Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä
|
|
- Santeri Heikkinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 1 Y6 Lakuharjoituket 3 alautu ma 3.. klo 16 menneä Harjoitu 1. Lue enin Vihmo, Jouni (006) Alkoholijuomien hintajoutot uomea vuoina , Yhteikuntaolitiikka 71, 006/1 ivut 9 ja vataa itten kyymykiin. Kato taulukko 1 ivulla : 1.1 Millainen hyöyke on alkoholin vähittäikulutu kyynnäntulojoutoa ajatellen? 1. Onko annikelukulutu vähittäikulutuken ubtituutti tai komlementti? Perutele taulukon atan avulla. 1. Kumaan annikelukulutukeen tai vähittäikulutukeen 1 % nouu hinnaa vaikuttaa eniten? 1 Kumaan annikelukulutukeen tai vähittäikulutukeen 1 % nouu tuloia vaikuttaa eniten? 1.1 Vatau Koka kyynnän tulojouto on 1,9 > 1 tieetään, että kye on normaalihyöykkeetä (tulojouto on oitiivinen) kye on ylelliyyhyöykkeetä (tulojouto on uuremi kuin 1) 1. Vatau Vähittäikulutuken ritijouto annikelukulutuken uhteen on 0,33. Tämä tarkoittaa, että kun vähittäikulutuken hinta nouee 1 %, itten annikelukulutu kavaa 0,33 roentilla. 1.3 Vatau Hinnan noutea vähittäikulutu lakee enemmän kuin annikelukulutu, koka 0.70 > Vatau Tulojen noutea vähittäikulutu kavaa vähemmän kuin annikelukulutu 1,9 < 1,97. Kato taulukko ja vataa kyymykeen 1. Mikä alkoholijuomien ryhmä (väkevät, viinit vai olut) reagoi herkemmin oman hinnan muutokiin? 1.6 Tulkite jouto 0,9 ja 0,0? Mitä kukin luku kertoo? 1. Viinien kyyntä, en kyynnän hintajouton iteiarvo on 1,1, mikä on uuremi kuin väkevien 0,83 ja oluen 0,0. Oluen kulutu on hinnan uhteen on kolmeta vähiten joutava ,9 kertoo kuinka aljon väkevien juomien vähittäikulutu muuttuu kun viinin
2 vähittäikulutuhinta nouee 1 %. Viinin hinnan noutea 1 % väkevien juomien kulutu kavaa 0,9 % eli kye on ii viinien/väkevien juomien ritijoutota. 0,0 kertoo kuinka aljon viinin vähittäikulutu kavaa kun väkevien juomien vähittäikulutuhinta nouee 1 %. Väkevien juomien hinnan noutea 1 %, viinin kulutu kavaa 0,0 %, kye on ii väkevien juomien/viinin ritijoutota. 1.7 Kato taulukko 3 ja vata kyymykeen: Miten viinin kyyntä reagoi, mikäli väkevien juomien annikeluhinta nouee 1 %? 1.7 Viinin annikelukulutu kavaa 0,30 % kun väkevien juomien annikeluhinta nouee 1 % Harjoitu. Tarua vai totta: Veron kohtaanto riiuu ainoataan kyynnän hintajoutota Tarua. ekä kyynnän hintajouto että tarjonnan hintajouto vaikuttavat veron kohtaantoon. Yleiääntö on e, että oauoli, joka on joutamattomami, kantaa rakaamman veroraituken. Taau 1 Taau : joutamattomami kyyntä * t D * t D Kuluttajat kantavat uuremman veroraituken taaukea eli kun kyyntä on joutamattomami
3 3 Taau 1 Taau : joutavami tarjonta * * Kuluttajat kantavat uuremman veroraituken taaukea eli kun tarjonta on joutavami Harjoitu 3. Tulon makimointi Olkoon oikelijoien tietokoneohjelmien kyyntä muotoa = 00. Lake käänteikyyntäfunktio. Millä hinnalla ja määrällä kokonaitulot makimoituvat? Kuinka uuri on makimiiteeä kyynnän hintajouto? Mikä on rajatulon yhtälö? 00 = 00 = 00 = = 100 Makimi tulo aaaan, kun max(100 ) FOC 100 = 0 = 00 = ε = = 1 00 joa MR 100 = = 00 = on rajatulon yhtälö
4 , MR 0 MR =100 = 100 Harjoitu. Markkinataaaino, jouto, veron kohtaanto Lannoitteien kyyntä on muotoa Q D = P ja tarjonta Q = P, joa Q on määrä eli tuhat tonnia/vuoi ja P on hinta euroa/tonni. a) Lake markkinataaaino. b) Lake kyynnän ja tarjonnan hintajouto taaainoa. c) Onko kyyntä taaainon iteeä joutava vai joutamaton? Oleta nyt, että lannoitteelle aetetaan ykikkövero, joka on muotoa = t, joa t =. ) Lake uui markkinataaaino. e) Lake itten kuluttajien kantama veroraitu, myyjien kantama veroraitu ja veron tehokkuutaio. Havainnollita ratkaiui kuvaajalla a) Markkinataaaino = = ( ) 000 = = 0 00 = (0) = = Kyynnän hintajouto on = = 10 = Tarjonnan hintajouto on ε = = 80 = ε.
5 b) Taaaino verolla = = + t ( t = t = 00 + t) = t = = 0 t = 0 = 17 3 = + t = 0 t + t = 0+ t = () = 360 tai = 0+ = = = (17) = 360 c) Kun ε > 1 kyyntä on joutava ja kun ε < kyyntä on joutamatonta. Taaainoiteeä kyyntä on joutamaton, kun ε = ) Veroraitu Laketaan käänteikyyntäkäyrät = = = + = = = 000 = = Kuluttajan kantama veroraitu on ( 0)(360) = 70 Myyjän kantama veroraitu on ( 0 17)(360) = Veron tehokkuutaio on ( 17)( ) = 600. Kuvaaja löytyy euraavalta ivulta.
6 6 17 t A Harjoitu 6. Minimialkka Lue Working at Cro Puroe Mankiw' Blog Tueay, December 6, 006 aatavillahtt://gregmankiw.blogot.com/006/1/working at cro uroe.html Mankiw väittää, että minimialkan aettaminen on teknieti ama kuin työllitämien tukeminen makamalla työntekijöille tukiaien W w, illoin kuin tuntialkka on w ja viranomaiten tavoitetuntialkka on W ja verottamalla t = W w työnantajia, jotka työllitävät työntekijät tuntialkalla w. Lue Mankiwin erutelu ja vinkki iitä, miten e voiaan toitaa ja toita en itten ekä graafieti että lakemalla markkinataaaino. Oleta toitukeai, että työn tarjontakäyrä on l = 10w ja kyyntäkäyrä on l = 80 10w, työmarkkinat ovat täyellieti kilailevia ja tavoitealkka W =. Vatau: Muitiinanoita luku 16 aktivoivata tehtävätä tieetään, että ilman viranomaiten uuttumita työmarkkinoihin, taaainoalkka on w = ja työlliyy on l =10 () = 0. Tieämme myö, että minimialkalla W = työn tarjonta ylittää työn kyynnän eli l = 10 () = 0 ja l = 80 10() = 30. Työttömyy on ii 0 30 = 0 Mankiwin kuvaama tukiaiveron yhitelmä muuttaii työkyyntää ja tarjontafunktiota euraavalla tavalla: l = 80 10( w + w) l = 10( w + w)
7 Toiin anoen, työntekijän alkka on w = w + = w+ w ja työantajan makama alkka huomioon ottaen vero on w= w + t= w + w. On helo nähä, että +w w ykinkertaitavat oi ja että ollaan vataavaa tilanteea kuin aktivoivaa tehtävää 16.1 minimialkan W = taaukea. 7
Luku 16 Markkinatasapaino
68 Luku 16 Markkinataaaino 16.1 Markkinataaainon määrity Tarkatelemme kilailulliia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaiuna uhteea makimihintoihin talouenitäjien
LisätiedotLuku 16 Markkinatasapaino
76 Luku 16 Markkinatasaaino 16.1 Markkinatasaainon määritys Tarkastelemme kilailullisia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaisunsa suhteessa maksimihintoihin talouenitäjien
LisätiedotIntensiteettitaso ja Doplerin ilmiö
Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0
LisätiedotKertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.
5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41
LisätiedotRATKAISUT: 17. Tasavirtapiirit
Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö
LisätiedotHY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I
HY / Matematiikan ja tilatotieteen laito Tilatollinen päättely II, kevät 207 Harjoitu 4 Ratkaiuehdotukia Tehtäväarja I. (Kvantiili-kvantiili kuvion [engl. q q plot] idea.) Olkoon atunnaimuuttujalla X ellainen
LisätiedotTilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)
Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,
Lisätiedot12. laskuharjoituskierros, vko 16, ratkaisut
1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä
LisätiedotViime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto
Viime kerralta Luento 9 Markkinatasapaino Markkinakysyntä kysyntöjen aggregointi Horisontaalinen summaaminen Eri kuluttajien kysynnät eri hintatasoilla Huom! Kysyntöjen summaaminen käänteiskysyntänä Jousto
LisätiedotPD-säädin PID PID-säädin
-äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen
LisätiedotLuku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi
1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat
LisätiedotLuku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi
1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat
Lisätiedot12. ARKISIA SOVELLUKSIA
MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina
LisätiedotLUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA
LUKION FYSIIKKAKILPAILU 0..009, ratkaiut PERUSSARJA Vataa huolellieti ja iititi! Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooite, opettajai nii ekä koului nii. Kilpailuaikaa on 00 inuuttia.
LisätiedotSMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset
SMG-4200 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket Vata 1800-luvun puoliväliä ymmärrettiin että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen värähtelyyn
LisätiedotKahdeksansolmuinen levyelementti
Levy8 ja RS hm.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q q
LisätiedotKUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto
KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri
LisätiedotKahdeksansolmuinen levyelementti
Levy8 ja RS hm 7.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q
Lisätiedot4.3 Liikemäärän säilyminen
Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.
Lisätiedot7. Pyörivät sähkökoneet
Pyörivät ähkökoneet 7-1 7. Pyörivät ähkökoneet Mekaanien energian muuntamieen ähköenergiaki ekä ähköenergian muuntamieen takaiin mekaanieki energiaki käytetään ähkökoneita. Koneita, jotka muuntavat mekaanien
Lisätiedot7.lk matematiikka. Geometria 1. Janne Koponen versio 2.0
7.lk matematiikka 1 Janne Koponen verio 2.0 Tämä monite on tehty 7.lk. geometrian opetukeen ja olen käyttänyt itä ite Hatanpään koulua. Jo joku opettaja haluaa tätä kuitenkin käyttää omaa opetukeaan, on
LisätiedotS if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen.
T-79.148 yky 2003 Tietojenkäittelyteorian peruteet Harjoitu 7 Demontraatiotehtävien ratkaiut 4. Tehtävä: Ooita, että yhteydettömien kielten luokka on uljettu yhdite-, katenaatioja ulkeumaoperaatioiden
LisätiedotViikkotehtävät IV, ratkaisut
Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää
LisätiedotMIKROTEORIA, HARJOITUS 8
MIKROTEORI, HRJOITUS 8 PNOSMRKKINT, KILPILU, OLIGOPOLI, PELITEORI J VIHTOTLOUS. Jatkoa tehtävään 4 (ja 5) harjoituksessa 7. a. Laske kolluusioratkaisu. Kahden samaa tuotetta tuottavan yrityksen kustannusfunktiot
LisätiedotMat-2.090 Sovellettu todennäköisyyslasku A
Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie
LisätiedotInstructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016
tudent: ate: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 016 Assignment: 016 www 1. Millä seuraavista tuotteista on itseisarvoltaan pienin kysynnän hintajousto? A. Viini B. Elokuvat
LisätiedotTämä sivu on jätetty tarkoituksella tyhjäksi kaksipuoleista tulostusta varten
Tämä ivu on jätetty tarkoukella tyhjäki kakiuoleita tulotuta varten KUSTANNUSKPAUKK KASVUMENESTKSEN EHTONA Mtauta, oatekijöä ja tulkintaa Mika Maliranta Elinkeinoelämän tutkimulao ETA Kirjotaja kitää Antti
LisätiedotTriathlon Training Programme 12-week Sprint Beginner
12 viikon kilpailuuunnitelma--kilpailumatka: printti Urheilijan tao: aloitteleva urheilija, 1 tai 2 vuoden kokemu printtitriathlonkilpailuita Tunteja viikoa: 5-6 Tätä harjoituuunnitelmaa käytetään Garminin
Lisätiedot1. välikoe
Jan Loto TA7 Ekonometan johdantok Nm: Opkeljanmeo: välkoe 77 Vataa alla olevn kyymykn ympäömällä okea vahtoehto Kakn tehtävää on neljä vahtoehtoa, jota yk on oken Okeata vataketa aa pteen ja vääätä vataketa
LisätiedotY56 laskuharjoitukset 6
Y56 Kevät 00 Y56 laskuharjoitukset 6 Palautus joko luennolle/mappiin tai Katjan lokerolle (Koetilantie 5, 3. krs) to.4. klo 6 mennessä (purku luennolla ti 7.4.) Ole hyvä ja vastaa suoraan tähän paperiin.
LisätiedotLuku 14 Kuluttajan ylijäämä
56 Luku 4 Kuluttajan ylijäämä Kuluttajan ylijäämän käsite on erittäin aljon käytetty hyvinvointitaloustieteessä. Käsite erustuu hyödyn maksimoinnin ja kysyntäkäyrän väliseen yhteyteen, eli siihen, että
LisätiedotFysiikkakilpailu 6.11.2007, avoimen sarjan vastaukset AVOIN SARJA
Fyiikkakilpailu 6.11.007, avoimen ajan vatauket AVOIN SARJA Kijoita tektaten koepapeiin oma nimei, kotiooitteei, ähköpotiooitteei, opettajai nimi ekä koului nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä-
LisätiedotPanimo- ja virvoitusjuomateollisuusliitto
Panimo- ja virvoitusjuomateollisuusliitto Oy Hartwall Ab Momentin Group Oy Olvi Oyj Red Bull Finland Oy Saimaan Juomatehdas Oy Oy Sinebrychoff Ab Valvoo panimo- ja virvoitusjuomateollisuuden etuja alkoholi-
LisätiedotMETSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus
METSÄNTUTKIMUSLAITOS Metäteknologian Uniinkatu WÄRTSILA 40 A tutkimuoato Helinki TELESKOOPPIKUORMAIN AUTOKUORMAUKSESSA Kenttäkoe Tutkimuelotu Juhani Helinki Lukkari 97 7 Ainto Tutkimuken kenttäkoe Ruokolahdella.
LisätiedotPinta-alan variaatio. Rakenteiden Mekaniikka Vol. 44, Nro 1, 2011, s Eero-Matti Salonen ja Mika Reivinen
Rakenteien Mekaniikka Vol. 44, Nro, 0,. 93-97 Pinta-alan variaatio Eero-Matti Salonen ja Mika Reivinen Tiivitelmä. Artikkelia tarkatellaan taoalueen pinta-alan variaation eittämitä vektorilakennan avulla.
LisätiedotSMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset
SMG-4200 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket 1. Vata 1800-luvun puoliväliä ymmärrettiin, että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen, värähtelyyn,
LisätiedotFy07 Koe Kuopion Lyseon lukio (KK) 1 / 5
y07 Koe 8.9.05 Kuopion yeon lukio (KK) / 5 Vataa kolmeen tehtävään. Vatuken reitani on 60, käämin induktani on 0,60 H ja reitani 8 ja kondenaattorin kapaitani on 80. Komponentit ovat arjaan kytkettyinä
LisätiedotSATE1050 Piirianalyysi II syksy 2016 kevät / 6 Laskuharjoitus 3 / Laplace-muunnos
SAE1050 Piirianalyyi II yky 016 kevät 017 1 / 6 ehtävä 1. Muodota alla olevaa kuvaa eitetyn muotoien jännitteen aplace-muunno. u(t) - t Kuva 1. Jännitteen kuvaaja tehtävään 1. Määritetään funktio paloittain:
Lisätiedot= 0, = 0, = 0, = 0, = 0, = 0,
Liite 1 SU/Vakuutumatemaattinen ykikkö 18.9.2013 Kutannutenjakokertoimet vuodelle Soiaali- ja terveyminiteriön 23.12.2011 vahvitamia kutannutenjakoperuteia eiintyvien taaukertoimien arvot vuodelle = 0,419195
LisätiedotMIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset
LisätiedotMat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:
Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,
LisätiedotLeppävaaran torni noussut täyteen korkeuteensa
TAMK/ Rakennualan työnjoto Aikuikoulutu Valintakoe 6..0, Ratkaiut VASTAUSOSA, OSIO (Tektin ymmätäminen) Leppävaaan toni nouut täyteen kokeuteena Vataa euaaviin tetäviin valitemalla vaitoeto OIKEIN, jo
LisätiedotAlkoholilain uudistus
Alkoholilain uudistus Esitys eduskunnan verojaostolle 10.11.2017 Kari Luoto, Päivittäistavarakauppa ry Mietojen alkoholijuomien vähittäismyynti Suomessa 2016 Alko Tuhatta litraa Alko +/- % Vähittäiskauppa
LisätiedotS-55.1220 Piirianalyysi 2 Tentti 1.9.2011
S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen
LisätiedotRATKAISUT: 8. Momentti ja tasapaino
Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn
LisätiedotRATKAISUT: 3. Voimakuvio ja liikeyhtälö
Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy
Lisätiedotr u u R Poistetut tehtavat, kunjännitestabiiliusja jännitteensäätö yhdistettiin:
oittut thtavat, kuäittaiiliua äittäätö yhitttii: Jäykkä vrkko, oka äit u TH o, pu yöttää oho kautta kuormaa. Johto olttaa häviöttömäki a raktai o, pu. Joho päähä liittää vakioritaikuorma r. iirrä oho a
LisätiedotLUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA
LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että
LisätiedotPT-36 Plasmarc-leikkausarvot
PT-36 Plamarc-leikkauarvot Leikkauarvojen opa (FI) 0558007661 Verion 8.1 releaed on 28Oct11 VARMISTA, ETTÄ KÄYTTÄJÄ SAA NÄMÄ TIEDOT. VOIT TILATA MYYJÄLTÄ LISÄÄ KOPIOITA. VARO OHJEET on tarkoitettu kokeneille
LisätiedotSMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset
SMG-400 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket 1. Vata 1800-luvun puoliväliä ymmärrettiin, että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen, värähtelyyn,
LisätiedotLuku 1 Toimijat, käyttäytyminen, instituutiot, tasapaino
Y56 Mikrotalousteorian jatkokurssi Kevät 00 Luku Toimijat, käyttäytyminen, instituutiot, tasaaino Mikrotaloustieteessä kuvataan sitä, miten ihmiset (ml. yritykset) käyttävät rajallisia resurssejaan tyydyttääkseen
LisätiedotSOSIAALIPÄIVYSTYKSEN KEHITTÄMISEN VUODET KESKI-SUOMESSA
0..0 () SOSIAALIPÄIVYSTYKSEN KEHITTÄMISEN VUODET KESKI-SUOMESSA Soiaalipäivytyke kehittämiellä o maakaamme eide voie jatkmo. Alkyäyke ille atoi vode valtioevoto periaatepäätö, joa aetettii tavoitteeki
LisätiedotMat Koesuunnittelu ja tilastolliset mallit
Mat-.03 Koeuuttelu tlatollet mallt. harjotuket Mat-.03 Koeuuttelu tlatollet mallt. harjotuket / Ratkaut Aheet: Avaaat: Tlatollte aetoje kuvaame Oto otokaumat Etmot Etmotmeetelmät Väletmot Artmeette kekarvo,
Lisätiedot1981:96 JÄRVIEN KRIITTISISTÄ HAPEN PITOISUUKSISTA LOPPUTALVELLA. Reino Laaksonen ja Väinö Malin
: JÄRVIEN KRIITTISISTÄ HAPEN PITOISUUKSISTA LOPPUTALVELLA Reino Laakonen ja Väinö Malin E S I T U K E I S T E S A ~ J A ITTISI HAPEN ISTA LOPPUTALVELLA j Väinö Ma in ivu l J H D A N T Tutkimuken tarkoitukena
LisätiedotKuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa,
Tortai 6..999 = Geometria o hyvä tapa kuvata ykikertaiia kappaleita, mutta kappaleie tullea äärettömä moimutkaiiki, käy iie kuvaamie klaie geometria avulla mahottomaki. Eimerkiki rataviiva pituue määrittämie
LisätiedotALKOHOLILAIN MUUTOKSEN SEURANTA KULUTUKSEN JA MYYNNIN MUUTOKSET TAMMI-HUHTIKUU 2017/2018. Pasi Holm ja Juho Tyynilä elokuu 2018
ALKOHOLILAIN MUUTOKSEN SEURANTA KULUTUKSEN JA MYYNNIN MUUTOKSET TAMMI-HUHTIKUU 2017/2018 Pasi Holm ja Juho Tyynilä elokuu 2018 Selvityksen tavoite ja tausta Vuonna 2018 tuli voimaan alkoholilain kokonaisuudistus,
LisätiedotJÄÄMEREN RAUTATIE ROVANIEMI-KIRKKONIEMI WWW.ARCTICCORRIDOR.FI
JÄÄMEREN RAUTATIE ROVANIEMI-KIRKKONIEMI WWW.ARCTICCORRIDOR.FI KILPAILUKYKYÄ INVESTOIJILLE JA YRITYKSILLE Jäämeren rautatie parantaa yrityten ja invetoijien toimintamahdolliuukia arktiella alueella. Uuia
LisätiedotS-55.1220 Piirianalyysi 2 Tentti 27.10.2011
S-55.220 Piirianalyyi 2 Tentti 27.0. j(t) u(t) -piiriin vaikuttaa lähdevirta j(t) = A ĵ in(ωt)]. Lake piirin jännite u(t) ajan funktiona ja vatukea kuluva teho. Piiri on jatkuvuutilaa. ĵ = 0,5A = 2µF ω
LisätiedotPanimo- ja virvoitusjuomateollisuusliitto
Panimo- ja virvoitusjuomateollisuusliitto Oy Hartwall Ab Momentin Group Oy Olvi Oyj Red Bull Finland Oy Saimaan Juomatehdas Oy Oy Sinebrychoff Ab Valvoo panimo- ja virvoitusjuomateollisuuden etuja alkoholi-
Lisätiedot1. Hyödykkeen tarjonta on p = 10 + q ja kysyntä puolestaan p = 40-2q. Markkinatasapainossa kysynnän hintajousto on
1. Hyödykkeen tarjonta on p = 10 + q ja kysyntä puolestaan p = 40-2q. Markkinatasapainossa kysynnän hintajousto on D. ε = 1 Ratkaistaan ensin markkinatasapaino asettamalla kysyntä ja tarjonta yhtä suuriksi.
LisätiedotKANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset
KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun
LisätiedotMitä tapahtuisi jos Alkon vähittäismyyntimonopoli purettaisiin?
Mitä tapahtuisi jos Alkon vähittäismyyntimonopoli purettaisiin? Esa Österberg Johtava asiantuntija, Alkoholi ja huumeet yksikkö, Päihteet ja riippuvuus osasto Alkoholin kokonaiskulutus Suomessa vuosina
LisätiedotLuku 1 Toimijat, käyttäytyminen, instituutiot, tasapaino
Y56 Mikrotalousteorian jatkokurssi, kl 009 Luku Toimijat, käyttäytyminen, instituutiot, tasaaino Mikrotalousteoria käsittelee yksittäisten talousyksiköiden taloudellista käyttäytymistä ja talousyksiköiden
LisätiedotEDUSKUNTA SOSIAALI- JA TERVEYSVALIONKUNTA
EDUSKUNTA SOSIAALI- JA TERVEYSVALIONKUNTA 24.11.2017 Pasi Holm 050 374 7462 Alkoholilakiuudistus IV-oluiden tarjonta lisääntyy; uusia vähittäismyyntipisteitä noin 4.000 kpl. Alko monopoliyhtiönä on hinnoitellut
LisätiedotC B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia.
Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on tiitaina 23.5.2017. Ektra-tehtävät vataavat kolmea tehtävää, kun kurin lopua laketaan lakuharjoitupiteitä.
LisätiedotLuku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä:
1 Luku 22 Yrityksen tarjonta Edellisissä luvuissa olemme yrityksen teoriasta tarkastelleet yrityksen tuotantopäätöstä, ts. panosten optimaalista valintaa, yrityksen voiton maksimoinnin ja kustannusten
LisätiedotPhysica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä
Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän
LisätiedotMat Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:
Mat-.04 Tilatollie aalyyi peruteet. harjoituket Mat-.04 Tilatollie aalyyi peruteet. harjoituket / Tehtävät Aiheet: Avaiaat: Tetit uhdeateikolliille muuttujille Hypoteei, Kahde riippumattoma otoke t-tetit,
LisätiedotRatkaisu: z TH = j0,2 pu. u TH. Thevenin jännite u TH on 1,0 pu ja sen impedanssi z = j0,2 pu.
L89 Jäittaiiliu. Jäykkä vrkko, oka äit u TH o, pu yöttää oho kautta kuormaa. Johto olttaa häviöttömäki a raktai o, pu. Joho päähä liittää vakioritaikuorma r. Piirrä i oho a äitläht Thvii kvivaltti. Aa
LisätiedotNelisolmuinen levyelementti
Lv hm 6..3 Nliolminn lvlmntti arkatllaan kvan nliolmita lvlmnttiä. q 6 q 8 η 3 q 5 ( 3, 3 q 7 (, q (, v P q ξ (, q q 3 Pitn P koordinaatit voidaan laa mokoordinaattin ξ ja η avlla, jotka ovat normratt
LisätiedotSYNKRONIKONEET RELUKTANS- SIKONEET RM RM RM + >>L q. L d >>L q. Harjalliset -pyörivä PMSM upotetu magneetit
7.48 TY Juha Pyrhönen 7. Tahtikone Tahtikoneet muootavat kokonaien ähkökoneperheen. Päätyyppejä ovat vieramagnetoiut tahtikoneet, ynkroniet reluktanikoneet ja ketomagneettitahtikoneet. Vieramagnetoiut
LisätiedotSiirtojohdot. Siirtojohdot
iirtoohot uku iirtoohot iirtoohtoteori kytkee toiiin kenttäteorin tutun piiriteorin. iirtoohtoteori trktelee vin kenttien etenemitä niien käyttäytymitä eriliten ineien rpinnoill. Mutkikkt kenttätehtävät
Lisätiedot... MOVING AHEAD. Rexnord Laatuketjut. Rullaketjut Rotary-ketjut Levykimppuketjut
... MOVING HED Rexnord Laatuketjut Rullaketjut Rotary-ketjut Levykimuketjut Siällyluettelo Rexnord-laadun ominaiiirteet......................... 6 7 Huomioita ketjun valinnata...........................
LisätiedotÄänen nopeus pitkässä tangossa
IXPF24 Fyiikka, ryhälaboratoriotyö IST4S1 / E1 / A Okanen Janne, Vaitti Mikael, Vähäartti Pai Jyväkylän Aattikorkeakoulu, IT-intituutti IXPF24 Fyiikka, Kevät 2005, 6 ECTS Opettaja Pai Repo Äänen nopeu
LisätiedotS-55.1220 Piirianalyysi 2 Tentti 4.1.2007
S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.
LisätiedotRATKAISUT: 7. Gravitaatiovoima ja heittoliike
Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä
Lisätiedot( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT
4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan
LisätiedotSuomalaisten alkoholiostot Virosta
Suomalaisten alkoholiostot Virosta Haastattelututkimuksen tuloksia 1 2 Viron ja Suomen välinen laivaliikenne 4 laivayhtiötä TallinkSilja, VikingLine, Eckerö ja LindaLine Vuodessa noin 8,8 miljoonaa matkustajaa
LisätiedotKilpailulliset markkinat Taloustieteen perusteet Matti Sarvimäki
Johdanto Kilpailulliset markkinat Taloustieteen perusteet Matti Sarvimäki Tähän mennessä valinta niukkuuden vallitessa strateginen kanssakäyminen, instituutiot, yritykset hinnat ja määrät kun yrityksellä
LisätiedotSivu 1 JOHDANTO 1 2 MIELIPITEET ALKOHOLIJUOMIEN MYYNNIN JÄRJESTÄMISESTÄ MAASSAMME 1 3 NÄKEMYKSET ALKOHOLIJUOMIEN MYYNTIAJOISTA RUOKAKAUPOISSA 3
MIELIPITEET ALKOHOLIJUOMIEN MYYNNISTÄ Sisällysluettelo: Sivu JOHDANTO MIELIPITEET ALKOHOLIJUOMIEN MYYNNIN JÄRJESTÄMISESTÄ MAASSAMME NÄKEMYKSET ALKOHOLIJUOMIEN MYYNTIAJOISTA RUOKAKAUPOISSA LIITEKUVAT TNS
LisätiedotKilpailulliset markkinat. Taloustieteen perusteet Matti Sarvimäki
Kilpailulliset markkinat Taloustieteen perusteet Matti Sarvimäki Johdanto Tähän mennessä valinta niukkuuden vallitessa strateginen kanssakäyminen, instituutiot, yritykset hinnat ja määrät kun yrityksellä
LisätiedotLuentorunko 6: Työmarkkinat
Niku, Aalto-yliopisto ja Etla Makrotaloustiede 31C00200, Talvi 2018 Johdanto Työn tarjonta Työn tarjonta. Vapaa-aika vs. kulutus. Tulo- ja substituutiovaikutus. Verotus, työntarjonta ja hyvinvointi. Työn
LisätiedotKANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET
KANSANTALOUSTIETEEN ÄÄSYKOE 5.6.2014 MALLIVASTAUKSET Jokaisen tehtävän perässä on pistemäärä sekä sivunumero (Matti ohjola, Taloustieteen oppikirja, 2012) josta vastaus löytyy. (1) (a) Suppea raha sisältää
LisätiedotKuluttajan valinta ja kysyntä. Viime kerralta. Onko helppoa ja selvää? Mitä tänään opitaan?
6..00 Viime kerralta Kuluttajan valinta ja kysyntä Y56 Luento 3 5..00 Preferenssit valintojen arvostus, järjestäminen Indifferenssikäyrät Rajakorvattavuussuhde Hyöty Hyötyfunktiot Rajahyöty Onko heloa
LisätiedotYDINSPEKTROMETRIA TENTTI mallivastaukset ja arvostelu max 30 p, pisterajat 15p 1, 18p 2, 21p 3, 24p 4, 27p - 5
5573-5 YDISPEKTROMETRIA TETTI 9.5.05 mallivatauket ja arvotelu max 30 p, piterajat 5p, 8p, p 3, 4p 4, 7p - 5. Mittautehokkuu ja iihen vaikuttavat aiat/ilmiöt gammapektrometriaa (yht. 6 p) Vatau: ilmaiimea
LisätiedotTalousmatematiikan perusteet, ORMS1030
Vaaan yliopito, kvät 06 Taloumatmatiikan prutt, ORMS030 4. arjoitu, viikko 6 (8...06) Malliratkaiut. Erään kappaltavaratuottn varaton ykikköylläpitokutannukt ovat 4,00 kappaltta ja vuotta koti. Tilaukutannukt
LisätiedotMAOL-Pisteitysohjeet Fysiikka kevät 2002
MAOL-Piteityhjeet Fyiikka kevät 00 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -/3 p - lakuvirhe, epäielekä tul, vähintään - - vataukea yki erkitevä nuer liikaa -0
LisätiedotSATE1150 Piirianalyysi, osa 2 syksy /10 Laskuharjoitus 1: RL- ja RC-piirit
SATE1150 Piirianalyyi, oa 2 yy 2017 1 /10 auharjoitu 1: R ja Rpiirit Tehtävä 1. a) Millainen uodatin on yeeä uvaa 1? Perutele aia taratelemalla unin yittäien omponentin impedanin taajuuäyttäytymitä. b)
LisätiedotY56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2 Mallivastaus
Y56 Mikrotaloustieteen jatkokurssi kl 00: HRJOITUSTEHTÄVÄT Mallivastaus. Olkoon Kallen ravintolassa söntiä ( ja muuta vaaa-ajan kulutusta ( kuvaava budjettirajoite muotoa. Kalle on valmis vaihtamaan hden
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.03 SÄHKÖTKNIIKKA 20.5.999 Kimmo Silvonen Tentti: tehtävät,3,5,8,9. välikoe: tehtävät,2,3,4,5 2. välikoe: tehtävät,7,8,9,0 Oletko muitanut täyttää palautekyelyn Teeenytja hauku amalla kokeet.. ake jännite
LisätiedotY55 Kansantaloustieteen perusteet sl 2010
Y55 Kansantaloustieteen perusteet sl 2010 1 Ole hyvä ja vastaa kysymyksiin tähän paperiin. Tehtävät on palautettava joko luennolla tai kurssilaatikkoon (Latokartanonkaari 9., 3 krs.) ehdottomasti niitattuina
Lisätiedot3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21)
3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 1. Työn tarjonta Kuluttajan valintateorian perusmalli soveltuu suoraan kotitalouksien työn tarjontapäätöksen
LisätiedotUUDEN TYÖN MARKKINA Ehdotus edistyksellisemmän työn markkinan luomiseksi Suomeen
UUDEN TYÖN MARKKINA Ehdotus edistyksellisemmän työn markkinan luomiseksi Suomeen Timo Lindholm / Sitra 22.8.2017 Lähtökohdat - Globaalit ilmiöt muokkaavat työelämää hävittävät ja luovat töitä. - Työn murroksen
LisätiedotMATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
LisätiedotS-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006
S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita
LisätiedotAlkoholijuomien matkustajatuonti vuonna 2013 TNS Gallup
Alkoholijuomien matkustajatuonti vuonna 2013 TNS Gallup TNS 2014 Kotipaikka/Domicile Espoo Y-tunnus/Company code 0114300-3 SFS-ISO 20252 -sertifioitu Tutkimuksen tavoitteet ja tutkimusasetelma Seuraavassa
LisätiedotS Fysiikka III (Est) Tentti
S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )
Lisätiedot4 Kysyntä, tarjonta ja markkinatasapaino
4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
Lisätiedot1 LAMMIMUURIN RAKENNE JA OMINAISUUDET 2 2 KÄYTTÖKOHTEET 2 3 MUURITYYPIT 2 4 LASKENTAOTAKSUMAT 3 4.1 Materiaalien ominaisuudet 3 4.2 Maanpaine 3 4.
1 LAIUURIN RAKENNE JA OINAISUUDET KÄYTTÖKOHTEET 3 UURITYYPIT 4 LASKENTAOTAKSUAT 3 4.1 ateriaalien ominaiuudet 3 4. aanpaine 3 4.3 uurin ketävyy npaineelle 4 4.4 Kaatumi- ja liukumivarmuu 5 4.4.1. Kaatumivarmuu
LisätiedotALKOHOLIN OSTAMINEN ALAIKÄISILLE VÄKIVALTANA
Tiedosta hyvinvointia 1 ALKOHOLIN OSTAMINEN ALAIKÄISILLE VÄKIVALTANA Salme Ahlström Tutkimusprofessori Alkoholi- ja huumetutkimus STAKES Päihdetiedotusseminaari "Päihteet ja väkivalta" Finnish-German Media
Lisätiedot