvipurkissa P o valkoisia ja mustia kahvipapuja, yhteesä vähitää kaksi
TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET. Kokooma 23.1.2008. Viimeisin perustemuutos on vahvistettu 3.2.1998.
TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET Kokooma 23.1.2008. Viimeisi perustemuutos o vahvistettu 3.2.1998. TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET Sisällysluettelo
Mat-2.090 Sovellettu todennäköisyyslasku A
Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,
Tilastotieteen perusteet
VAASAN YLIOPISTO Tilastotieteeperusteet Luetoruko Christia Gustafsso SISÄLLYSLUETTELO 1. JOHDANTO... 3 1.1. Mitä tilastotiede o?... 3 1.. Tilastotietee historiaa... 4. HAVAINTOAINEISTO JA MITTAAMINEN...
SELITETTÄVÄ MUUTTUJA SELITTÄVÄ MUUTTUJA. Välimatka- tai suhdelukuasteikko. Laatuero- tai järjestysasteikko. Laatuero- tai järjestysasteikko
Moimuuttujameetelmät Kvatitatiiviset meetelmät Sami Fredriksso Yleie valtio-oppioppi Mikko Mattila 009 1 Yhde muuttuja meetelmät (uivariate statistics): keskiluvut ja hajotaluvut Moimuuttujameetelmät:
MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku
Kvantitatiiviset menetelmät
Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden
Vastaus: Kertymäfunktio on F( x) = x, kun 0 x 20. Todennäköisyydet ovat molemmat 1. Frekvenssi f
0, ku x < 0 Vastaus: Kertymäfuktio o F( x) = x, ku 0 x 0 0, ku x > 0 Todeäköisyydet ovat molemmat 0. Laudatur MAA ratkaisut kertausharjoituksii Tilastoje esittämie 3. a) Tietty kasvi b) Kukkie lukumäärä
Sisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla.
Kvatitatiivie metodologia verkossa Moitasomallius Pekka Ratae Helsigi yliopisto isältö Moitasomallit Matemaattisia peruskäsitteitä Esimerkki kovariassista Otatavirhe Esimerkki elittävie muuttujie lisäämie
pisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...
Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3
KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun
MTTTP1, luento KERTAUSTA JA TÄYDENNYSTÄ. Tunnusluvut. 1) Sijainnin tunnuslukuja. Keskilukuja moodi (Mo) mediaani (Md) keskiarvo, kaava (1)
20.9.2018/1 MTTTP1, luento 20.9.2018 KERTAUSTA JA TÄYDENNYSTÄ Tunnusluvut 1) Sijainnin tunnuslukuja Keskilukuja moodi (Mo) mediaani (Md) keskiarvo, kaava (1) Muita sijainnin tunnuslukuja ala- ja yläkvartiili,
Tehtäviä neliöiden ei-negatiivisuudesta
Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:
Tilastollinen päättely II, kevät 2017 Harjoitus 3B
Tilastollie päättely II, kevät 7 Harjoitus 3B Heikki Korpela 3. maaliskuuta 7 Tehtävä. Jatkoa harjoitukse B tehtävii -3. Oletetaa, että x i c kaikilla i, ku c > o vakio. Näytä, että ˆβ, T ja T ovat tarketuvia.
Kandidaatintutkielman aineistonhankinta ja analyysi
Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä
Matematiikan tukikurssi
Matematiika tukikurssi Kurssikerta 3 1 Lisää iduktiota Jatketaa iduktio tarkastelua esimerki avulla. Yritetää löytää kaava : esimmäise (positiivise) parittoma luvu summalle eli summalle 1 + 3 + 5 + 7 +...
1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
Tilastollisten aineistojen kuvaaminen
Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2007) 1 Tilastollisten aineistojen kuvaaminen >> Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten
Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2005) 1 Tilastollisten aineistojen kuvaaminen Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten muuttujien tunnusluvut
811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu
111A Tietoraketeet ja algoritmit, 016-017, Harjoitus, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje kompleksisuusluokat
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
Järvi 1 Valkjärvi. Järvi 2 Sysijärvi
Tilastotiedettä Tilastotieteessä kerätään tietoja yksittäisistä asioista, ominaisuuksista tai tapahtumista. Näin saatua tietoa käsitellään tilastotieteen menetelmin ja saatuja tuloksia voidaan käyttää
Kvantitatiiviset menetelmät
Kvatitatiiviset meetelmät Pieryhmii ilmoittautumie alkaa ke.. klo 9.00 Ryhmä 1: Jussi Kiue: Esimmäie kokootumie to 4.. klo 14-16, paikka päärak aud IV SPSS-harjoitukset: ti.3. klo 11-13 ja to 7.4. klo
KERTAUSHARJOITUKSIA. Tilastojen esittäminen. 212. a) 15-19 vuotiaita tyttöjä 156 377 Koko väestö 5 219 732 156 277 Näiden tyttöjen osuus
KERTAUSHARJOITUKSIA Tilastoje esittämie. a) -9 vuotiaita tyttöjä 377 Koko väestö 9 73 77 Näide tyttöje osuus 3, 0 % 9 73 b) Pojat ja tytöt: 3 377 + 77 = 39 4 39 4 Osuus koko väestöstä, % 9 73 c) Ikäluokka
Matematiikan tukikurssi
Matematiika tukikurssi Kertauslueto. välikokeesee Algebraa Tämäkertaie kurssimoiste sisältää rusaasti harjoitustehtäviä. Syyä tähä o se, että matematiikkaa oppii parhaite itse tekemällä ja laskemalla.
Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)
Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,
Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät
Matematiika tukikurssi Kertausta. välikokeesee Tehtävät Algebraa Tämä kappale sisältää rusaasti harjoitustehtäviä. Suurimpaa osaa tehtävistä löytyy ratkaisut lopusta. Syyä rusaasee tehtävämäärää o, että
Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011
Kuvioita, taulukoita ja tunnuslukuja Aki Taanila 2.2.2011 1 Tilastokuviot Pylväs Piirakka Viiva Hajonta 2 Kuviossa huomioitavia asioita 1 Kuviolla tulee olla tarkoitus ja tehtävä (minkä tiedon haluat välittää
Tehtävä 1. Riku Eskelinen DEMOVASTAUKSET Demokerta 3/ vk 15 Tilastomenetelmien peruskurssi TILP150 Tulostuspv Sivu 1/6
Riku Eskelie DEMOVASTAUKSET Demokerta 3/ vk 15 Tilastomeetelmie peruskurssi TILP150 Tulostuspv 05.04.013 Sivu 1/6 Tehtävä 1 Muuttuja MATPIT o luokitteluasteikollie. Muuttuja OPPMIN o järjestysasteikollie.
LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
Matematiikan tukikurssi
Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa
3 Lukujonot matemaattisena mallina
3 Lukujoot matemaattisea mallia 3. Aritmeettie ja geometrie joo 64. a) Lukujoo o aritmeettie joo, joka yleie jäse o a 3 ( ) 4 34 4 4 b) Lukujoo o geometrie joo, joka yleie jäse o c) Lukujoo o geometrie
Matin alkuvuoden budjetti
1 TILASTOJEN TULKINTAA 1. euroa Matin alkuvuoden budjetti 600 500 400 300 200 100 0 tammikuu helmikuu maaliskuu huhtikuu a) Milloin Matti on kuluttanut eniten rahaa ostoksiin? Arvioi, kuinka paljon vaatteisiin
Tilastolliset menetelmät: Tilastolliset testit
Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.
Mat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit
Mat-.09 Sovellettu todeäköisyyslasku Mat-.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Estimoiti Luottamusvälit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Estimaattori, Estimoiti, Frekvessi,
Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:
Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,
Luento 7 Luotettavuus Koherentit järjestelmät
Lueto 7 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio Aalto-yliopisto perustieteide korkeakoulu PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi Määritelmä Tarkasteltava
Luento 6 Luotettavuus Koherentit järjestelmät
Lueto 6 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi ja-erik.holmberg@aalto.fi Määritelmä Tarkasteltava yksikö luotettavuus
Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Aalyysi I Harjoitus 5. 0. 2009 alkavalle viikolle Ratkaisuehdotuksia ( sivua) (Rami Luisto) Laskuharjoituksista saa pistettä, jos laskettu vähitää 50 tehtävää; 3 pistettä,
Tilastollinen todennäköisyys
Tilastollie todeäköisyys TOD.NÄK JA TILASTOT, MAA10 Klassisessa todeäköisyydessä oli ehdot: äärellisyys ja symmetrisyys. Tämä tilae o usei mahdoto ts. alkeistapauksia o usei ääretö määrä tai e eivät ole
Epäyhtälöoppia matematiikkaolympialaisten tehtäviin
Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II
Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6
BM20A Integraalimuunnokset Harjoitus 8
(b)...(d) eve + eve = eve eve eve = eve BM2A57 - Itegraalimuuokset Harjoitus 8. Vastaa jokaisessa kohdassa seuraavii kysymyksii: Oko fuktio parillie? Oko fuktio parito? Huomaatko polyomie kohdalla hyvi
Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.
Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)
Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet
Ilkka Melli Todeäköisyyslasketa Osa 2: Satuaismuuttujat ja todeäköisyysjakaumat Kovergessikäsitteet ja raja arvolauseet TKK (c) Ilkka Melli (2006) 1 Kovergessikäsitteet ja raja arvolauseet >> Kovergessikäsitteitä
Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018
Aalyysi A Harjoitustehtäviä lukuu / kevät 208 Ellei toisi maiita, tehtävissä esiityvät muuttujat ja vakiot ovat mielivaltaisia reaalilukuja.. Aa joki ylä- ja alaraja joukoille { x R x 2 + x 6 ja B = {
10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.
10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).
Harjoitustehtävien ratkaisuja
3. Mallitamie lukujooje avulla Lukujoo määritelmä harjoituksia Harjoitustehtävie ratkaisuja 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3 a) 6,, 8, 4, 30. b) 8,, 6, 0,
SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?
SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?...7 TILASTO...7 TILASTOTIEDE...8 HISTORIAA...9 TILASTOTIETEEN NYKYINEN ASEMA...9 TILASTOLLISTEN MENETELMIEN ROOLIT ERI TYYPPISET AINEISTOT JA ONGELMAT...10
5. Keskiluvut. luokan väliin, ei sen määrääminen tuota vaikeuksia. Näin on seuraavissa esimerkeissä:
22 5. Keskiluvut Kaikkein pisimmälle on informaation tiivistämisessä menty silloin, kun otosta kuvataan vain yhdellä luvulla, joka mahdollisimman hyvin edustaa kaikkia otoksen arvoja. Tällaisia lukuja
Kvantitatiiviset tutkimusmenetelmät maantieteessä
Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 2
Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 2 Aiheet: Satuaismuuttujat ja todeäköisyysjakaumat Kertymäfuktio, pistetodeäköisyysfuktio ja tiheysfuktio Jakaumie tuusluvut Tärkeimmät
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas f 332 = 3 Kvartiilit(302, 365, 413) Kvartiilit: missä sijaitsee keskimmäinen 50 % aineistosta? Kvartiilit(302, 365, 413) Keskiarvo (362.2) Keskiarvo
2. Mittaus ja data 2.1. Johdanto. 2.2. Mittaustyypit
2. Mittaus ja data 2.. Johdato Voidaksemme keksiä tosimaailma relaatioita tarkastelemme sitä kuvaavaa dataa, jote esiksi selvitämme, mitä data perimmiltää o. Data kerätää kuvaamalla mielekiitoaluee oliot
Hannu mies LTK 180 Johanna nainen HuTK 168 Laura nainen LuTK 173 Jere mies NA 173 Riitta nainen LTK 164
86118P JOHDATUS TILASTOTIETEESEEN Harjoituksen 3 ratkaisut, viikko 5, kevät 19 1. a) Havaintomatriisissa on viisi riviä (eli tilastoyksikköä) ja neljä saraketta (eli muuttujaa). Hannu mies LTK 18 Johanna
Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015
Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,
2.5. Eksponenttifunktio ja eksponenttiyhtälöt
Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,
Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät
Ryhmä osajouko geeroima aliryhmä ja vapaat ryhmät LuK-tutkielma Joose Heioe Matemaattiste tieteide tutkito-ohjelma Oulu yliopisto Kevät 2017 Sisältö Johdato 2 1 Ryhmät ja aliryhmät 2 1.1 Ryhmä.................................
tilavuudessa dr dk hetkellä t olevien elektronien
Semiklassie johtavuusmalli Metalleissa vastus aiheutuu virrakuljettajie törmäyksistä, joita karakterisoi relaksaatioaika τ Oletetaa, että ifiitesimaalisella aikavälillä dt elektroi törmäystodeäköisyys
3.9. Mallintaminen lukujonojen avulla harjoituksia
3.9 Mallitamie lukujooje avulla harjoituksia 3.9. Mallitamie lukujooje avulla harjoituksia Lukujoo määritelmä harjoituksia 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3
1 PROSENTTILASKENTAA 7
SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö
Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma
1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1
Epäyhtälötehtävie ratkaisuja. osa, ks. Solmu 2/200. Kahde positiivise luvu harmoie, geometrie, aritmeettie ja kotraharmoie keskiarvo määritellää yhtälöillä H = 2 +, G = uv, A = u + v 2 u v ja C = u2 +
Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 0, MALLIRATKAISUT Tehtävä. Voidaako seuraavat luvut esittää kahde eliö summia? Jos voidaa, ii kuika moella eri tavalla? (i) = 45 (ii) = 770. Ratkaisu. (i) Jaetaa