Materiaalien murtuminen



Samankaltaiset tiedostot
PD-säädin PID PID-säädin

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

4.3 Liikemäärän säilyminen

POSITIIVISEN LINSSIN POLTTOVÄLI

7. Pyörivät sähkökoneet

RATKAISUT: 17. Tasavirtapiirit

1 LAMMIMUURIN RAKENNE JA OMINAISUUDET 2 2 KÄYTTÖKOHTEET 2 3 MUURITYYPIT 2 4 LASKENTAOTAKSUMAT Materiaalien ominaisuudet Maanpaine 3 4.

Intensiteettitaso ja Doplerin ilmiö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

Nokian kaupungin tiedotuslehti Kolmenkulman yrityksille

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset

Vaatimukset. Rakenne. Materiaalit ja niiden ominaisuudet. Timo Kiesi

Äänen nopeus pitkässä tangossa

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5

... MOVING AHEAD. Rexnord Laatuketjut. Rullaketjut Rotary-ketjut Levykimppuketjut

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I

12. ARKISIA SOVELLUKSIA

Triathlon Training Programme 12-week Sprint Beginner

Fysiikkakilpailu , avoimen sarjan vastaukset AVOIN SARJA

LUKION FYSIIKKAKILPAILU avoimen sarjan vast AVOIN SARJA

Murtumismekaniikka III LEFM => EPFM

RATKAISUT: 8. Momentti ja tasapaino

10 Suoran vektorimuotoinen yhtälö

Luku 16 Markkinatasapaino

Raerajalujittuminen LPK / Oulun yliopisto

SYNKRONIKONEET RELUKTANS- SIKONEET RM RM RM + >>L q. L d >>L q. Harjalliset -pyörivä PMSM upotetu magneetit

12. laskuharjoituskierros, vko 16, ratkaisut

Luotettavuusteknisten menetelmien soveltaminen urheiluhallin poistumisturvallisuuden laskentaan

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa,

Mat Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Vauriomekanismi: Väsyminen

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k

S Piirianalyysi 2 2. välikoe

SAVUN JA KOSTEUDEN VAIKUTUS ELEKTRONIIKKAPIIREIHIN

Ympäristöministeriön asetus puurakenteista. Annettu Helsingissä 6 päivänä lokakuuta 2000

JÄÄMEREN RAUTATIE ROVANIEMI-KIRKKONIEMI

Kahdeksansolmuinen levyelementti

Kahdeksansolmuinen levyelementti

7.lk matematiikka. Geometria 1. Janne Koponen versio 2.0

DIGITAALISET PULSSIMODULAATIOT M JA PCM A Tietoliikennetekniikka I Osa 21 Kari Kärkkäinen Kevät 2015

NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS

Tarpeenmukainen ilmanvaihto

RATKAISUT: Kertaustehtäviä

Väsymissärön ydintyminen

( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT

020* 23 8,7 0,4 0, , ,8 1, ,

MAOL-Pisteitysohjeet Fysiikka kevät 2004

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen Mekaniikka 2

Kon Luento 12 -Säteilyhaurastuminen -Mikrorakenteen vaikutus murtumiseen -Yhteenveto -CASE: Murtumismekanismien yhteisvaikutukset

DIGITAALISET PULSSIMODULAATIOT M JA PCM

Pinta-alan variaatio. Rakenteiden Mekaniikka Vol. 44, Nro 1, 2011, s Eero-Matti Salonen ja Mika Reivinen

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä

S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH2. f i C C. λ 2, m 1 cos60,0 1, m 1,2 pm. λi λi

Teknologiakehitystä ei voi pysäyttääj. Hankintaprosessi sähköistynyt laajalti. Oston teknologiakehityksen alkuvaiheita. Luento 11 e-hankinnat

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.

Kestävä tuotanto ja tuotteet. Suomen Akatemian tutkimusohjelma kestävä tuotanto ja tuotteet KETJU

Makroskooppinen approksimaatio

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina

PT-36 Plasmarc-leikkausarvot

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet

S Fysiikka III (Est) Tentti

Dislokaatiot - pikauusinta

Murtumismekanismit: Väsyminen

Viikkotehtävät IV, ratkaisut

SÄHKÖASEMAN ENSIÖPUOLEN SUUNNITTELUSSA KÄYTETTÄ- VIEN LASKENTAMENETELMIEN KEHITTÄMINEN

Mat Sovellettu todennäköisyyslasku A

TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA.

Vaurioiden tyypilliset syyt

S Piirianalyysi 2 Tentti

Kertaustehtäviä. Luku 1. Physica 3 Opettajan OPAS

Tämä sivu on jätetty tarkoituksella tyhjäksi kaksipuoleista tulostusta varten

LUKION FYSIIKKAKILPAILU , ratkaisut PERUSSARJA

Valuma-aluetason kuormituksen hallintataulukon vaatimusmäärittely

7. PYÖRIVÄN SÄHKÖKONEEN SUUNNITTELUN ETENEMINEN JA KONEEN OMI- NAISUUDET

SISÄLTÖ 1. Veto-puristuskoe 2. Jännitys-venymäpiirros 3. Sitkeitten ja hauraitten materiaalien jännitysvenymäkäyttäytyminen

Lovilujittuminen. Lovessa kolmiaksiaalinen jännitystila Lovessa materiaali käyttäytyy kuin se*olisi lujempi


C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia.

RUOKAKESKO RUOKAKESKON HAKKILAN VARASTON KV2 LAAJENNUS. Liikenne, maisema

TEKNIIKKA JA LIIKENNE. Sähkötekniikka. Sähkövoimatekniikka INSINÖÖRITYÖ

YDINSPEKTROMETRIA TENTTI mallivastaukset ja arvostelu max 30 p, pisterajat 15p 1, 18p 2, 21p 3, 24p 4, 27p - 5

Kuva lämmönsiirtoprosessista Käytössä ristivirtalämmönvaihdin (molemmat puolet sekoittumattomat)

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)


Murtumismekaniikka II. Transitiokäyttäytyminen ja haurasmurtuma

Kuparikapselin pitkäaikaiskestävyys

Ajoketjusta seisontahaukkuun miten pysäyttävien koirien käytöstä tuli hirvenmetsästyksen valtavirtaa?

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli

MODUVIA OY Juha Ruotsala Puh

MAOL-Pisteitysohjeet Fysiikka kevät 2002

LASKENTA laskentakaavat

Mikroskooppisten kohteiden


Mat Tilastollisen analyysin perusteet, kevät 2007

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Kontion MAMA2010. Maisemahuvilat .AT Osoitelähde: Kontiotuote Oy:n asiakasrekisteri

Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla

Transkriptio:

Määritelmä: Materiaalien murtuminen r Fracture i the eparation, or fragmentation, of a olid body into two or more part under the action of tre Murtumiproei voidaan jakaa kahteen oaan 4 Särön ydintyminen 4 Särön kavu Murtumat voidaan jakaa kahteen päätyyppiin 4 Hauramurtuma r Särö etenee nopeati ja iihen liittyy vain pientä mikrodeformaatiota r Samanlainen kuin lohkomurtuma ionikiteiä 4 Sitkeä murtuma r Tapahtuu platita deformaatiota ekä ennen ärön etenemitä että en aikana 4 Alttiu hauramurtumaan korotuu matalia lämpötiloia, nopeia muodonmuutokia ja kolmiakiaaliea jännitytilaa (lovivaikutu)

Murtumatyypit

Materiaalien murtumityypit ja teoreettinen lujuu Materiaaleia voi ii eiintyä ueita murtumityyppejä riippuen 4 Materiaalita (kootumuketa ja mikrorakenteeta) 4 Lämpötilata 4 Muodonmuutonopeudeta 4 Jännitytilata Monikiteiiä materiaaleia murtumat etenevät: 4 Kiteiden läpi (trangranular) tai 4 Kiderajoja pitkin (intergranular) Kiteiten materiaalien teoreettinen lujuu: E 4 < 1 æ Eg ö teor. = ç > a 0 è ø E 15 Käytännöä: Miki! < max teor. 1000

4 Tämä johtuu materiaalia olevita virheitä: dilokaatioita, lovita, äröitä, huokoita, jne. à platinen deformaatio ja lovivaikutu 4 Elliptien loven kärjeä oleva makimijännity 4 Eli paikallieti ärön kärjeä jännity on huomattavati nimellijännitytä uurempi 4 Näin ollen murtumieen tarvittava nimellinen jännity materiaalille, joa on äröja (eli atomaarien teräviä lovia) on Materiaalien murtuminen 1 1 max 1 ø ö ç ç è æ» ú ú û ù ê ê ë é ø ö ç ç è æ + = t t c c r r 1 1 0 t f 4c E c 4a E ø ö ç è æ g» ø ö ç ç è æ r g» kun r t = a 0 (atomirivien välinen etäiyy) Þ terävin mahdollinen ärö (Inglih) ] ) c ( ) a E ( [ t f o max r = g = 1 0. ø ö ç ç è æ = a E teor g

Murtumimekaniikka Griffithin teoria (laimaien hauraille aineille): 4 Hauraaa, äröjä iältävää materiaalia jännity voi paikallieti nouta yli teoreettien lujuuden, vaikka nimellijännity on huomattavati tätä pienempi. 4 Särö etenee, jo kuormitukea materiaaliin varatoituneen elatien energian pienentyminen on vähintään yhtä uuri kuin energia, joka tarvitaan uuden pinnan muodotamieen. 4 Tarkatellaan ärön kavua nimellijännityken alaiea lovelliea kappaleea 4 Elatinen jännityenergia on U E pc = - E 4 Murtopintoihin itoutuva energia: U 4 Kokonaienergia S = 4cg S DU = U + tot E U S

joten liääntyvä pintaenergia on kompenoiduttava elatien energian lakulla 4 Verrattaea Griffitin yhtälöä murtumieen johtavaan jännitykeen kun r t = 3a 0 eli r t = 3a 0 on elatien ärön kaarevuuäteen alaraja (vähintään näin terävä ärö). Vaikka Griffitin teoriaa ei ole kaarevuuädettä oletetaan että ärö on terävä 1 4 0 ) ( ø ö ç è æ = ø ö ç ç è æ - = = D c E E c c dc d dc U d S G f S p g p g, 3 eli 8 1 0 1 0 G f t Ing f t Ing f a c E a c E r p g p pr g = ø ö ç ç è æ» ø ö ç ç è æ» Murtumimekaniikka

Murtumimekaniikka 4 Kokeellieti tiedetään, että vaikka metalli murtuiikin makrokooppieti täyin hauraati, ennen murtumaa tapahtuu paikallita ärön platioitumita. à platinen deformaatio ärön kärjeä pyöritää itä ja näin ollen kavattaa r t :tä, jolloin murtolujuu kavaa 4 Orovan korjai Griffithin tarkatelua iällyttämällä murtolujuuden yhtälöön platita työtä ärön kavua kuvaavan termin g P (= murtopintoihin varatoitunut platinen energia) ée ë * S f = ê c ( g + g ) p 4 Tiedetään että g P on käytännöä luokkaa 10-10 3 J/m ja vataavati g S on tyypillieti 1- J/m. 1 * éeg ù f» ê ë cp ú û P ù ú û 1

Murtumimekaniikka Griffith-Orovanin mukaan materiaalin murtoluujuu on f éeg» ë ê a 4 Koka ärön kavua tarvittava platinen työ g P on vaikeati kokeellieti mitattavia, Irwin modifioi yhtälöä termillä, joka on uoraan mitattavia U G c = a f éeg» ê ë pa C ù ú û 1 joa G c kriittien muodonmuutoenergian vapautuminopeu tai elatien energian vapautuminopeu tai murtumiitkey [J/m ]. 4 Elatien energian vapautuminopeu G voidaan mitata kokeellieti! Þ P ù û ú 1 f pa c» EG pa G = G = ( g + g p ) E c = K c

Murtumiitkey K IC [MPaÖm] on materiaalivakio ja murtuminen tapahtuu, kun K = K C ( = f ) K Murtumimekaniikka (LEMM) c = f pa K c on ii ärön kärjen kriittien jännityken uuruu, joka voidaan karakterioida mitattavien uureiden n ja a avulla. c K C = n pa Materiaalin valinta Suunnittelujännity Havaittu/ allittu ärökoko Huom! Käyttöolouhteiden vaikutuketa K voi kavaa kriittieen arvoona!

Murtumimekaniikka 4 Loven (tai ärön) kärjeä oleva platinen alue pienenee nopeati myötölujuuden kavaea, eli pehmeiä metalleia on uuri platinen alue ja lujia materiaaleia platinen alue on hyvin pieni. 4 Pehmeiä metalleia ärön kärjen platioituminen aiheuttaa kärjen "pyöritymitä" ja kuluttaa paljon energiaa eli murtumiitkey K c on uuri y = r P = K pr K P p o = 0

Murtumimekaniikka Hauraia materiaaleia platinen alue jää pieneki (ei ärön kärjen pyöritymitä) ja jännity kohoaa helpoti materiaalin teoreettien lujuuden yli

Materiaalien itkeä murtuma 4 Metalleilla itkeä murtuma tapahtuu hitaati repeytymällä ja iihen liittyy huomattava energian kulutu. 4 1-akiaaliea vetojännitykeä itkeä murtuma tapahtuu poikkipintaalan paikallien pienenemien kautta eli kuroutumalla 4 Kuroutuminen alkaa, kun muokkaulujittuminen ei pyty kompenoimaan poikkipinta-alan pienenemietä johtuvaa jännityken kavua.

Materiaalien itkeä murtuma 4 Kuroutuminen aiheuttaa kolmiakiaalien jännitytilan muodotumien kurouman pohjaan 4 Kurouma-alueen kekellä vaikuttaa näytteen pituuakelin uuntaien vetojännityken ynnyttämä hydrotaattinen komponentti r Tähän alueeeen yntyy mikrokoloja eli voideja r Jännityken liääntyeä nämä kavavat ja yhdityvät muodotaen iäiiä lovia tai äröjä r Särö kavaa kohtiuoraan vetoakelia vataan, kunne e aavuttaa näytteen pinnan r Lopuki ärö etenee paikalliia liukutaoja pitkin noin 45 0 kulmaa vetoakeliin nähden 4 Mikrokooppieti tarkateltuna deformaatio kekittyy ärön kärjeä ohuiiin liukunauhoin, joia vaikuttaa uurin leikkaujännity 4 Särö etenee ikakkia muodotaen yhtenäiempiä repeämiä 4 Sitkeä murtuma etenee huokoten väliten kannaten repeilemienä 4 Tätä johtuu, että itkeä murtopinta kootuu pitkänomaiita urita

Lovivaikutu 4 Tärkeimmät tekijät, jotka vaikuttavat itkeä- hauramurtuma taipumukeen ovat: r Jännitytila r Lämpötila r Muodonmuutotila 4 Kuvata nähdään hauramurtuman ja itkeän murtuman uhde eri lämpötiloia 4 Loveamaton näyte murtuu hauraati tranitiolämpötilan (T tr ) alapuolella 4 Loven vaikutu (platic contraint factor) aiheuttaa tranitiolämpötilan voimakkaan nouun T tr => T tr 4 Samanlainen vaikutu havaitaan myö muodonmuutonopeuden kavaea T tr T tr 4 Lovetun ja loveamattoman muodonmuutolujuuden (flow tre) uhdetta kuvataan platic-contraint - tekijällä (q) Loven vaikutu

3-akiaalinen puritujännity (hydrotaattinen paine) vatutaa murtumita ja iten liää itkeyttä. 4 Koka hydrotaattien paineen alla ei ole leikkaujännitytä, eivät myökään dilokaatiot liiku ja monitu à ei platita deformaatiota. 4 Liäki hydrotaattinen paine ulkee huokoia ja avautuneita kiderajoja, joten murtuman eteneminen vaikeutuu 4 Sitkeiden metallien (1), hauraiden metallien () ja erittäin hauraiden materiaalien (3) käyttäytyminen hydrotaattien paineen alaiena Hydrotaattien paineen vaikutu

Väyminen-Fatigue Murtuminen tapahtui nopeati ilman minkäänlaita varoituta Mikäli K < K c, ärö ei kykene kavamaan ja aiheuttamaan äkillitä murtumita. Mutta ärö voi kavaa myö em. kuormitutaon alapuolella joko 4 Vaihtelevan kuormituken (väyminen) ja/tai 4 Syövyttävän ympäritön (korrooioväyminen) vaikutuketa. Toituvan kuormituken alainen komponenttiliito voi pettää jännitykellä, joka on alle murtolujuuden ja uein jopa alle myötölujuuden

Väyminen Väyminen jaetaan uein kahteen päätyyppiin 1. Jännityken kontrolloima väyminen (äröttömän materiaalin väymieen). Venymän kontrolloima väyminen (kuormitu ylittää yleieti tai paikallieti materiaalin myötölujuuden) Säröttömän kompon. väyminen - Ei alkuäröjä - Säröjen ydintyminen ratkaievaa Säröllien komponentin väyminen - Rakenteea alkuäröjä /vikoja - Säröjen kärjen platioituminen à venymän konrolloima tilanne ärön kärjeä, vaikka yleinen myötäminen on elatita à eteneminen ratkaievaa "High cycle fatigue" - < o -N f > 10 4 - Eim. mekaaniet värähtelyt "Low cycle fatigue" - (tai L ) > o -N f < 10 4 - Eim. lämpöjännityket

Särön ydintyminen väymieä

Juoteliitoten luotettavuu Juoteliitoken ominaiuudet (termo)mekaaniea raitukea 4 Vanheneminen eli lujuuden pieneneminen yklien raituken ja/tai korkealämpötila-altituken johdota (age- and cyclic- oftening) 4 Rakeenkavu 4 Muodonmuutonopeuden vaikutu mekaaniiin ominaiuukiin (trainrate hardening) 4 Superplatiuu Vaurion yy juoteliitokea tavallieti väymien ja virumien yhteivaikutu 4 Lukuunottamatta vaurioita hokkikuormitukea

Jännityken kontrolloima väyminen (eli high cycle) 4 High cycle - väyminen tarkoittaa materiaalin väymitä yklaavan kuormituken alaiena, kun jännityket pyyvät myötörajan alapuolella, jolloin yklien lukumäärä on uuri ( >10000). 4 Kun kekijännity m = 0, kokeellinen data voidaan ovittaa yhtälöön a f D N = C 4 joka on n. Baquin laki, joa poteni a (ueimmille materiaaleille välillä 1/8...1/15) ja C 1 ovat vakioita. 1

Venymän kontrolloima väyminen (low-cycle) 4 Säröttömän komponentin low-cycle väymieä ykliet jännityket ovat myötörajaa uurempia (yleieti tai paikallieti), ja iki murtumaan johtava yklien lukumäärä on yleenä pieni. 4 Eittämällä platinen myötymä (e P ) log/log-ateikolla N f :n funktiona aadaan lineaarinen riippuvuu DeP c = ef (N) jota kututaan Coffin-Manonin laiki, joa De p / on venymäamplitudi (plat.), e f on n. väymiitkeykerroin, joka aadaan venymäakelin leikkaupiteetä (N = 1), ja e on» e f ueille metalleilla (tod. murtovenymä). N on jännityvaihtojen lukumäärä vaurioon (1 ykli = N) c väymiitkeyekponentti, uein välillä -0.5 <=> -0.7

Alkuärön iältävän komponentin väymiketävyy Uein materiaalit iältävät äröjä. Tällöin on tärkeä tietää, kuinka kauan ketää eli kuinka monta kuormitukertaa tarvitaan, ennen kuin rakenteea oleva ärö on kavanut kriittieen kokooon ja yhtäkkinen murtuminen tapahtuu. DK = K max - K min = r pa;k m = K max + K min ;K a = K max -K min

Alkuärön iältävän komponentin väymiketävyy 4 Jännityinteniteetti DK (=DÖpa) kavaa ärön kavaea (vakio jännityamplitudilla). 4 Jo DK on tiettyä kynnyarvoa, K th, pienempi, ärö ei kava ollenkaan (alue I), mutta kun DK ³ K C, murtuma tapahtuu välittömäti (alue III). 4 Näiden välieä n. vakautuneea vaiheea ärö kavaa jokaiella kuormanvaihdolla ja en euraukena DK (jännityinteniteetti) kavaa nopeudella da p = ADK dn miä A ja p ovat materiaalivakioita. 4 Jo alkuärön pituu on a 0 ja murtumaan johtavan ärön pituu a f on tunnettu, voidaan murtumaan johtavien yklien lukumäärä (N f ) lakea: N 4 Tämä on n. Pariin laki. f = Nf ò 0 dn = af ò a0 da A DK p

Materiaalin rakenteen vaikutu väymieen 4 Materiaalin väymienketävyy on hyvin riippuvainen en mikrorakenteeta: homogeeninen rakenne on edullinen. 4 Väymienketoa voidaan parantaa uunnittelemalla rakenne niin, ettei iinä ole jännitykekittymiä ja että jännityket ovat luonteeltaan puritujännitykiä (eim. alutäyte kääntöirutekniikaa). 4 Koka leikkaujännityket vaikuttavat uureti väymieen, voidaan materiaalin leikkaulujuutta notamalla myö parantaa väymiketävyyttä r Vältettävä kakifaaita rakennetta, joa toinen faai on pehmeämpi kuin toinen r Dilokaatioiden liukumien vaikeuttaminen (pieni raekoko, hienojakoiet erkaumat ja liuolujitu). r Mahdolliimman taaien liukuminen (homogeeninen faairakenne).

Särön etenemimekanimi 4 Vaemmanpuoleinen oa kuvaa kuvaa ärön etenemitä puhtaaa metallia tai polymeeria, oikeanpuoleinen metallieokia 4 Jännityykli ynnyttää ärön eteen platien alueen, joka avaa ärön kärkeä määrällä d ja ynnyttää uutta pintaa. Puritujännity painaa itten äröä kaaan, jolloin uui pinta iirtyy eteenpäin ja ärö kavaa noin d:n verran. 4 Seuraavalla yklillä ama toituu ja näin ärö kavaa da dn» d 4 Seokia yntyy pieniä huokoia ärön kärkeen, jotka yhtyvät toiiina. Näiden huokoten avutamana ärö etenee hiukan nopeammin kuin puhtaan aineen tapaukea

Korrooioväyminen 4 Syklien jännityken ja korrooion yhteivaikututa kututaan korrooioväymieki 4 Uein korrooio ynnyttää materiaalin pintaan yöpymirakoja, jotka aikaanaavat lovivaikutuken à väymimurtuman ydintyminen 4 Toiaalta korrooio voi toimia paikallieti ärön kärkialueea (anodinen liukeneminen ja/tai katodinen vety) yhdeä väytyraituken kana, jolloin elinikä lyhenee merkittäväti r Agreiiviiä ympäritöiä vaurio voi tapahtua jännitytiloia, joia normaalia väymimurtumaa ei tapahtuii (fatigue limit) 4 Vaurio voi ydintyä myö toiin päin, eli väyttävä raitu rikkoo materiaalia uojaavan okidikuoren (pureet), jolloin korrooio pääee etenemään

Lämpötilan vaikutu Materiaalien lujuu pienenee lämpötilan noutea Vakanien määrä nouee ja atomien liikkuvuu liääntyy nopeati lämpötilan kavaea à diffuuion kontrolloimat proeit vaikuttavat uureti materiaalin mekaaniiin ominaiuukiin korotetuia lämpötiloia Myö dilokaatioiden liikemahdolliuudet liääntyvät (liukumien (F = tb) liäki kiipeäminen (F = xx b) on mahdollita) à uudet deformaatiomekanimit tulevat virumiea ja kuumamuokkaukea. Pitkäaikainen altitu korkealle lämpötilalle à erityieti metallien ja eoten rakenne muuttuu Rakenteen karkeutuminen (rakeiden, erkaumien jne. kavu) Rekritalliaatio Okidoituminen

Muokkaulujittuminen q Platien muodonmuutoken tapahtuea muuttuvat ueimmat metallin ominaiuukita. q Ennen kaikkea havaitaan lujittumita n. muokkaulujittumita ja muodonmuutokyvyn heikkenemitä. q Metallia muokattaea itoutuu iihen platiea deformaatioa energiaa yntyviin dilokaatioihin ja pitevirheiiin. q Kokeellieti on havaittu, että noin 1 15 % platieta energiata varatoituu muokattuun rakenteeeen ja loput poituu lämpönä.

Elpyminen q Niitä muutokia, joita metallin rakenteea tapahtuu hehkutuken aikana, anotaan elpymieki. q Elpyminen voi tapahtua kahdella tavalla: 1) toipumalla ja ) uudelleenkiteytymällä (rekritalliaatio).

Toipuminen q q q Notettaea muokattu materiaali toipumilämpötilaan, joka on yleenä hiukan rekritalliaatiolämpötilan alapuolella, alkavat materiaalia olevat jännityket laueta dilokaatioiden uudelleenjärjetymiellä (è ei uuia rakeita). Tää n. polygoniaatioa uein lujuu vähenee vain hiukan, mutta itkey paranee merkittäväti. Toipuminen vaatii dilokaatioiden kiipeämietä ja toipumien voimakkuuteen vaikuttaakin iten eimerkiki materiaalin pinouvian pintaenergia

Lämpötila Matala Lievä Korkea Toipumimekanimi 1. Pitevirheiden iirtyminen raerajoille ja dilokaatioihin. Pitevirheiden yhteenliittyminen 1. Dilokaatioiden uudelleen järjetäytyminen. Dilokaatioiden annihilaatio 3. Alirakeiden kavu 1. Dilokaatioiden kiipeäminen. Alirakeiden yhdityminen 3. Polygoniaatio Toipumien eri vaiheet platieti muokatua metallia. a) dilokaatioiden epäjärjety, b) ellien muodotuminen, c) dilokaatioiden annihiloituminen ellien iällä, d) alirakeen muodotuminen, f) alirakeen kavaminen

Primäärinen rekritalliaatio q Lämpötilan noutea rekritalliaatiolämpötilaan, ydintyy materiaaliin uuia jännitykettömiä rakeita ja ne alkavat kavaa muodotaen rekritallioituneen rakenteen. q Rekritalliaatioa materiaalin lujuu pienenee ja itkey kavaa elväti. q Rekritalliaatioon vaikuttavia tekijöitä ovat: Materiaalin muokkauate Lämpötila Aika Alkuperäinen raekoko Metallin tai metallieoken kootumu

Toipuminen ja rekritalliaatio Rekritalliaatioon vaikuttavia tekijöitä ovat: Muokkauate, lämpötila, aika, alkuperäinen raekoko ja metallin/metallieoken kootumu.

Primäärinen rekritalliaatio q Seuraavaa on eitetty muutamia yleitykiä liittyen rekritallioitumieen: 1) Rekritalliaation tapahtuminen edellyttää tiettyä minimimuokkauatetta ) Mitä pienempi on muokkauate itä korkeampi on rekritalliaatiolämpötila 3) Lämpötilan noto lyhentää yleenä rekritalliaatioon tarvittavaa aikaa: 1 = t Ae Q - RT joa t on aika ja Q on rekritalliaation aktivaatioenergia. On huomattava, että Q:lla ei ole ykittäitä arvoa vaan e riippuu mm. muokkauateeta ja epäpuhtaukien määrätä.

Primäärinen rekritalliaatio 4) Syntyvä raekoko riippuu pääaiaa muokkauateeta o. mitä uurempi on muokkauate itä pienempi on yntyvä raekoko. 5) Mitä uurempi on perinnäinen raekoko itä uurempi muokkau tarvitaan, jotta rekritalliaatiolämpötila on ekvivalentti. 6) Rekritalliaatiolämpötila lakee metallin puhtauden liääntyeä eli eotu notaa aina rekritalliaatiolämpötilaa. Oheiea kuvaa on eitetty kahden amalla tavalla muokatun eri puhtauateen Cu rekritalliaatiokäyttäytyminen. Kokonaienergian vapautuminen on molemmia tapaukia ama, mutta e tapahtuu eri tavoin. Puhtaammalla Cu:lla (B) rekritalliaatiopiikki on kapeampi ja korkeampi, kun taa epäpuhtaampi Cu (A) vapauttaa uuren oan energiataan jo ennen varinaita rekritalliaatiota. Liäki epäpuhtaudet ovat notaneet rekritalliaatiolämpötilaa.

Rakeenkavu q Hehkututa jatkettaea primäärien rekritalliaation jälkeen rakeenkavu jatkuu uein taaieti q Ilmiötä kututaan jatkuvaki rakeenkavuki. q Ajavana voimana on pintaenergian minimoituminen q Raekoon riippuvuu hehkutuajata voidaan ilmaita euraavati: D = kt n. q Rakeenkavu ei kuitenkaan jatku ikuieti vaan pyähtyy johtuen ennen kaikkea kahdeta eikata: vapaan pinnan vaikutuketa ja epäpuhtaukita.

Sekundäärinen rekritalliaatio q Sekundäärieä rekritalliaatioa eli epäjatkuvaa rakeenkavua kavavat ykittäiet primääriet rakeet muiden kutannukella mahdollieti hyvinkin uuriki. q Tällöin raerakenne voi muodotua hyvinkin epätaaieki. q Epäjatkuva rakeenkavu johtuu pääaiaa kahdeta yytä: epäpuhtaukita ja tektuurita. Epäpuhtaudet pyäyttävät jatkuvan rakeenkavun ja rakenne jää kauttaaltaan pienirakeieki johtaa epäjatkuvaan kavuun Toiaalta jo metalliin on muodotunut voimakkaan muokkauken johdota uuntautuneiuutta voi tämä johtaa epätaaieen rakeenkavuun

Sekundäärinen rekritalliaatio Alunperin nanokiteien ( d < 00 nm) Cu rakenne 00 C:a uoritetun 3 minuutin hehkutuken jälkeen. Kuvata näkyy miten ekundäärinen rekritalliaation on johtanut hyvin epätaaieen raekokoon. Rakenne on muokattu alunperin valaamalla. Lähde: Y. Wang et.al., Nature 419, 91 915, 00.

Magnification After 3000 Cycle After 1000 Cycle After Reflow Solder Interconnection Figure 6. Evolution of microtructure in older interconnection during thermal cycling Elektroniikan integrointi ja luotettavuu http://ele.tkk.fi/fi/ PL3340, Otakaari 7 B

Elpymiproein vaiheet ja niiden raerakenteet. a) muokattu, b) toipunut, c) oittain uudelleenkiteytynyt, d) kokonaan uudelleenkiteytynyt, e) jatkuva rakeenkavu, f) epäjatkuva rakeenkavu

Yhteenveto/Muitettavaa Murtumatyypit materiaaleia Murtumiitkey ja kriittien ärön pituu K C = n p a Materiaalin Suunnittelujännity valinta Havaittu/ allittu ärökoko Väyminen yleiellä taolla Elpyminen toipumalla ja/tai uudelleenkiteytymällä