Samankaltaiset tiedostot
MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011

Teknillinen korkeakoulu CFD-ryhmä / Sovelletun termodynamiikan laboratorio

Teknillinen korkeakoulu CFD-ryhmä / Sovelletun termodynamiikan laboratorio. Liukuvan hilan reunaehdon testaus - Krainin impelleri

1 1 Johdanto Tassa muistiossa esitetaan Teknillisessa korkeakoulussa kehitetylla FINFLO-virtausratkaisijalla konstruoitu pumppukayra Ahlstromin valmis

1 1 Johdanto Tassa muistiossa on tarkasteltu totuudenmukaisempien nopeuden, turbulenssin kineettisen energian ja dissipaation jakaumien kayttoa suutin

valitseminen vaikuttaa laskennan aikana ratkaistaviin yhtälöryhmiin.

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

Isotermisen poltinvirtauksen laskenta

Virtaus ruiskutusventtiilin reiästä

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

1 1 Johdanto Tassa paperissa kuvataan havaintoja, joita on tehty tapauksen "sylinteri vapaassa virtauksessa" testiajoissa. Testit on laskettu Siikosen

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Luvun 12 laskuesimerkit

279.4 mm. k j i mm. measurements mm. (In a testcase Ω < 0)

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

Demo 5, maanantaina RATKAISUT

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

6 Turbulentin virtauksen laskenta

Virtauslaskentaan liittyvä tutkimus TKK:n koneosastolla. Timo Siikonen

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi?

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).

Liite F: laskuesimerkkejä

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

Mekaniikan jatkokurssi Fys102

y=-3x+2 y=2x-3 y=3x+2 x = = 6


Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.

Materiaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä.

l 1 2l + 1, c) 100 l=0

Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet

12. Differentiaaliyhtälöt

1 Eksergia ja termodynaamiset potentiaalit

KUULAKEKOREAKTORIN SYDÄMEN JÄÄHDYTEVIR- TAUKSEN CFD-MALLINNUS CFD-MODELLING OF COOLANT FLOW IN PEBBLE BED REACTOR CORE

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv

FYSA242 Statistinen fysiikka, Harjoitustentti

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

dt 2. Nämä voimat siis kumoavat toisensa, jolloin saadaan differentiaaliyhtälö

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

7. Resistanssi ja Ohmin laki

(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.

EPÄJATKUVA GALERKININ MENETELMÄ ELASTISELLE AALTOYH- TÄLÖLLE 1 JOHDANTO 2 ELASTINEN AALTOYHTÄLÖ (3D) Timo Lähivaara a,*, Tomi Huttunen a,b

Kahden laboratorion mittaustulosten vertailu

MEMO No CFD/THERMO DATE: 2nd February Laser-Doppler anemometer measurements of air flow between cooling ribs of an electrical motor.

Viikon aiheena putkivirtaukset

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Ensimmäisen asteen polynomifunktio

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

1 Ensimmäisen asteen polynomifunktio

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

Numeeriset menetelmät

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

Sisältö Käytetyt merkinnät 2 1 Johdanto 4 2 Virtausyhtälöt 5 3 Turbulenssimalli 7 4 Numeerinen ratkaisu Ratkaisualgoritmi

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Malliratkaisut Demot

Harjoitus 3 ( )

Mekaniikan jatkokurssi Fys102

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

Tuulen nopeuden mittaaminen

Tampere University of Technology

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

Chapter 1. Preliminary concepts

Harjoitus 3 ( )

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.

Teknillinen korkeakoulu CFD-ryhmä / Sovelletun termodynamiikan laboratorio. Liukuvan hilan reunaehdon implementointi FINFLOon

Ruiskuvalumuotin jäähdytys, simulointiesimerkki

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

3 Skalaari ja vektori

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

1 Peruskäsitteet. Dierentiaaliyhtälöt

12. Hessen matriisi. Ääriarvoteoriaa

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että:

Transkriptio:

Teknillinen Korkeakoulu CFD-ryhma/ Sovelletun termodynamiikan laboratorio MUISTIO No CFD/TERMO-8-96 pvm 15 tammikuuta, 1997 OTSIKKO IFRF polttokammion laskenta k ; turbulenssimallilla, case 11 LAATIJA(T) Juha Ojala TIIVISTELMA Taman laskennan tarkoituksena on tutkia FINFLO:n k ; turbulenssimallin soveltuvuutta voimakkaasti pyorivan ilman virtauksen laskentaan polttokammiossa. Vertailuarvoina on voitu kayttaa mittaustuloksia seka muilla tietokoneohjelmilla saatuja ratkaisuja. Voimakkaasti pyoriva virtaus asettaa suuret vaatimukset numeeriselle laskennalle, koska virtauskentassa esiintyy suuria nopeusgradientteja. Talloin turbulenssin mallinnuksella on ratkaiseva merkitys lopputuloksiin. PAAKOHDAT Nopeusjakaumat viidessa leikkauksessa, takaisinvirtausalue (Internal Recirculation Zone, IRZ) SIVUJA 8 AVAINSANAT FINFLO, IFRF, k ; turbulenssimalli TARKASTANUT Timo Siikonen Huhtikuu 19, 1996

1 1 Johdanto Tassa laskentatapauksessa on keskitytty voimakkaasti pyorivan isotermisen virtauksen aiheuttamaan takaisinvirtausalueeseen (IRZ), joka syntyy polttokammion laajenevaan virtauskanavaan. Polttokammion geometria ja reunaehdot on saatu IFRF:n tutkimusraportista "Mathematical modelling of a highly conned swirling ow" [1]. Geometria on esitetty kuvassa 1. Fig. 1: polttokammion geometria Virtaustapaus on ratkaistu Teknillisessa Korkeakoulussa kehitetylla FINFLO virtausratkaisijalla. Vertailuarvoja FINFLO:n laskentatuloksien arvioimiseksi on saatu yllamainitusta IFRF:n raportista [1] seka VTT:n suorittamista laskelmista Fluent 4.32 virtausratkaisijalla [2]. 2 Laskentamenetelma 2.1 Laskennan perusteet FINFLO-koodi perustuu alla esitettyjen Navier-Stokesin yhtaloiden (1) numeeriseen ratkaisuun. @U @t + @(F ; F v) + @(G ; G v) + @(H ; H v) = Q (1) @x @y @z missa U on riippumattomien muuttujien muodostama vektori, F G H ja F v G v H v ovat vuovektoreiden kitkattomat ja kitkalliset osat. Q on mahdollinen lahdetermi (kts. kappale 2.2 Turbulenssimalli). Kontrollitilavuus muodossa esitettyna Navier-Stokesin yhtalot saavat seuraavan muodon: du X i V i = ;S( dt ^F ; ^F v )+V i Q i (2) seinat missa V i on laskentakopin tilavuus. Summa lasketaan laskentakopin kaikkien seinien yli. Laskenta etenee siten, etta ensin maaritetaan eksplisiittisesti reunaehdot. Seuraavaksi lasketaan kitkattomat ( ^F )jakitkalliset ( ^F v ) vuotermit ja suoritetaan summaus yli laskentakopin seinien. Koska tama virtaustapaus on kaytannollisesti katsoen kokoonpuristumaton, kaytetaan naennaiseen kokoonpuristuvuuteen perustuvaa painepohjaista ratkaisua tiheyden intergroinnin asemesta (parametri IFLX saa arvon 'INCO' FINFLOn ohjaustiedostossa IN- PUT). Ratkaisumenetelmassa tiheys voi olla vakio, tassa kuitenkin tiheys lasketaan. Erot lasketun ja reunaehtona annetun tiheyden valilla nakyvat kolmannessa desimaalissa. Vaikka ratkaisu on painepohjainen, se perustuu yhtalon (1) aikaintegrointiin. Taten saamme

2 yhtalon (2) vasemman puolen eksplisiittisen residuaalin U i =[p u v w e] T. Taman jalkeen ratkaisua haetaan implisiittisesti jokaisessa lohkossa erikseen kayttamalla LU-hajotelmaan perustuvaa menetelmaa. Tassa kaytetaan apuna monihilatasoja laskennan nopeuttamiseksi. Lohkojen valiset reunaehdot ja lopullinen ratkaisu esitetaan aina kuitenkin tarkimmalla hilatasolla. 2.2 Turbulenssimalli Laskennassa on kaytetty Chienin k ; turbulenssimallia (FINFLOn turbulenssimalli numero 3). Reynoldsin jannitykset on laskettu Boussinesq'n approksimaatiolla ;u 00 = i u00 j T @uj @x i + @u i @x j ; 2 3 (r~ V ) ij ; 2 3 k ij (3) Tasta kaavasta maaritetyt heilahtelunopeudet eivat ole isotrooppisia, eli heilahtelunopeudet ovat erisuuruisia eri suunnissa. IFRF:n tutkimusraportin heilahtelunopeudet ovat isotrooppisia, ja ne on laskettu ehdosta k = 1 2 u00 i u00 i = 1 2 u 00 u 00 + v 00 v 00 + w 00 w 00 Olettamalla heilahtelunopeudet yhtasuuriksi, saadaan r 2 u 00 = v 00 = w 00 = 3 k (5) KaytetyssaChienink ; turbulenssimallissa Navier-Stokesin yhtaloissa esiintyvalahdetermi Q on maaritelty seuraavasti: Q = P ; ; 2 k yn 2 c P 1 k ; c 2 2 k ; 2 yn 2 e;y+ =2 missa y n on kohtisuora etaisyys seinasta, ja y + on y + = y n u = y n p w = y n "! # jr V ~ 1=2 j w Turbulenssin kineettisen energian tuotto P lasketaan kayttamalla hyvaksi Boussinesq'n approksimaatiota: @u P = ;u 00 i i u00 j = T ( @u i + @u j 2 ; @x j @x j @x i 3 @u k ij ) 2 ; @x k 3 @ui ijk (8) @x j k ; turbulenssimallissa turbulentti viskositeetti lasketaan yhtalosta T = c k 2 k:n ja :n yhtalot sisaltavat empiirisia kertoimia, joiden laskentaan on kaytetty alla olevia kaavoja: c 1 = 1:44 k = 1:0 c 2 = 1:92(1 ; 0:22e ;Re2 T =36 ) = 1:3 (10) c = 0:09(1 ; e ;0:0115y+ ) missa turbulenssin Reynoldsin luku on (4) (6) (7) (9) Re T = k2 (11)

3 2.3 Numeerisia nakokohtia Laskennassa on kaytetty toisen kertaluvun ylavirtapainotteista diskretointimenetelmaa (second-order upwind) ilman vuonrajoitusta. Seinamakorjaus turbulenssiyhtaloissa on aktivoitu J-suunnassa, eli sateen suunnassa. Laskentaiteraatiota jatkettiin, kunnes turbulenssin kineettisenenergian k residuaalit olivat laskeneet ja tasoittuneet 10 ;7 tasolle. Kuvassa 2 on esitetty eraita tarkimman hilatason ratkaisun konvergenssihistorioita. Kineettisen energian maarasta voidaan paatella ratkaisun olevan varahtelevaa ja varahtelyn hitaasti vaimenevaa. Varahtelylla ei todennakoisesti ole vaikutusta esitettyihin tuloksiin. Myos turbulentin kineettisen enrgian taso on lahes vakiintunut. Fig. 2: Tarkeimmat konvergenssihistoriat tasolla 1

4 3 Laskentahila Laskentahila on 3-uloitteinen 1 lohkoinen, kooltaan 192 80 16 koppia. I-koordinaatti kasvaa alavirran suuntaan, J-koordinaatti kasvaa sateen suuntaan ja K-koordinaatti poikkipinnan tangentin suuntaan. K-suunnassa tarvitaan useita laskentakoppeja sen takia, etta tassa suunnassa laskentahila rajoittuu syklisiin seiniin (reunaehto CYC). Tallaisessa reunaehdossa varsinaisen laskentahilan ulkopuolelle luodaan kaksi koppirivia haamukoppeja, jotka saavat arvonsa varsinaisen laskentahilan sisalta sen vastakkaiselta laidalta. Tama on siis ohjelman toiminnallinen ominaisuus. FINFLOa on ajettu kokeilumielessamyoskin yhden koppirivin hilalla, mutta talloin reunaehdot eivat tule enaa fysikaalisesti jarkevasti sylinterisymmetrisessa tapauksessa. Laskenta saattaa siita huolimatta kayttaytya hallitusti. Lisaksi K-suunnassa tarvitaan useita koppeja, jotta laskennassa voitaisiin kayttaa monihilatasoja. Kakkostason hilan dimensiot saadaan jakamalla ykkostason hilan dimensiot kahdella jne. Monihilatasoja voi olla enintaan viisi. Hilan JK-taso on ympyrasektori, jonka sektorikulma on 22 5 astetta. Origo sijaitsee sisaanvirtausreunan kohdalla pyorahdysakselilla. Seinamaa lahinna olevan kopin korkeus on 10 ;5 m,elikopin korkeus on likipitaen y + =2: Kuvassa 3 on esitetty takaisinvirtausalueen kannalta merkittava osa hilasta. Fig. 3: Osa laskentahilasta 4 Laskenta 4.1 Reunaehdot Laskettu virtaustapaus on nimeltaan "case11" [1]. Laskenta on aloitettu leikkauksesta, joka sijaitsee 0 105 m polttokammion alkupaasta. Talloin laskentahilan ulkoinen geometria on samanlainen kuin IFRF:n raportissa [1] ja VTT:n laskelmissa [2]. Ilman lampotila on sisaanmenossa 300 K ja tiheys 1 17089 kg=m 3. Keskimaarainen aksiaalinopeus on 4 627 m=s ja tangetiaalinopeus 4 750 m=s. Virtaus on siis voimakkaasti pyoriva. Yksityiskohtaisemmat tiedot sisaanmenon reunaehdoista on esitetty IFRF:n raportissa [1]. Ulosmenon reunaehdoilla ei ole merkitysta kuin ensimmaisella laskentakierroksella, jonka jalkeen kaikki muut suureet paitsi paine ekstrapoloidaan reunalle. Alkuehdot ulosmenossa on maaritetty seuraavasti: Aksiaalinopeus on vakio 4 627 m=s noin 95% sateesta. Lahella seinamaa nopeus pienenee jyrkasti nollaan. Tangentiaalinopeus on nolla. Ilman tiheys ulosmenossa on sama kuin sisaanmenossa. Turbulenssin kineettiselle energialle k ja dissipaatiolle on kaytetty samaa jakaumaa kuin sisaanmenossa. Alkuehto laskenta-alueessa on maaritetty niin, etta I-suunnassa vuon arvo sailyy sisaanmenosta alavirtaan pain kuljettaessa.

5 4.2 Laskennan tulokset Laskenta aloitettiin tasolta 3, ja se konvergoi melko hitaasti. Supennut tulos saatiin 25000 kierroksen ajon jalkeen. Koskakonvergenssi oli hidasta ja tulos oli varahteleva, laskentaa jatkettiin aina 54000 kierrokseen asti. Tasolla 2 ajettiin 20000 kierrosta ja tasolla 1 10000 kierrosta. Suuri laskentakierrosten maarajohtuu siita, etta iteraatio ei sallinut juuri ykkosta suurempia Courantin lukuja. Hienoimman hilatason ratkaisussa kaytettiin kahta monihilatasoa. Myos useamman monihilatason kayttoa kokeiltiin, mutta laskenta muuttui sen seurauksena epastabiiliksi. Laskennan kannalta vaikeimmaksi kohdaksi osoittautui kammion loppupaassa oleva suorakulma, joka supistaa virtauksen ulosmenon maaraamaan poikkipinta-alaan. Laskentatuloksia on tarkasteltu viidessa leikkauksessa, jotka sijaitsevat kohdissa 0 065 m 0 145 m 0 235 m 0 345 m ja 0 475 m. Laskentakohdat ovat samat kuin IFRF:n raportissa [1] ja kuvassa 4. Reunaehdot on maaritetty kuvan 4 leikkauksessa 1 ja vertailut mittaustuloksiin on tehty leikkauksissa 2, 4, 5, 6 ja 7. Laskennan tuloksena saadut nopeusjakaumat Fig. 4: Tarkasteluleikkauksia (tulokset leikkauksissa 2, 4, 5, 6 ja 7). eri leikkauksissa ovat hyvin lahella IFRF:n Fluent-ohjelmalla laskettuja tuloksia. Sen sijaan heilahtelunopeudet ovat erilaiset. Tama johtuu paaasiassa siita, etta ohjelmat kayttavat erilaista menetelmaa heilahtelunopeuksien maarittamiseen. IFRF:n raportissa [1] aksiaaliset ja tangentiaaliset heilahtelunopeusjakaumat ovat samanlaiset toisin kuin FINFLO-laskelmissa. Suurimmat poikkeamat mittaustuloksista saatiin ensimmaisissa leikkauksissa, jotka sijaitsevat aivan sisaanmenon lahella. Naissa leikkauksissa lasketut heilahtelunopeudet ovat jopa viisi kertaa niin suuria kuin mittaustulokset. Suurin virhe tapahtuu kolmannen leikkauksen (x =0 235 m) tangentiaalisen heilahtelunopeuden kohdalla pyorahdysakselilla, jokaonmyos singulariteettiakseli. Tama leikkaus on likimain takaisinvirtausalueen keskella. Nopeusjakaumat on esitetty kuvissa 5 ja 6. Kuvissa on esitetty nopeusjakaumat hilatasoilla kolme, kaksi ja yksi seka heilahtelunopeusjakaumat hilatasoilla kaksi ja yksi. Tason yksi tulos on laskettu tarkimmalla hilalla.

6 AXIAL VELOCITIES (m/s) TANGENTIAL VELOCITIES (m/s) Grid 192 x 80 Fig. 5: FINFLO:n laskemat ja mitatut nopeusjakaumat

7 AXIAL VELOCITY FLUCTUATIONS (m/s) TANGENTIAL VELOCITY FLUCTUATIONS (m/s) Grid: 192 x 80 Fig. 6: FINFLO:n laskemat ja mitatut heilahtelunopeudet

8 Kuten edella on mainittu, polttokammion laajenevaan virtauskanavaan syntyy takaisinvirtausalue. Tassa alueessa virtaus kulkee lahella pyorahdysakselia kohti sisaanmenoa. Taman voi havaita esimerkiksi kuvan 5 neljannesta aksiaalivirtausta esittavasta jakaumasta. FINFLO:n k ; turbulenssimalli antaa lahes koetuloksia vastaavan takaisinvirtausalueen. Myoskin VTT:n Fluent-ohjelmalla ja k ; turbulenssimallilla laskema takaisinvirtausalue on lahes samanlainen [2]. Kuvassa 7 on esitetty aksiaalinopeuksien arvot [;0 5 0 0 5 1 0 1 5] m=s. Tasta kuvasta takaisinvirtausalueen muoto kay hyvin selville. Fig. 7: aksiaalinopeuden tasa-arvokayrat ;0 5 0 0 5 1 0 ja 1 5 m=s Viitteet [1] Breussin F., P. A. and R., W., \Mathematical modelling of a highly conned swirling ow," International ame research foundation, Sep 1994. [2] Huhtanen R., Henkilokohtainen keskustelu, VTT, maaliskuu 1996.