Dislokaatiot - pikauusinta
|
|
- Katriina Mari Lahtinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Dislokaatiot - pikauusinta
2 Ilman dislokaatioita Kiteen teoreettinen lujuus ~ E/8
3 Dislokaatiot mahdollistavat deformaation Kaikkien atomisidosten ei tarvitse murtua kerralla Dislokaatio etenee rakeen läpi välittäen pienen siirtymän Monta dislokaatiota => iso deformaatio 3
4 ... mutta mikä estää dislokaatioita liikkumasta Miksei deformaatio jatku pienellä jännityksellä? X Jännitys (MPa) X Venymä (µm/m) 4
5 Erilliskiteessä Aluksi dislokaatiot saavat liikkua vapaasti Lopulta jännityssuunta kääntyy ja dislokaatiot vaikeuttavat toistensa liikettä Jännitys (MPa) X X X Venymä (µm/m) 5
6 Monikiteinen materiaali Dislokaatiot joutuvat välittömästä liikkumaan toistensa lomaan Materiaalissa jo runsaasti dislokaatiota takertuneina toisiinsa ja raerajoille Materiaaliin aiheutettu liuosatomeja, erkaumia jne. dislokaatioiden liikkeen vaikeuttamiseksi Jännitys (MPa) X Venymä (µm/m) X X 6
7 Siis: Dislokaatiot mahdollistavat deformaation pienellä jännityksellä Dislokaatioiden liikkeen vaatima jännitys määrittää lujuuden Vaikeuttamalla dislokaatioiden liikettä, saadaan lujutta lisättyä (samalla muodonmuutoskyky vähenee) 7
8 Tasapainopiirrokset
9 Puhtaan metallin jähmettyminen
10 Puhtaalla metallilla on sulamispiste Puhtailla alkuaineilla on sulamispiste: lämpötila, jossa sula ja kiinteä ovat tasapainossa energian siirtyminen => jähmeän aineen määrä jähmettyminen vapauttaa energiaa Metallit kutistuvat jähmettyessään (pl. harvat poikkeukset)
11 - 11
12 Jäähtyminen jähmettyminen - jäähtyminen Sula luovuttaa energiaa jäähtyy kiinteä tulee tasapainoon kiinteän osuus lisääntyy kokonaan kiinteä jäähtyminen voi jatkua 12
13 Kiteet Jähmettyminen alkaa muotin reunasta lämpötila ydintymispaikka useita kiteitä kasvaa pylväinä metalliin pylväsmäiset kiteet mudostavat sularintaman 13
14 Faasit Faasit ovat "läsnäolevia olomuotoja" sula vs. kiinteä eri kidemuodot eri rakenteet Saman faasin sisällä voi olla koostumuseroja 14
15 Faasit
16 Alijäähtyminen Tasapainossa ajava voima 0 Alijäähtyminen lisää ajavaa voimaa (vapautuvaa energiaa) Alijäähtyminen lisääntyy jos kiteytyminen vaikeaa jäähtyminen nopeaa 16
17 Joillain metalleilla useita kidemuotoja Kidemuoto vaihtuu kiinteässä tilassa Faasimuutos vapauttaa energiaa 17
18 Ei-puhtaat metallit Metallit liuottavat itseensä toisia metalleja epämetalleja Liukoisuus vaihtelee Korvaus- tai välisija-atomeina Seos- ja epäpuhtausaineet vaikuttavat sulamispisteeseen jähmettymiseen olomuotoihin 18
19 Metalliseokset Metallit liukenevat toisiinsa Liukoisuus voi olla aukoton (kaikissa suhteissa) rajallinen (eri faaseja) Monimutkaisissa seoksissa Joukko erilaisia faaseja Tasapainon mukaiset faasit riippuvat lämpötilasta ja koostumuksesta Tasapainossa yksi tai useampia faaseja 19
20 Tasapainopiirros
21 Miksi faasirakenne on tärkeä? Faasirakenne vaikuttaa merkittävästi ominaisuuksiin Faasirakenne syntyy jähmettymisessä kiinteän tilan faasimuutoksissa Faasirakennetta voidaan manipuloida Koostumuksella Lämpökäsittelyllä jne.
22 "Metallioppi" Metallien valmistus Valutuotetekniikka Lämpökäsittelytekniikka Seoskehitys 22
23 Tasapainopiirros Kuvaa termodynaamista tasapainotilaa, jota materiaali ei koskaan saavuta, lämpötilan ja koostumuksen funktiona 23
24 Binäärinen tasapainopiirros Kaksi alkuainetta (esim Cu-Ag, Ag-Au) Alkuaineet liukenevat toisiinsa jossain suhteessa 24
25 Binäärinen tasapaino, täysi liukoisuus Kiinteät faasit kreikkalaisilla aakkosilla L = sula Alkuaineilla sulamispiste Seoksilla puuroalue
26 Binäärinen tasapaino, täysi liukoisuus Faasin α koostumus muuttuu Yksi sula faasi, ja yksi kiinteä faasi
27 Jähmettymisen alkaessa 1) sula 2) jähmettyminen alkaa (jähmeä osuus 0%) 3) jähmeän osuus kasvaa 4) loppusula jähmettyy 5) jähmeän osuus 100% 27
28 Jähmettymisen alkaessa 1) sula 2) jähmettyminen alkaa (jähmeä osuus 0%) 3) jähmeän osuus n. 50% 4) loppusula jähmettyy 5) jähmeän osuus 100% 28
29 Jähmettyessä lämpötila laskee Tasapainon mukainen sulaosuus muuttuu lämpötilan mukana Puuroalue 29
30 Faasien koostumukset muuttuvat 1) sulan koostumus = seoksen koostumus 2) 1. kiteen koostumus viivalla => sula köyhtyy A:sta 3) jähmeän faasin ja sulan tasapainokoostumus muuttuu 4) loppusula jähmettyy 5) jähmeän osuus 100% 30
31 Aineeseen jää koostumusmuutoksia 1) sulan koostumus = seoksen koostumus 2) 1. kiteen koostumus viivalla => sula köyhtyy A:sta 3) jähmeän faasin ja sulan tasapainokoostumus muuttuu 4) jähmeän osuus 100% 5) jähmeän osuus 100% 31
32 Vipusääntö Alkuaineiden atomit jakautuvat faaseihin Faasien koostumukset tunnetaan Faasien osuudet määräytyvät vipusäännöllä 32
33 Tasapaino vs. tosielämä Tasapainon mukaan faasien koostumukset tasaisia Todellisuudessa koostumukset eivät ennätä tasaantua tasapainossa erilliskiteitä todellisuudessa monia kiteitä tasapainossa sulan koostumus seuraa likvidusta todellisuudessa sulan koostumus jää jälkeen kiinteiden faasien koostumus seuraa solidusta kiinteiden faasien koostumus lähes jähmettymishetken koostumus 33
34 Kuinka kaukana tasapainosta? Mitä nopeammin lämpötila muuttuu sitä kauempana tasapainosta ollaan pienempiä kiteitä suurempia koostumuseroja Mitä matalammassa lämpötilassa ollaan, sitä hitaampaa on diffuusio 34
35 Binäärinen tasapaino, ei täyttä liukoisuutta
36 Binäärinen tasapaino Kiinteässä tilassa koostumuksesta riippuen kahta faasia Eutektisella koostumuksella ei puuroaluetta Faasiosuudet muuttuvat koostumuksen mukana 36
37 Binäärinen tasapaino 1) sula 2) β jähmettyminen alkaa 3) β osuus kasvaa 4) loppusula jähmettyy α+β => alkuaineiden tulee jakaantua nopeasti A-valtaisen ja B-valtaisen faasin välillä 37
38 Binäärinen tasapaino 1) sula 2) β jähmettyminen alkaa 3) β osuus kasvaa 4) loppusula jähmettyy α+β => alkuaineiden tulee jakaantua nopeasti A-valtaisen ja B-valtaisen faasin välillä 38
39 Eutektikumin jähmettyminen Alkuainet valitsevat puolensa Kilpailevana kiteiden energia vs. valikoivan jähmettymisen nopeus Tuloksena lamellimainen rakenne Lamellietäisyys riippuu jähmettymisnopeudesta sularintama kasvaa α A β B A B A B L L L 39
40 40
41 Eutektinen piste Eutektisella koostumuksella sula jähmettyy yhdessä lämpötilassa 41
42 Eutektinen jähmettyminen 1) sula 2) sula jähmettyy α+β => alkuaineiden tulee jakaantua nopeasti A-valtaisen ja B-valtaisen faasin välillä 42
43 Kiinteän tilan faasimuutos Jos jähmettyminen käy täyden liukoisuuden alueella: 1) sula 2) α alkaa jähmettyä 3) kokonaan kiinteä α 4) kokonaan kiinteä α 5) β tulee tasapainoon 6) β osuus kasvaa 43
44 Kiinteän tilan faasimuutos Jos jähmettyminen käy täyden liukoisuuden alueella: 1) sula 2) α alkaa jähmettyä 3) kokonaan kiinteä α 4) kokonaan kiinteä α 5) β tulee tasapainoon 6) β osuus kasvaa 44
45 Alijäähtyminen Reaktio edellyttää vapautuvaa energiaa (ajava voima) Mitä suurempi alijäähtyminen, sitä suurempi ajava voima Jähmettyvä materiaali työntää edellään koostumushuippua työntää edellään jähmettymisestä lämmennyttä sulaa Tarvitaan alijäähtymistä 45
46 Dendriitit Suuri alijäähtyminen Voimakkaat koostumuserot 46
47 Kiinteän tilan muutokset Joillain metalleilla tasapainon mukainen faasi muuttuu lämpötilan funktiona "polymorfia" Kiinteän tilan faasimuutoksissa diffuusio on rajoitetumpaa Faasimuutoksiin liittyy tilavuusmuutoksia Faasimuutos fapauttaa energiaa 47
48 Rauta-hiili tasapaino 48
49 Austeniitin hajaantuminen Austeniitti liuottaa hiiltä ennemmän kuin ferriitti Lämpötilan laskiessa austeniitti tulee epästabiiliksi Austeniitti jakautuu ferriitiksi ja sementiitiksi Perliitti muutosrintama siirtyy α Fe ɣ Fe 3 C C Austeniitti 49
50 Perliitti 50
51 Esimerkkejä monimutkaisista tasapainopiirroksista Esimerkki Cu-seokset: Messingit Pronssit Hanat Laakerit Jouset 51
52 Cu-Zn 52
53 Messingit Kaupallisia messinkejä: - 5% Zn - 10% Zn - 15 % Zn - 20 % Zn - 40% (munzin metalli) 53
54 Cu + 20%-Zn Yksi faasi 54
55 Cu + 40%-Zn Kaksifaasirakenne 55
56 Alumiinipronssi 56
57 Cu + 10%-Al Jähmettyy ensin β Loppu α+β Monia faaseja tasapainossa eri koostumuksilla ja lämpötiloissa 57
58 Cu + 10% Al Kaksifaasirakenne Beta + eutektoidi Laakerit, hammaspyörät, korroosiokestoa vaativat kohteet 58
59 Lämpökäsittely
60 Lämpökäsittely Metallit ovat metastabiileja Lämpötilan nosto siirtää rakennetta kohti tasapainotilaa Dislokaatiotiheys pienenee Rakeet kasvavat Liukoisuus kasvaa Kontrolloidulla jäähdytyksellä saadaan tila kauemmas tasapainotilasta 60
61 Lämpökäsittely - työkalut Diffuusionopeus kasvaa lämpötilan noustessa Eri faasit ovat stabiileja eri lämpötiloissa Lämpötilaa kontrolloidusti nostamalla ja laskemalla voidaan muuttaa mikrorakennetta ja siten mekaanisia ominaisuuksia 61
62 Erkautuskarkaisu Korkeassa lämpötilassa seosaineet liuotetaan Nopealla jäähdytyksellä seosaineet jäävät liuokseen Kontrolloitu hehkutus erkauttaa paljon pieniä erkaumia
63 Duralumiini Seostetaan pieniä määriä kuparia Liuotetaan korkeasssa lämpötilassa Jäähdytetään nopeasti Erkautetaan hallitusti 63
64 Normalisointi Teräksellä raekoon pienentämiseksi 64
65 Normalisointi 65
Binäärinen tasapaino, ei täyttä liukoisuutta
Tasapainopiirrokset Binäärinen tasapaino, ei täyttä liukoisuutta Binäärinen tasapaino Kiinteässä tilassa koostumuksesta riippuen kahta faasia Eutektisella koostumuksella ei puuroaluetta Faasiosuudet muuttuvat
LisätiedotMetallien plastinen deformaatio on dislokaatioiden liikettä
Metallien plastinen deformaatio on dislokaatioiden liikettä Särmädislokaatio 2 Ruuvidislokaatio 3 Dislokaation jännitystila Dislokaatioiden vuorovaikutus Jännitystila aiheuttaa dislokaatioiden vuorovaikutusta
LisätiedotFaasimuutokset ja lämpökäsittelyt
Faasimuutokset ja lämpökäsittelyt Yksinkertaiset lämpökäsittelyt Pehmeäksihehkutus Nostetaan lämpötilaa Diffuusio voi tapahtua Dislokaatiot palautuvat Materiaali pehmenee Rekristallisaatio Ei ylitetä faasirajoja
LisätiedotTärkeitä tasapainopisteitä
Tietoa tehtävistä Tasapainopiirrokseen liittyviä käsitteitä Tehtävä 1 rajojen piirtäminen Tehtävä 2 muunnos atomi- ja painoprosenttien välillä Tehtävä 3 faasien koostumus ja määrät Tehtävä 4 eutektinen
LisätiedotChem-C2400 Luento 3: Faasidiagrammit Ville Jokinen
Chem-C2400 Luento 3: Faasidiagrammit 16.1.2019 Ville Jokinen Oppimistavoitteet Faasidiagrammit ja mikrorakenteen muodostuminen Kahden komponentin faasidiagrammit Sidelinja ja vipusääntö Kolmen faasin reaktiot
LisätiedotDeformaatio. Kiteen teoreettinen lujuus: Todelliset lujuudet lähempänä. σ E/8. σ E/1000
Deformaatio Kertaus Deformaatio Kiteen teoreettinen lujuus: σ E/8 Todelliset lujuudet lähempänä σ E/1000 3 Dislokaatiot Mekanismi, jossa deformaatio mahdollista ilman että kaikki atomisidokset murtuvat
LisätiedotFaasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1
Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 A B B Piirroksen alue 1: Sularajan yläpuolella on seos aina täysin sula => yksifaasialue (L). Alueet 2 ja 5: Nämä ovat
LisätiedotLuento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla
Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Vapaa energia ja tasapainopiirros Allotropia - Metalli omaksuu eri lämpötiloissa eri kidemuotoja. - Faasien vapaat
LisätiedotKJR-C2004 materiaalitekniikka. Harjoituskierros 3
KJR-C2004 materiaalitekniikka Harjoituskierros 3 Tänään ohjelmassa 1. Tasapainopiirros 1. Tulkinta 2. Laskut 2. Faasimuutokset 3. Ryhmätyöt 1. Esitehtävän yhteenveto (palautetaan harkassa) 2. Ryhmätehtävä
LisätiedotMetallit jaksollisessa järjestelmässä
Metallit Metallit käytössä Metallit jaksollisessa järjestelmässä 4 Metallien rakenne Ominaisuudet Hyvin muokattavissa, muovattavissa ja työstettävissä haluttuun muotoon Lujia Verraten korkea lämpötilan
LisätiedotRauta-hiili tasapainopiirros
Rauta-hiili tasapainopiirros Teollisen ajan tärkein tasapainopiirros Tasapainon mukainen piirros on Fe-C - piirros, kuitenkin terästen kohdalla Fe- Fe 3 C -piirros on tärkeämpi Fe-Fe 3 C metastabiili tp-piirrosten
LisätiedotMetallien plastinen deformaatio on dislokaatioiden liikettä
Metallien plastinen deformaatio on dislokaatioiden liikettä Särmädislokaatio 2 Ruuvidislokaatio 3 Dislokaatioiden ominaisuuksia Eivät ala/lopu tyhjästä, vaan: muodostavat ympyröitä alkavat/loppuvat raerajoille,
LisätiedotKorkealämpötilakemia
Korkealämpötilakemia Binääriset tasapainopiirrokset To 30.10.2017 klo 8-10 SÄ114 Tavoite Oppia lukemaan ja tulkitsemaan binäärisiä tasapainopiirroksia 1 Sisältö Hieman kertausta - Gibbsin vapaaenergian
LisätiedotMetallurgian perusteita
Metallurgian perusteita Seija Meskanen, Teknillinen korkeakoulu Pentti Toivonen, Teknillinen korkeakoulu Korkean laadun saavuttaminen edellyttää sekä rauta että teräsvalujen tuotannossa tiukkaa prosessikuria
LisätiedotKon Teräkset Viikkoharjoitus 1. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka
Kon-67.3110 Teräkset Viikkoharjoitus 1. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka Luennolta: Perustieto eri ilmiöistä Kirjoista: Syventävä tieto eri ilmiöistä
LisätiedotMetallit 2005. juha.nykanen@tut.fi
Metallit 2005 juha.nykanen@tut.fi Aikataulu Pe 2.9.2005 Pe 9.9.2005 Pe 16.9.2005 Pe 23.9.2005 Pe 10.9.2005 Pe 8.10.2005 Valurauta Valurauta ja teräs Teräs Teräs ja alumiini Magnesium ja titaani Kupari,
LisätiedotFaasipiirrokset, osa 2 Binääristen piirrosten tulkinta
Faasipiirrokset, osa 2 Binääristen piirrosten tulkinta Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 1 - Luento 4 Tavoite Oppia tulkitsemaan 2-komponenttisysteemien faasipiirroksia 1 Binääriset
LisätiedotLapin alueen yritysten uudet teräsmateriaalit Raimo Ruoppa
Rikasta pohjoista 10.4.2019 Lapin alueen yritysten uudet teräsmateriaalit Raimo Ruoppa Lapin alueen yritysten uudet teräsmateriaalit Nimi Numero CK45 / C45E (1.1191) 19MnVS6 / 20MnV6 (1.1301) 38MnV6 /
LisätiedotHakemisto. C CCT-käyrä... ks. S-käyrä CVD-pinnoitus...ks. kaasufaasipinnoitus
A A 1-lämpötila... 17 A 3-lämpötila... 17 Abrasiivinen kuluminen... 110 A cm-lämpötila... 17 Adhesiivinen kitka... 112 Adhesiivinen kuluminen... 110 ADI... ks. ausferriittinen pallografiittivalurauta Adusointi...
LisätiedotFe - Nb - C ja hienoraeteräkset
Fe - Nb - C ja hienoraeteräkset 0.10 %Nb 0.08 NbC:n liukoisuus austeniitissa γ + NbC 1200 C 0.06 0.04 1100 C 0.02 0 γ 0 0.05 0.1 0.15 0.2 %C Tyypillinen C - Nb -yhdistelmä NbC alkaa erkautua noin 1000
LisätiedotTina-vismutti juotosmetallin binäärinen seos Tekijä: Lassi Vuorela Yhteystiedot:
Tina-vismutti juotosmetallin binäärinen seos Tekijä: Lassi Vuorela Yhteystiedot: lassi.vuorela@aalto.fi Juottaminen Juottamisessa on tarkoitus liittää kaksi materiaalia tai osaa niin, että sähkövirta kykenee
LisätiedotSulamisen ja jähmettymisen tarkastelu faasipiirroksia hyödyntäen
Sulamisen ja jähmettymisen tarkastelu faasipiirroksia hyödyntäen Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 1 - Luento 6 Tavoite Oppia muutamien esimerkkien avulla tarkastelemaan monikomponenttisysteemien
LisätiedotCHEM-C2400 MATERIAALIT SIDOKSESTA RAKENTEESEEN (5 op) Laskuharjoitus 1
CHEM-C2400 MATERIAALIT SIDOKSESTA RAKENTEESEEN (5 op) Laskuharjoitus 1 Kristallografiaa 1. Suunnan millerin indeksit (ja siten siis suunta) lasketaan vähentämällä loppupisteen koordinaateista alkupisteen
LisätiedotKeskinopea jäähtyminen: A => Bainiitti
Keskinopea jäähtyminen: A => Bainiitti Fe 3 C F = Bainiitti (B) C ehtii diffundoitua lyhyitä matkoja. A A A A Lämpötila laskee è Austeniitti Ferriitti Austeniitti => ferriitti muutos : atomit siirtyvät
LisätiedotValurauta ja valuteräs
Valurauta ja valuteräs Seija Meskanen Teknillinen korkeakoulu Tuula Höök Tampereen teknillinen yliopisto Valurauta ja valuteräs ovat raudan (Fe), hiilen (C), piin (Si) ja mangaanin (Mn) sekä muiden seosaineiden
LisätiedotKJR-C2004 materiaalitekniikka. Harjoituskierros 2
KJR-C2004 materiaalitekniikka Harjoituskierros 2 Pienryhmäharjoitusten aiheet 1. Materiaaliominaisuudet ja tutkimusmenetelmät 2. Metallien deformaatio ja lujittamismekanismit 3. Faasimuutokset 4. Luonnos:
LisätiedotTermodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa:
Lämpötila (Celsius) Luento 9: Termodynaamisten tasapainojen graafinen esittäminen, osa 1 Tiistai 17.10. klo 8-10 Termodynaamiset tasapainopiirrokset Termodynaamisten tasapainotarkastelujen tulokset esitetään
LisätiedotRaerajalujittuminen LPK / Oulun yliopisto
Raerajalujittuminen 1 Erkautuslujittuminen Epäkoherentti erkauma: kiderakenne poikkeaa matriisin rakenteesta dislokaatiot kaareutuvat erkaumien väleistä TM teräksissä tyypillisesti mikroseosaineiden karbonitridit
LisätiedotAlieutektoidisen teräksen normalisointi
Alieutektoidisen teräksen normalisointi Hiili (C) ja rauta (Fe) Hiili ja rauta voivat muodostaa yhdessä monia erilaisia mikrorakenteita, olipa kyseessä sitten teräs (hiiltä maksimissaan 2.1p.% C, eli hiiltä
LisätiedotLuento 2. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto
Luento 2 Kon-67.3110 Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Rauta-hiili -tasapainopiirros Honeycombe & Bhadeshia s. 30-41. Uudistettu Miekk oj s. 268-278. Rauta (Fe)
LisätiedotTerästen lämpökäsittelyn perusteita
Terästen lämpökäsittelyn perusteita Austeniitin nopea jäähtyminen Tasapainopiirroksen mukaiset faasimuutokset edellyttävät hiilen diffuusiota Austeniitin hajaantuminen nopeasti = ei tasapainon mukaisesti
LisätiedotTässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen
KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen
LisätiedotTina-vismutti seos juotosmetallina
Tina-vismutti seos juotosmetallina Miikka Martikainen Juottaminen Juottaminen on metallien liitosmenetelmä, jossa kappaleet liitetään toisiinsa sulattamalla niiden väliin juotosainetta, eli juotetta. Juotteena
LisätiedotTina-vismutti -juotosmetallin binäärinen seos
Tina-vismutti -juotosmetallin binäärinen seos Tekijä: Riku Varje Yhteystiedot: riku.varje@aalto.fi Metallien liittämiseen on olemassa useita erilaisia keinoja. Eräs keino on esimerkiksi erilaisten mekaanisten
LisätiedotMak Materiaalitieteen perusteet
Mak-45.310 tentit Mak-45.310 Materiaalitieteen perusteet 1. välikoe 24.10.2000 1. Vertaile ionisidokseen ja metalliseen sidokseen perustuvien materiaalien a) sähkönjohtavuutta b) lämmönjohtavuutta c) diffuusiota
LisätiedotKokillivalu (Permanent mold casting) Jotain valimistusmenetelmiä. Painevalu (Diecasting) Painevalu
Jotain valimistusmenetelmiä Kokillivalu (Permanent mold casting) Muottina käytetään usein valurautaa, jonka pinta on päällystetty lämpökestävällä materiaalilla (savi, natriumsilikaatti). Muotit esilämmitetään
LisätiedotEsitiedot. Valuraudat. Esitiedot. Esitiedot
Esitiedot Valuraudat juha.nykanen@tut.fi Mistä tulevat nimitykset valkoinen valurauta ja harmaa valurauta? Miten ja miksi niiden ominaisuudet eroavat toisistaan? Miksi sementiitti on kovaa ja haurasta?
LisätiedotMetallit 2005. juha.nykanen@tut.fi
Metallit 2005 juha.nykanen@tut.fi Kuparimalmi Kuparia esiintyy sulfidi- ja oksidimalmeissa. Pitoisuudet ovat tyypillisesti alhaisia (usein alle 1%). Louhittu malmi murskataan ja jauhetaan lietteeksi. Sulfidimalmista
LisätiedotJotain valimistusmenetelmiä
Jotain valimistusmenetelmiä Kokillivalu (Permanent mold casting) Muottina käytetään usein valurautaa, jonka pinta on päällystetty lämpökestävällä materiaalilla (savi, natriumsilikaatti). Muotit esilämmitetään
LisätiedotPuhtaat aineet ja seokset
Puhtaat aineet ja seokset KEMIAA KAIKKIALLA, KE1 Määritelmä: Puhdas aine sisältää vain yhtä alkuainetta tai yhdistettä. Esimerkiksi rautatanko sisältää vain Fe-atomeita ja ruokasuola vain NaCl-ioniyhdistettä
LisätiedotMakroskooppinen approksimaatio
Deformaatio 3 Makroskooppinen approksimaatio 4 Makroskooppinen mikroskooppinen Homogeeninen Isotrooppinen Elastinen Epähomogeeninen Anisotrooppinen Inelastinen 5 Elastinen anisotropia Material 2(s 11
LisätiedotKupari ja kuparimetallit. juha.nykanen@tut.fi
Kupari ja kuparimetallit juha.nykanen@tut.fi Esitiedot Miten sähköjohteisiin käytetyt kuparilaadut poikkevat muista kupariseoksista? Miksi puhdas kupari johtaa hyvin sähköä? Mitä tarkoittaa puhdas kupari?
LisätiedotKertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10
Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko 25.10 klo 8-10 Jokaisesta oikein ratkaistusta tehtävästä voi saada yhden lisäpisteen. Tehtävä, joilla voi korottaa kotitehtävän
LisätiedotUltralujien terästen hitsausmetallurgia
1 Ultralujien terästen hitsausmetallurgia CASR-Steelpolis -seminaari Oulun yliopisto 16.5.2012 Jouko Leinonen Nostureita. (Rautaruukki) 2 Puutavarapankko. (Rautaruukki) 3 4 Teräksen olomuodot (faasit),
LisätiedotKon Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos
Kon-67.3110 Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos Luennolta: Perustieto eri ilmiöistä Kirjoista: Syventävä tieto eri
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.
LisätiedotLujat termomekaanisesti valssatut teräkset
Lujat termomekaanisesti valssatut teräkset Sakari Tihinen Tuotekehitysinsinööri, IWE Ruukki Metals Oy, Raahen terästehdas 1 Miten teräslevyn ominaisuuksiin voidaan vaikuttaa terästehtaassa? Seostus (CEV,
LisätiedotMetalliseokset. Alumiiniseokset. ValuAtlas Suunnittelijan perusopas Seija Meskanen, Tuula Höök
Metalliseokset Seija Meskanen Teknillinen korkeakoulu Tuula Höök Tampereen teknillinen yliopisto Alumiiniseokset Eri tavoin seostettu alumiini sopii kaikkiin yleisimpiin valumenetelmiin. Alumiiniseoksia
LisätiedotENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!
ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä
LisätiedotKon Luento 12 -Säteilyhaurastuminen -Mikrorakenteen vaikutus murtumiseen -Yhteenveto -CASE: Murtumismekanismien yhteisvaikutukset
Kon-67.3401 Luento 12 -Säteilyhaurastuminen -Mikrorakenteen vaikutus murtumiseen -Yhteenveto -CASE: Murtumismekanismien yhteisvaikutukset Säteilyhaurastuminen Reaktoripaineastia ja sisukset 12/3/2015 3
LisätiedotMak Sovellettu materiaalitiede
.106 tentit Tentti 21.5.1997 1. Rekristallisaatio. 2. a) Mitkä ovat syyt metalliseosten jähmettymisen yhteydessä tapahtuvalle lakimääräiselle alijäähtymiselle? b) Miten lakimääräinen alijäähtyminen vaikuttaa
LisätiedotFysikaaliset ominaisuudet
Fysikaaliset ominaisuudet Ominaisuuksien alkuperä Mistä materiaalien ominaisuudet syntyvät? Minkälainen on materiaalin rakenne? Onko rakenteellisesti samankaltaisilla materiaaleilla samankaltaiset ominaisuudet?
LisätiedotKorkealämpötilakemia
Korkealämpötilakemia Useamman komponentin tasapainopiirrokset To 7.12.2017 klo 8-10 SÄ114 Tavoite Oppia lukemaan ja tulkitsemaan ternäärisiä tasapainopiirroksia 1 Sisältö Ternääriset tasapainopiirrokset
LisätiedotAineen olomuodot ja olomuodon muutokset
Aineen olomuodot ja olomuodon muutokset Jukka Sorjonen sorjonen.jukka@gmail.com 8. helmikuuta 2017 Jukka Sorjonen (Jyväskylän Normaalikoulu) Aineen olomuodot ja olomuodon muutokset 8. helmikuuta 2017 1
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin
LisätiedotMitkä ovat aineen kolme olomuotoa ja miksi niiden välisiä olomuodon muutoksia kutsutaan?
2.1 Kolme olomuotoa Mitkä ovat aineen kolme olomuotoa ja miksi niiden välisiä olomuodon muutoksia kutsutaan? pieni energia suuri energia lämpöä sitoutuu = endoterminen lämpöä vapautuu = eksoterminen (endothermic/exothermic)
LisätiedotLuento 2 Martensiitti- ja bainiittireaktio
Luento 2 Martensiitti- ja bainiittireaktio Martensiittitransformaatiossa tapahtuvat muodonmuutokset hilassa Martensiittitransformaatiossa tapahtuvat muodonmuutokset hilassa - Martensiitti (tkk, tetragoninen)
LisätiedotSulametallurgia (Secondary steelmaking)
Sulametallurgia (Secondary steelmaking) 1 Senkkauuni Raahessa näytteenotto/ happi- ja lämpötilanmittaus seosainejärjestelmä apulanssi 3-4 C/min 20 MVA 105-125 t Ar langansyöttö Panoskoko 125 t (min 70
LisätiedotMetallit 2005. juha.nykanen@tut.fi
Metallit 2005 juha.nykanen@tut.fi Lämpökäsittely Austenointi tehdään hyvin korkeassa lämpötilassa verrattuna muihin teräksiin Liian korkea lämpötila tai liian pitkä aika voivat aiheuttaa vetelyjä, rakeenkasvua,
LisätiedotTeräkset Kon-67.3110 kurssi Tekn. tri Kari Blomster LÄMPÖKÄSITTELY KARKAISUT 10.3.2015. Karkaisu ja päästö
1 Teräkset Kon-67.3110 kurssi Tekn. tri Kari Blomster LÄMPÖKÄSITTELY KARKAISUT 10.3.2015 Karkaisu ja päästö Teräs kuumennetaan austeniittialueelleen (A), josta se jäähdytetään nopeasti (sammutetaan) nesteeseen,
LisätiedotKOVAJUOTTEET 2009. Somotec Oy. fosforikupari. hopea. messinki. alumiini. juoksutteet. www.somotec.fi
KOVAJUOTTEET 2009 fosforikupari hopea messinki alumiini juoksutteet Somotec Oy www.somotec.fi SISÄLLYSLUETTELO FOSFORIKUPARIJUOTTEET Phospraz AG 20 Ag 2% (EN 1044: CP105 ). 3 Phospraz AG 50 Ag 5% (EN 1044:
LisätiedotChem-C2400 Luento 4: Kidevirheet Ville Jokinen
Chem-C2400 Luento 4: Kidevirheet 18.1.2019 Ville Jokinen Oppimistavoitteet Liukoisuus (käsiteltiin luennolla 3) 0D, pistemäiset kidevirheet: (liukoisuus), vakanssit 1D, viivamaiset kidevirheet: dislokaatiot
LisätiedotFaasipiirrokset, osa 3 Ternääristen ja monikomponenttipiirrosten tulkinta
Faasipiirrokset, osa 3 Ternääristen ja monikomponenttipiirrosten tulkinta Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 1 - Luento 5 Tavoite Oppia tulkitsemaan 3-komponenttisysteemien faasipiirroksia
LisätiedotLämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.
Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole
Lisätiedotkuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä
Termodynamiikan peruskäsitteitä The Laws of thermodynamics: (1) You can t win (2) You can t break even (3) You can t get out of the game. - Ginsberg s theorem - Masamune Shirow: Ghost in the shell Systeemillä
LisätiedotEsipuhe. Helsingissä heinäkuussa 2004 Lämpökäsittelyn toimialaryhmä Teknologiateollisuus ry
Lämpökäsittelyoppi Esipuhe Metallit ovat kiehtova materiaaliryhmä erityisesti siksi, että niiden ominaisuudet ovat muunneltavissa hyvin laajasti. Metalleja voidaan seostaa keskenään, mutta ennen kaikkea
LisätiedotKorkealämpötilakemia
1.11.217 Korkealämpötilakemia Standarditilat Ti 1.11.217 klo 8-1 SÄ11 Tavoite Tutustua standarditiloihin liuosten termodynaamisessa mallinnuksessa Miksi? Millaisia? Miten huomioidaan tasapainotarkasteluissa?
LisätiedotLUKU 16 KEMIALLINEN JA FAASITASAPAINO
Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 LUKU 16 KEMIALLINEN JA FAASITASAPAINO Copyright The McGraw-Hill Companies, Inc. Permission required
LisätiedotLuku 4: Hilaviat. Käsiteltäviä aiheita. Mitkä ovat jähmettymismekanismit? Millaisia virheitä kiinteissä aineissa on?
Käsiteltäviä aiheita Luku 4: Hilaviat Mitkä ovat jähmettymismekanismit? Millaisia virheitä kiinteissä aineissa on? Voidaanko vikojen määrää ja tyyppiä kontrolloida? Miten viat vaikuttavat materiaaliominaisuuksiin?
LisätiedotPRONSSISEOKSET AIHIOT JA LIUKULAAKERIT
PRONSSISEOKSET AIHIOT JA LIUKULAAKERIT MEKAANISET RAKENNEOSAT 2 SKS Mekaniikka Oy Etelä-Suomi Länsi-Suomi Keski-Suomi Tavaraosoite Martinkyläntie 50 Mustionkatu 8 Hämeenkatu 6A Martinkyläntie 50 01720
Lisätiedot4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
LisätiedotKaasu Neste Kiinteä aine Plasma
Olomuodot Kaasu: atomeilla/molekyyleillä suuri nopeus, vuorovaikuttavat vain törmätessään toisiinsa Neste: atomit/molekyylit/ionit liukuvat toistensa lomitse, mutta pysyvät yhtenä nestetilavuutena (molekyylien
LisätiedotREAKTIOT JA TASAPAINO, KE5 KERTAUSTA
KERTAUSTA REAKTIOT JA TASAPAINO, KE5 Aineiden ominaisuudet voidaan selittää niiden rakenteen avulla. Aineen rakenteen ja ominaisuuksien väliset riippuvuudet selittyvät kemiallisten sidosten avulla. Vahvat
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.
LisätiedotJoitain materiaaleja Kriittinen lämpötila
Suprajohteet Suprajohteet Joitain materiaaleja Kriittinen lämpötila Pb 7.3 Nb 9.3 Nb-Ti 8.9-9.3 Nb 3 Sn 18 Nb 3 Ge 23 NbN 16-18 PbMo 6 S 8 14-15 YBa 2 Cu 3 O 7 92 2 Suprajohteet Niobi-titaani seoksia Nb-46.5Ti
LisätiedotKon Harjoitus 8: Ruostumattomat teräkset. Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto
Kon-67.3110 Harjoitus 8: Ruostumattomat teräkset Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto EN AISI/SAE Tyyppi 1.4021 1.4301 1.4401 1.4460 304L 201 316LN 321H EN vs AISI/SAE tunnukset
LisätiedotLuento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä
Luento 2: Lämpökemiaa, osa 1 Keskiviikko 12.9. klo 8-10 477401A - ermodynaamiset tasapainot (Syksy 2018) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen
LisätiedotSinkki. Esitiedot. Yleistä. Yleistä
Esitiedot Mikä periaattellinen ero on 4% ja 8% alumiinia sisältävien sinkkiseosten välillä? Hypoeutectic = alieutektinen Hypereutectic = ylieutektinen Miten alieutektinen ja ylieutektinen rakenne muuttaa
LisätiedotEsitiedot. Mikä periaattellinen ero on 4% ja 8% alumiinia sisältävien sinkkiseosten välillä?
Esitiedot Mikä periaattellinen ero on 4% ja 8% alumiinia sisältävien sinkkiseosten välillä? Hypoeutectic = alieutektinen Hypereutectic = ylieutektinen Miten alieutektinen ja ylieutektinen rakenne muuttaa
LisätiedotTekijä lehtori Zofia Bazia-Hietikko
Tekijä lehtori Zofia Bazia-Hietikko Tarkoituksena on tuoda esiin, että kemia on osa arkipäiväämme, siksi opiskeltavat asiat kytketään tuttuihin käytännön tilanteisiin. Ympärillämme on erilaisia kemiallisia
LisätiedotKemian syventävät kurssit
Kemian syventävät kurssit KE2 Kemian mikromaailma aineen rakenteen ja ominaisuuksien selittäminen KE3 Reaktiot ja energia laskuja ja reaktiotyyppejä KE4 Metallit ja materiaalit sähkökemiaa: esimerkiksi
LisätiedotJohdanto laskennalliseen termodynamiikkaan ja mikroluokkaharjoituksiin
Johdanto laskennalliseen termodynamiikkaan ja mikroluokkaharjoituksiin Torstai 27.10.2016 klo 14-16 Luennon tavoite Tutustua eri tapoihin määrittää termodyn. tasapaino laskennallisesti Tutustua termodynaamisten
LisätiedotEllinghamin diagrammit
Ellinghamin diagrammit Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 1 - Luento 2 Tavoite Oppia tulkitsemaan (ja laatimaan) vapaaenergiapiirroksia eli Ellinghamdiagrammeja 1 Tasapainopiirrokset
LisätiedotIlmiö 7-9 Kemia OPS 2016
Ilmiö 7-9 Kemia OPS 2016 Kemiaa tutkimaan 1. TYÖTURVALLISUUS 2 opetuskertaa S1 - Turvallisen työskentelyn periaatteet ja perustyötaidot - Tutkimusprosessin eri vaiheet S2 Kemia omassa elämässä ja elinympäristössä
LisätiedotTERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA.
1 SAVONIA-AMK TEKNIIKKA/ KUOPIO HitSavonia- projekti Seppo Vartiainen Esitelmä paineastiat / hitsausseminaarissa 1.11.05 TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA. Kylmät olosuhteet. Teräksen transitiokäyttäytyminen.
Lisätiedotvetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa
LisätiedotTEOBAL Teollisuuden sivutuotteiden hyödyntäminen ballistisissa suojamateriaaleissa
TEOBAL 2011- Teollisuuden sivutuotteiden hyödyntäminen ballistisissa suojamateriaaleissa 17.11.2011 MATINE Tutkimusseminaari Tomi Lindroos & Pertti Lintunen 2 Rahoituspäätös MAT804 suojamateriaaleissa
LisätiedotTuomas Laakko FOSFATOIDUN TERÄSLANGAN VASTUSHITSAUS
Tuomas Laakko FOSFATOIDUN TERÄSLANGAN VASTUSHITSAUS FOSFATOIDUN TERÄSLANGAN VASTUSHITSAUS Tuomas Laakko Opinnäytetyö Kevät 2016 Kone- ja tuotantotekniikan koulutusohjelma Oulun ammattikorkeakoulu TIIVISTELMÄ
LisätiedotAlikuoret eli orbitaalit
Alkuaineiden jaksollinen järjestelmä Alkuaineen kemialliset ominaisuudet määräytyvät sen ulkokuoren elektronirakenteesta. Seuraus: Samanlaisen ulkokuorirakenteen omaavat alkuaineen ovat kemiallisesti sukulaisia
LisätiedotRUOSTUMATTOMAT TERÄKSET
1 RUOSTUMATTOMAT TERÄKSET 3.11.2013 Seuraavasta aineistosta kiitän Timo Kauppia Kemi-Tornio Ammattikorkeakoulu 2 RUOSTUMATTOMAT TERÄKSET Ruostumattomat teräkset ovat standardin SFS EN 10022-1 mukaan seostettuja
LisätiedotMetallit 2005. juha.nykanen@tut.fi
Metallit 2005 juha.nykanen@tut.fi Käsitetesti 2 Suomugrafiittivalurauta (EN-GJL) Mikrorakenne vaihtoehdot jäähtymisnopeuden mukaan Grafiitti + ferriitti Grafittii + sementiitti + perliitti Grafiitti +
LisätiedotLuento 11 Lujien terästen kehitystrendit
Luento 11 Lujien terästen kehitystrendit Lujat teräkset standardeissa - Nuorrutusteräkset: seostamattomat teräkset (SFS-EN 10083-2: C60, R e min. 580 MPa ja R m 850 1000 MPa) - Nuorrutusteräkset: seostetut
LisätiedotLovilujittuminen. Lovessa kolmiaksiaalinen jännitystila Lovessa materiaali käyttäytyy kuin se*olisi lujempi
Deformaatio*vielä.. Lovilujittuminen Lovessa kolmiaksiaalinen jännitystila Lovessa materiaali käyttäytyy kuin se*olisi lujempi Case*juotos:*liitoksen lujuus ylittää juotosaineen lujuuden Materiaalit korkeissa
LisätiedotSähkökemian perusteita, osa 1
Sähkökemian perusteita, osa 1 Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 4 - Luento 1 Teema 4: Suoritustapana oppimispäiväkirja Tehdään yksin tai pareittain Tehtävät/ohjeet löytyvät kurssin
LisätiedotJos kahdella aineella on eri sidosrakenne, mutta sama molekyylikaava, kutsutaan niitä isomeereiksi.
4.1 Isomeria Jos kahdella aineella on eri sidosrakenne, mutta sama molekyylikaava, kutsutaan niitä isomeereiksi. Eri isomeereillä on siis aina sama moolimassa, mutta usein erilaiset kemialliset ominaisuudet.
LisätiedotPehmeä magneettiset materiaalit
Pehmeä magneettiset materiaalit Timo Santa-Nokki Pehmeä magneettiset materiaalit Johdanto Mittaukset Materiaalit Rauta-pii seokset Rauta-nikkeli seokset Rauta-koboltti seokset Amorfiset materiaalit Nanomateriaalit
LisätiedotTeräslajit. Huom. FeP01-06 = DC01-06
Teräslajit Huom. FeP01-06 = DC01-06 Pehmeät muovattavat DC01 - DC06 Pehmeät muovattavat DC06 = IF = Interstitial free = välisija-atomivapaa = ei C eikä N liuoksessa C ja N sidottuina Ti(CN) tai (TiNb)(CN)
LisätiedotKemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö
Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen
LisätiedotLuento 3. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto
Luento 3 Kon-67.3110 Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Seosaineiden liuoslujittava vaikutus ferriittiin Seosaineiden vaikutus Fe-C tasapainopiirrokseen Honeycombe
Lisätiedot