Variations on th Black-Schols Mol Sovlltun matmatiikan jatko-opintosminaari 6.9 Koh-tuus maksaa osinkoja avoittna on tarkastlla tilantita, joissa B&S yhtälö i ol riittävä sllaisnaan (sim. option koh-tuus maksaa osinkoja) arkastllaan ainoastaan trministisiä osinkoja; osinkojn suuruus ja irtoamishtki ovat tunnttuja option linkaarn alusta asti Koh-tuus maksaa osinkoja Option arvon määritystä tarkastllaan kahssa ri tapauksssa: Koh-tuus maksaa vakiona pysyvää jatkuvaa osinkotuottoa Esimrkiksi: inksin (iso määrä rilaisia osakkita) maksamat osingot ovat niin tihät, ttä saattaa olla parasta pitää osinkomaksuja jatkuvana usin rillistn osinkomaksujn sijaan Osingon maksu on krtaluontista Yritykst maksavat osan voitoistaan osinkoina omistajilln. Yritykst maksavat osinkoa ylnsä yhstä nljään krtaan vuossa. Usat yritykst pyrkivät pitämään omistajinsa osinkotuoton vakiona vuosta toisn Vakiosuhtinn ja jatkuva osinkotuotto Olttaan, ttä aikana t koh-tuus maksaa osingon D St, jossa D on vakio. Näin olln osinkotuotto on määritlty osuutna kohtuun arvosta aikayksikköä kohti. Koska arbitraasihon mukaan koh-tuun hinnan pitää pinntyä osingon vrran osingonmaksun yhtyssä, koh-tuun hinnan stokastinn yhtälö muuttuu muotoon: S = σsx + µ D ) St (
Vakiosuhtinn ja jatkuva osinkotuotto Näin olln suojattuun portfolioon tul osinko tuottoja - D St vrran = V S D S t Sijoittamalla V (ito s lmma) S (llisltä sivulta) oistamalla satunnaisuus = Jonka jälkn Π:n on riskitön ja voiaan kirjoittaa muotoon rπt arbitraasihtoon votn lopuksi sijoittaan = ja = V S D S Lopputuloksksi saaaan: V + σ S + ( r D ) S rv = Vakiosuhtinn ja jatkuva osinkotuotto Kaksi nsimmäistä rajahtoa kolmsta säilyy:. C(S,)=max(S()-E,). S=, niin C(,= 3. kun S->, niin C(S,~S -D(- Option arvo lähn koh-tuun arvoa ilman osinkoa. Olttaan, ttä S * ( on S(:n osinkopuhistttu hinta. Eli S * ( i maksa osinkoa ja s on yhtä suuri kuin S( osingon maksun jälkn, jotn: S ( = S( * D ( Option haltijan näkökulmasta on aivan sama kumman kohtuun option hän ostaa, koska option haltija i hyöy osingoista mitnkään. Vakiosuhtinn ja jatkuva osinkotuotto Näin olln C(S * (,= C(S(, C(S * (, voiaan ratkaista B&S yhtälön avulla ja ratkaisuhan on tunnttu. Sijoittamalla ratkaisuun: S ( = S( * D ( Saamm: D ( C( S, = SN( ) E N( log( S / E) + ( r D + σ )( = σ t = σ t ) Diskrtti osingon maksu Olttaan ttä koh-tuus maksaa yhn osingon y S ajanhtkllä t nnn option lunastamista. y on osinkotuotto. Koh-tuun hinta muuttuu näin olln osingon vrran osingon maksuhtkllä + S( t ) = S( t ) ys( t ) = S( t )( y ) Mikä vaikutus koh-tuun päjatkuvalla hinnalla on option hintaan?
Diskrtti osingon maksu Diskrtti osingon maksu Option arvon pitää olla jatkuva osingonmaksuajankohan yli. Jos option arvo muuttuisi osingonirtoamishtkllä, voisi ostamalla ja myymällä optioita thä riskittömästi rahaa. Kysssä olisi A-tyypin arbitraasi. Eli: V ( S( t ), t + + ) = V ( S( t ), t ) Huom! Osingon maksu pinntää arvoa koko option linajan ajalta Ellistä kaavaa kutsutaan hyppyhoksi. Ellinn kaava pät myös muill päjatkuvill muuttujill Mitn option hinta lasktaan käytännössä, kun koh-tuus maksaa krtaalln osinkoa? Arvon määrittäminn aloittaan lunastushtkstä taakspäin (backwar parabolic). Aluksi ratkaistaan B&S yhtälö osingonirtoamishtkn asti. ämän jälkn käyttään uusia muuttujan arvoja, join yhtys löytyy hyppyhosta: + V ( S, t ) V ( S( ), t ) = y 3. Ratkaistaan B&S yhtälö haluttuun ajanhtkn asti uusilla muuttujan arvoilla Diskrtti osingon maksu rmiinit Esimrkkinä urooppalainn ostooptio. Kohassa. voiaan käyttää normaalisti urooppalaisn osto-option analyyttistä ratkaisua (osinkoa i maksta): C. Kohta. ( S, = C( S, t; E), + t t + C ( S, t ) = C ( S( ), t ; E) Dlta muuttuu osingonirtoamishtkllä, jotn tämä pitää huomioia suojauksssa = y rmiinit ovat kahn osapuoln välisiä sopimuksia, joissa toinn osapuoli sitoutuu ostamaan toislta kohtuun sovittuun hintaan (forwar pric) sovittuna ajankohtana (maturity at) Eroja optioihin: Kummankin osapuoln on pakko lunastaa trmiini rmiinin prmio on nolla 3
Futuurit Futuurit ovat prusominaisuuksiltaan trmiinin kaltaisia Erot trmiinihin Futuurja välittävät johannaispörssit, jotka ovat stanaroint tittyjä futuurin ominaisuuksia, kutn maturitttihtkn ja koh-tuuksin määrän Futuurin arvo lasktaan päivittäin ja arvon muutos hyvittään välittömästi toisll osapuolll. rmiinin voitto /tappio puolstaan ralisoituu maturitttihtknä Futuurit ja trmiinit Huolimatta futuurin ja trmiinin roista niin hinnat ovat lähs samat On olmassa usita tapoja johtaa lunastushinta (forwar pric). Arbitraasi Lyhyt positio li vlvollisuus myyä koh-tuus maturitttihtkllä Ottaan riskitöntä lainaa pankista ja osttaan sillä hti koh-tuus Futuurit ja trmiinit Hinnaksi F on tultava riskittömän pankkilainan aihuttamat kustannukst, koska m. järjstly i aihuta riskiä tkijälln ja koska muutn kysssä olisi A- tyypin arbitraasi F = S( Jos koh-tuus maksaa jatkuvaa vakio-osinkoa D ällöin hinnaksi F saaaan: F = S( r( ( r D )( Futuurit ja trmiinit. ut-call arittti rmiinin pitkä positio (ostovlvollisuus) vastaa urooppalaisn osto-option pitkää positiota ja myyntioption lyhyttä positiota, joilla on sama maturittti ja lunastushinta uotto rmiini F ja E Osto-optio myyntioptio Kohtuun hinta 4
Futuurit ja trmiinit S + C = E r ( t ) Koska trmiinin arvo sopimuksn solmimishtkllä on nolla ja koska E =F, niin S E = r( F = S( 3. Black an scholsin ratkaisu Koska trmiinin (pitkä positio) payoff on htkllä, S-F, on hlppo päätllä, ttä ratkaisu aimmill ajankohill on: S( F r ( t ) Futuurit ja trmiinit rmiinin arvo muuttuu koko ajan, sillä koh-tuun hinta muuttuu. rmiinisopimuksn osapuoli voi koska tahansa (t ) lukita voittonsa tai tappionsa tkmällä vastaavan sopimuksn ottamalla vastakkaisn position. ällöin voitoksi/tappioksi muoostuu: V ( S, t') = S( t') F t') Futuurioptiot Voimm johtaa B&S yhtälöstä futuurioption arvon V(F, muuttujan vaihtosääntöön votn. Korvaamm S:n: S F Ja: F r( = F F F + = rf F F uloksksi saamm: V + σ F rv = F ulos on inttinn jatkuvaa osinkoa maksavan koh-tuun B&S yhtälön kanssa, kun kohtuus maksaa osinkoa r:n vrran Futuurioptiot Eurooppalaisn osto-option arvon kaava on tätn hlppo thä sijoittamalla D =r: C( F, = (( FN( ) EN( )) 5
Aikariippuvat paramtrit B&S yhtälössä arkoituksna on sisällyttää B&S analyysiin ajasta riippuva korko r( ja volatilittti σ(. Näitä on pitty tätä nnn vakioina. ulokst ovat mrkittäviä niill, joilla on vahva näkmys mihin suuntaan korko ja volatilittti khittyvät Lopputulos: Voimm korvata B&S yhtälön ratkaisuista vakiokoron r ja -volatilittin σ suraavilla kskiarvoilla Aikariippuvat paramtrit B&S yhtälössä Korko r voiaan korvata: t t r( τ ) τ Volatilittti σ voiaan korvata: t t σ ( τ ) τ Eksoottist optiot Kaikki n optiot, join payoff lasktaan ri tavalla kuin vaniljaoptioin payoff:it, ovat ksoottisia optioita. Eli poikkavat: EuropanCall Europanut = max( S E,) = max( E S,) ath-pnnt options Option payoff riippuu lunastus- tai maturitttihtkllä koh-tuun aikaismmasta hintahistoriasta Asian, lookbacks, Barrir, Amrican options Barrir options Barrir optioill on ominaista nnalta määrätty koh-tuun rajahinta, joka joko mitätöi option arvon tai aktivoi option ällainn hto voiaan lisätä käytännössä millaisn tahansa optioon Barriroptioita on nljää ri päätyyppiä: Down-an-out Option payoff on nolla, mikäli kohtuun hinta käy asttun Barrir hinnan alapuollla option linkaarn aikana Down-an-in Option payoff on nolla, mikäli kohtuun hinta EI käy asttun Barrir hinnan alapuollla option linkaarn aikana Up-an-in Up-an-out 6
Barrir options Yksi syy ko. optioin suosioll on, ttä n ovat halvmpia kuin simrkiksi vastaavat urooppalaist optiot N ovat halvmpia, koska payoff:in saaminn on lisä-hon takia pävarmmpaa oisiaan vastaavin in ja out - optioin arvoilla on yhtys: in + out = uropan B&S yhtälön analyyttinn ratkaisu on ratkaistavissa skä urooppalaisn myynti- ttä ostooption arvoll millä tahansa barrir holla Barrir options Muita käytössä olvia htoja: Doubl barrir: koh-tuun hinnan vaihtlull on astttu skä ylä- ttä alaraja. Rajat voivat olla in tai out - tyyppisiä artial barrir: raja on astttu vain rajoittuksi ajaksi arisian: rajan ylityksll on astttu tukätn aikavaatimus Asian options Aasialaistn optioin payoff on riippuvainn koh-tuun hintahistoriasta (pathpnn. Hintahistorian avulla lasktaan kskiarvo. Kskiarvo voiaan laska Aritmttissti/gomtrissti ainotttuna/i painotttuna Jatkuva/iskrtti otos Aasialaistn optioin arvoill löytyy B&S yhtälön analyyttinn ratkaisu vain tityissä tapauksissa Asian options Osto-option, jonka lunastus-hinta on vakio, payoff: Avragr icasiancall = max( S( τ ) τ E,) Osto-option, jonka lunastus-hinta on kskiarvo, payoff: AvragStrikAsianCall = max( S( ) S( τ ) τ,) 7
Lookback options Lookback option payoff riippuu joko koh-tuun hinnan maksimi- tai minimiarvosta. Lunastushinta on joko kiintä (E) tai klluva. Klluvalla lunastushinnalla tarkoittaan koh-tuun hintaa lunastushtkllä S() Osto-optioin payoffit: Kiint ä Klluva = max( S = max( S max max E,) S( ),) Jos optiolla on klluva lunastushinta, optio kannattaa lunastaa aina Compoun options Compoun option li option optio Esimrkkinä urooppalainn ostooptio urooppalaisll osto-optioll ( call-on-call ). Compoun optio voiaan lunastaa ajanhtkllä lunastushinnalla E. Koh-tuus optio voiaan lunastaa puolstaan ajanhtkllä lunastushinnalla E. Koh-tuus option arvo on oman kohtuun hinnan S ja ajan funktio t C(S, Compoun option payoff määräytyy siis suraavasti: Call on call = max( C( S, ) E,) Choosr options Rgular choosr option haltijalla on oikus ostaa ajankohtana lunastushinnalla E osto- AI myyntioptio, jonka lunastushinta on E ajankohtana. Koh-tuus optioin arvot ovat niin omin kohtuuksin hinnan S ja ajan t funktioita (S, ja C(S,. Choosr option haltija valits luonnollissti sn option, kumman arvo on suurmpi ajanhtkllä, mikäli suurmpi arvo on suurmpi kuin E Olttaan taas, ttä kaikki optiot ovat urooppalaisia. ällöin rgular choosr option payoffiksi muoostuu C on c or p = max( C( S, ) E, ( S, ) E,) Brmuan option Brmuan optio roaa ainoastaan yhllä tavalla vastaavasta amrikkalaissta optiosta. Amrikkalaisn option voi lunastaa minä htknä hyvänsä option linkaarn aikana [,]. Brmuan option voi lunastaa puolstaan ainoastaan tukätn määritttyinä päivinä Brmuan option arvoll i ol olmassa analyyttistä ratkaisua Jos koh-tuus optioilla on ri lunastushinta tai maturitttihtki, optiota kutsutaan monimutkaisksi choosr optioksi 8
Shout options Yksinkrtaisin huuto-optio sallii option haltijan huutaa krran aikavälillä [,]. Osto-option payoff määräytyy suraavasti: Max(S() - E, S( τ ) - E) Jos option haltija on "huutanut" ajankohtana τ max(s() - E,) Jos option haltija i ol"huutanut" Huuon iana on lukita payoff vähintään S( τ)-e:n suuruisksi. Huuto-option arvoll i ol olmassa valmista kaavaa 9