Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Samankaltaiset tiedostot
Luku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit

8. MONIELEKTRONISET ATOMIT

Monen elektronin atomit

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

766334A Ydin- ja hiukkasfysiikka

Jakso 8: Monielektroniset atomit

5.1 Johdanto Helium-atomi Keskeiskenttämalli Paulin kieltosääntö Atomien elektronirakenne 208

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Atomien rakenteesta. Tapio Hansson

Kemian syventävät kurssit

Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset

Kvanttifysiikan perusteet 2017

9. Elektronirakenteen laskeminen

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

S Fysiikka III (EST) Tentti ja välikoeuusinta

Luento5 8. Atomifysiikka

Demo: Kahden elektronin spintilojen muodostaminen

3.1 Varhaiset atomimallit (1/3)

Luento Atomin rakenne

SPEKTROMETRI, HILA JA PRISMA

KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli

Havaitsevan tähtitieteen peruskurssi I

FYSA242 Statistinen fysiikka, Harjoitustentti

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Spin ja atomifysiikka

766326A Atomifysiikka 1 - Syksy 2013

2 Eristeet. 2.1 Polarisoituma

Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

766334A Ydin- ja hiukkasfysiikka

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe , malliratkaisut

J 2 = J 2 x + J 2 y + J 2 z.

MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN

1 Aaltofunktio, todennäköisyystulkinta ja normitus

Aaltojen heijastuminen ja taittuminen

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

Pythagoraan polku

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

7. Atomien rakenne ja spektrit

6. Vapaaelektronikaasu

Magneettikenttä väliaineessa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

tyhjönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa todellisuudessa kullekin atomille ominaisen magneettisen dipolimomentin

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Kvanttimekaaninen atomimalli. "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2

Tilat ja observaabelit

Aaltojen heijastuminen ja taittuminen

S Fysiikka III (Est) 2 VK

l s, c p T = l v = l l s c p. Z L + Z 0

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

FUNKTIONAALIANALYYSIN PERUSKURSSI Johdanto

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

pääkiertoakseli #$%%ä 2C 2 C 2!"

Alikuoret eli orbitaalit

Monen elektronin atomit

Muodonmuutostila hum

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

9. JAKSOLLINEN JÄRJESTELMÄ

8. MONIELEKTRONISET ATOMIT

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

Monen elektronin atomit

Magneettikenttä väliaineessa

Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:

PRELIMINÄÄRIKOE. Pitkä Matematiikka

MAOL-Pisteitysohjeet Fysiikka kevät 2011

Symmetriaryhmät ja niiden esitykset. Symmetriaryhmät, /26

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

Matriisit ja vektorit Matriisin käsite Matriisialgebra. Olkoon A = , B = Laske A + B, , 1 3 3

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Molekyylit. Atomien välisten sidosten muodostuminen

Luvun 10 laskuesimerkit

Tilavuusintegroin. f(x,y,z)dxdydz. = f(x,y,z)dx dy

780392A/782631S Fysikaalinen kemia II, 5 op / 4 op

2 Yhtälöitä ja epäyhtälöitä

Shrödingerin yhtälön johto

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

OPETUSSUUNNITELMALOMAKE

23 VALON POLARISAATIO 23.1 Johdanto Valon polarisointi ja polarisaation havaitseminen

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Häiriöt kaukokentässä

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

Kvanttimekaaninen atomimalli

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

Voima ja potentiaalienergia II Energian kvantittuminen

1. Puolijohdekiteiden kasvatus

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Harjoitus Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

V astaano ttav aa antennia m allinnetaan k u v an m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa

Oppikirja (kertauksen vuoksi)

Transkriptio:

Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw 1

n 1 = 3 n 1 = 2 n 1 =1 n 1 = 4 Vetyatomin spektri koostuu viivoista Viivojen sijainti voidaan selittää Rydbergin esittämällä kaavalla: $ 1 ν = R H & 2 n 1 % 1 n 2 2 ' ) ( R H =109677cm 1 2

Vedyn kaltaisilla atomeilla (H, He+, Li2+,...) on vain yksi elektroni mistä johtuen niiden Schrödingerin yhtälö voidaan ratkaista tarkasti (eksaktisti) Elektronin kokema ytimestä (Ze) aiheutuva Coulombin potentiaali: V = Ze2 4πε 0 r Atomia kuvaava Hamiltonin operaattori: H ˆ = 2 2 e 2 2 N Ze2 2m e 2m N 4πε 0 r el. kineettinen energia ytimen kineettinen energia 3

3-ulotteinen pyörimisliike (hiukkanen pallon pinnalla) edellyttää aaltofunktiolta kahta syklistä reunaehtoa Schrödingerin yhtälö on muotoa: 2 2m 2 ψ = Eψ 2 = 2 x + 2 2 y + 2 2 z = 2 2 r + 2 2 r r + 1 & 1 2 r 2 sin 2 θ φ + 1 2 sinθ θ sinθ ) ( + ' θ * Koska r = vakio: 1 r 2 Λ2 ψ = 2mE ψ 2 Λ 2 Legendren operaattori ratkaisuna saadaan kulmista riippuva funktio: ψ θ,φ jolle voidaan tehdä muuttujien separointi ( ) = Θ θ ( )Φ φ ( ) 4

Elektroni-ydin systeemi koostuu kahdesta kappaleesta (body). Tämä voidaan muuttaa yhden kappaleen ongelmaksi tarkastelemalla elektronin suhteellista liikettä ytimen suhteen. Nyt tarkastellaan yksittäisten massojen asemasta ns. redusoidun massan µ liikettä 1 µ = 1 + 1 m e m N 1 m e 2 2µ 2 ψ Ze2 4πε 0 r ψ = Eψ radiaalifunktio palloharmoninen funktio ratkaisu ψ(r,θ,φ) separoituu kahteen osaan: ψ(r,θ,φ) = R(r)Y(θ,φ) Saadaan kaksi ominaisarvoyhtälöä: Λ 2 Y = l(l +1)Y 2 d 2 u 2µ dr + V 2 eff u = Eu u = rr V eff = Ze2 l(l +1) 2 + 4πε 0 r 2µr 2 kuvaa 1-ulotteista liikettä efektiivisessä potentiaalissa 5

V eff sisältää Coulombin potentiaalin lisäksi elektronin pyörimismäärästä aiheutuvan keskipakoisvoima-termin. Tällä on suuri vaikutus lähellä ydintä: s-orbitaali l=0 elektronilla on suuri todennäköisyys ytimessä 6

radiaaliyhtälön ratkaisuna saadaan energia Z 2 µe 4 E n = 32π 2 ε 2 0 2 n 2 n=1,2,3,... ns. pääkvanttiluku Radiaaliset ratkaisut R riippuvat pääkvanttiluvun lisäksi ratapyörimismäärään liittyvästä kvanttiluvusta l (huom. efektiivinen potentiaali): a 0 = Bohrin säde a 0 = 4πε 0 2 m e e 2 ρ = 2Zr na 0 = 52.9pm R n,l (r) = N n,l ρ l 2l L +1 n +1 (ρ)e ρ / 2 L n +1 2l +1 (ρ) Laguerren (lah gerre) liittopolynomi 7

Radiaalifunktioita 8

Yhden elektronin aaltofunktiota kutsutaan atomiorbitaaliksi ψ n,l,ml (r,θ,φ) = R n,l (r)y l,ml (θ,φ) Orbitaaliin liittyvät kvanttiluvut: n = pääkvanttiluku, määrittellee energian l = ratapyörimismäärään liittyvä kvanttiluku. Pyörimismääräksi saadaan: { l(l +1) } 1/ 2 m l = magneettinen kvanttiluku, joka kertoo pyörimismäärän z-komponentin arvon m l Lisäksi tarvitaan spinkvanttiluvun z-komponentti: m s = ±1/2 9

Elektronirakenne jaetaan kuoriin ja alikuoriin energian nollakohta n = 1 2 3 4... K L M N... l 0 1 2 3... s p d f... energia<0 ; ts. elektroni on sitoutunut ytimeen 10

s orbitaalit ovat pallosymmetrisiä, koska Y 0,0 =vakio s-orbitaalit sisältävät n-1 kpl solmupintoja joissa aaltofunktion arvo = 0 elektronin keskimääräinen etäisyys ytimestä voidaan laskea odotusarvona: 2 r = ψ * rψdτ = rψ dτ 11

ψ 2 ψ 2 dτ = todennäköisyystiheys = todennäköisyys, että elektroni sijaitsee tilavuuselementissä dτ Määritellään tilavuuselementti siten, että se on r-säteisen pallon kuoren tilavuus. Kuoren paksuus on dr. (vrt. tennispallo) dτ = 4πr 2 dr Todennäköisyys sille, että elektroni löytyy pallon kuoresta = ψ 2 4πr 2 dr Yhdistelmää = P(r) = 4πr 2 ψ 2 vedyn 1s kutsutaan radiaaliseksi jakaumafunktioksi Yleisempi muoto: P(r) = r 2 R(r) 2 missä R(r) on orbitaalin radiaaliosa 12

p-orbitaaleja on kolme, koska l=1 ja m l =-1,0,1 Tarkastellaan 2p orbitaaleja: ψ p0 = R 2,1 (r)y 1,0 (θ,φ) = 1 4(2π) 1/ 2 & ( ' Z a 0 ) + * 5 / 2 rcosθe Zr / 2a 0 = vakio rcosθf (r) f(r) on r:stä riippuva funktio ja rcosθ = z (koordinaatistomuunnos) voidaankin kirjoittaa: ψ pz = zf (r) ( p z orbitaali ) 13

Kaksi muuta p-orbitaalia (m l = -1,+1) ψ p±1 = R 2,1 (r)y 1,±1 (θ,φ) = 1 8π 1/ 2 = 1 2 1/ 2 rsinθe±iφ f (r) & ( ' Nämä aaltofunktiot ovat imaginäärisiä, ja kuvaavat siten elektronia, jolla on nettoliike (pyörimismäärä z-akselin suhteen) Tavallisesti m l = 1 ja m l =-1 ratkaisuista muodostetaan kaksi lineaarikombinaatiota, jotka ovat seisovia aaltoja (ratkaisun m l =0 tavoin): Z a 0 ) + * 5 / 2 re Zr / 2a 0 sinθe±iφ ψ px = 1 ( 2 ψ 1/ 2 p +1 ψ p 1 ) = rsinθ cosφf (r) = xf (r) ( ) = rsinθ sinφf (r) = yf (r) ψ py = i 2 1/ 2 ψ p +1 +ψ p 1 p x -orbitaali p y -orbitaali 14

Spektroskopisella transitiolla tarkoitetaan elektronin siirtymistä energiatilalta n 1,l 1,m l1,m s1 energiatilalle n 2,l 2,m l2,m s2 Mikäli Mikäli 2 1 n 2 > n 1 n 2 < n 1 hν on kysymyksessä absorptio, ts. siirtymälle ΔE > 0 on kysymyksessä emissio, ts. siirtymälle ΔE < 0 2 hν 1 Spektroskopiset valintasäännöt (selection rules) kertovat mitkä siirtymät tilojen välillä ovat sallittuja Valintasääntö elektronin ja fotonin vuorovaikutukselle pohjautuu pyörimismäärän säilymiseen siirtymässä Fotonin spin s =1, jolloin syntyvän/häviävän fotonin pyörimismäärän pitää kompensoitua elektronin l-kvanttiluvun muutoksena 15

Valintasäännöt: Δl = ±1 Δm l = 0,±1 2 Δl = +1 hν 2 Δl = 1 hν 1 1 Huomaa, että pääkvanttiluvun muutokselle ei ole valintasääntöä 16

Monielektronisten atomien Schrödingerin yhtälöä ei voida ratkaista eksaktisti elektronien välisten vuorovaikutusten vuoksi. He atomille (elektronit 1 ja 2): H ˆ = 2 2 1 2 2 2 2e2 2m e 2m e 4πε 0 r 1 2e2 4πε 0 r 2 + e 2 4πε 0 r 12 elektroni-elektroni Coulombin vuorovaikutus elektroni-ydin Coulombin vuorovaikutus monielektronisysteemin aaltofunktio on muotoa: ψ(r 1,r 2,...) missä r on elektronin paikkavektori Orbitaaliapproksimaation mukaan voidaan kuvitella, että kukin elektroni miehittää oman (vedyn kaltaisen) orbitaalin ja kokonaisaaltofunktio on näiden tulo: ψ(r 1,r 2,...) =ψ(r 1 )ψ(r 2 ) 17

orbitaaliapproksimaation vuoksi elektronirakenteen kuvauksessa käytetään käsitettä konfiguraatio esim. 1s 2, 1s 2 2s 2 2p 3 jne. Konfiguraatioita muodostettaessa tulee huomioida Paulin kieltosääntö, jonka mukaan kullekin orbitaalille voidaan sijoittaa korkeintaan kaksi elektronia vastakkaisin spinnein Paulin kieltosääntö on erikoistapaus Paulin periaattesta: Fermionisten (esim. elektroni) systeemien kokonaisaaltofunktion tulee olla antisymmetrinen hiukkasten vaihdon ψ suhteen: ψ(2,1) = ψ(1,2) Orbitaaliapproksimaation mukaan ψ =ψ(1)ψ(2) (avaruudellinen osa) Kokonaisaaltofunktioon pitää sisällyttää spin-osa. Vaihtoehdot: α(1)α(2) β(1)β(2) α(1)β(2) α(2)β(1) α = β = m s = +1/2 m s = 1/2 18

Koska emme voi erottaa elektroneja toisistaan, muodostamme kaksi normitettua lineaarikombinaatiota spin-osasta: σ + (1,2) = 1 2 σ (1,2) = 1 2 [ α(1)β(2) + β(1)α(2) ] [ α(1)β(2) β(1)α(2) ] Voimme nyt muodostaa 4 kokonaisaaltofunktiota: ψ(1)ψ(2)α(1)α(2) ψ(1)ψ(2)β(1)β(2) ψ(1)ψ(2)σ + (1,2) ψ(1)ψ(2)σ (1,2) Kaikilla sama avaruus-osa, joka on muuttumaton elektronien vaihdossa α(1)α(2) jaβ(1)β(2) ovat muuttumattomia elektronien vaihdossa Tarkastellaan σ + ja σ - lineaarikombinaatioita: σ + (2,1) = 1 2 [ α(2)β(1) + β(2)α(1) ] = σ + (1,2) σ (2,1) = 1 2 [ α(2)β(1) β(2)α(1) ] = 1 [ α(1)β(2) β(1)α(2) ] = σ (1,2) 2 antisymmetrinen spin-osa 19

Spinnien muodostamat superpositiot avaavat yhden mahdollisuuden kvanttitietokoneen toiminnalle: https://www.youtube.com/watch?v=g_iavepndt4 20

ratkaisu ψ(1)ψ(2)σ (1,2) on Paulin periaatteen mukainen Tapauksessa jossa kahden elektronin avaruudelliset aaltofunktiot ψ ovat identtiset, elektronien spinnit ovat vastakkaissuuntaiset Monielektronisilla atomeilla orbitaalit, joilla on sama pääkvanttiluku eivät ole degeneroituneita (vrt. vetyatomi) Ilmiö johtuu elektroni-elektroni vuorovaikutuksesta (repulsiivinen eli hylkivä), joka pienentää elektronin kokemaa ytimen vetovoimaa Tästä varjostuksesta johtuen elektroni näkee ns. efektiivisen ydinvarauksen, joka ei ole vakio kaikille elektroneille Z eff = Z σ 21

3s-elektroni viihtyy lähellä ydintä, jolloin sen kokema varjostus on pieni (vrt. 3p elektroni) 22

Elektronikonfiguraatioiden muodostamiseen liittyy kaksi sääntöä: 1. Aufbau periaate kertoo missä järjestyksessä orbitaalit miehittyvät 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s 2. Hundin säännön mukaan alin energia saavutetaan kun spin saa maksimiarvon (maksimimäärä ns. parittomia elektroneja degeneroituneilla orbitaaleilla) Monielektronisten atomien spektrit ovat monimutkaisia, erityisesti kun atomin järjestysluku on suuri He atomin perustilan elektronikofiguraatio on 1s 2 ja 1.viritystilan 1s 1 2s 1 1s 1 2s 1 tilassa spinnit voivat olla tai tai (elektronit eri orbitaaleilla) 23

tarkastellaan tilannetta, jossa spinnit ovat samansuuntaiset S=1 + (molemmat yläkartiossa) tai + (molemmat alakartiossa), kts. kuva molemmissa tapauksissa kokonaisspin S = s 1 + s 2 =1 ja kokonaisspinvektorin pituus { S(S +1) } 1/2 = 2 Yläkartiossa kokonaisspinnin orientaatiota z-akselin suhteen kuvaa M S = +1 Alakartiossa vastaavasti M S = 1 Keskimmäisessä kuvassa spinnit eri tiloilla, mutta keskinäisestä orientaatiosta johtuen kokonaisspin S =1 ja M S = 0 Huom., että kaikissa tapauksissa vektorien välinen kulma on sama Kolmesta M S arvosta johtuen S=1 tilaa kutsutaan triplettitilaksi triplettitilan kerrannaisuus eli multiplisiteetti = 3 24

Kun spinnit ovat vastakkaissuuntaiset spinniin liittyvä pyörimismäärä= 0 jolloin M S voi saada vain yhden arvon, M S = 0. Tätä tilaa kutsutaan singlettitilaksi. Singlettitilan kerrannaisuus = 1 Triplettitilan energia on matalampi kuin vastaavan singlettitilan. Huom. vektorien välinen kulma vektorien summa = 0 25

elektronin rataliike indusoi magneettisen momentin µ = γ e I myös spin indusoi magneettisen momentin µ = 2γ e s 26

Magneettiset momentit vuorovaikuttavat keskenään mistä aiheutuu spin-rata vuorovaikutus, mikä tarkoittaa ratapyörimismäärän ja spinnin kytkeytymistä pyörimismäärän kuvaamiseen tarvitaan kvanttiluku, joka huomioi molemmat. Kokonaispyörimismäärää kuvataan kvanttiluvuilla j ja m j matalin energia saavutetaan j = l +1/2 tai j = l 1/2 kun I ja s vektorit ovat vastakkaissuuntaisia 27

Kunkin energiatilan (l, s, j) energia voidaan nyt lausua: E l,s, j = 1 2 hca { j( j +1) l(l +1) s(s +1) } missä A on spin-rata kytkeytymisvakio d-elektronin spin-rata kytkeytyminen 28

j 1 ja j 2 eivät kytkeytyneet Voimme silti määritellä kokonaispyörimismäärän j, mutta tiedämme vain sen z- komponentin suuruuden (m) Kytkeytyneet pyörimismäärävektorit j 1 :n ja j 2 :n suunnat ovat keskenään korreloituja Lähde: R. N. Zare, Angular Momentum, Understanding spatial aspects in chemistry and physics 29

Atomeilla on useita elektroneja, joilla kaikilla kvanttiluvut n,l,j,s. pelkän elektronikonfiguraation kirjoittaminen ei riitä kuvaamaan atomin elektronirakennetta. Tähän kuvaukseen (leimaamiseen) käytetään ns. termisymboleita Kirjain kertoo atomin kokonaisratapyörimismäärä kvanttiluvun L Vasen yläindeksi kertoo tilan kerrannaisuuden eli multiplisiteetin Oikea alaindeksi kertoo atomin kokonaispyörimismäärä kvanttiluvun J 30

Termisymboleita muodostettaessa tarkastellaan vain niitä elektroneja jotka ovat osittain miehitetyillä elektronikuorilla Kokonaispyörimismäärä kvanttiluku L liittyy atomin kokonaisratapyörimismäärään ja M L pyörimismäärävektorin mahdollisiin orientaatioihin: M L = L, L-1, L-2,..., -L L arvot saadaan lyksittäisten elektronien l-arvoista Glebsch-Gordan sarjan avulla: L = l 1 + l 2,l 1 + l 2 1,l 2 + l 2 2,..., l 1 l 2 Saamme useita L:n arvoja koska yksittäisten elektronien pyörimismäärällä on useita eri orientaatioita (useita m l arvoja) 31

Kirjainsymboli termissä: L: 0 1 2 3 4 5 6... S P D F G H I esim. p 2 konfiguraatio: l 1 =1 l 2 =1 L =1+1= 2; 1+1 1=1; 1+1 2 = 0 D, P ja S termit Kun kysymyksessä on 3 elektronia, niin ensin kytketään kaksi keskenään L ' ' 1,L 2,... Tämän jälkeen kolmannen elektronin l 3 kytketään L ' ' 1,L 2,... kanssa Kerrannaisuus eli multiplisiteetti saadaan kokonaisspinnistä: S = s 1 + s 2,s 1 + s 2 1,..., s 1 s 2 Kerrannaisuus = 2S + 1 32

Kokonaispyörimismäärä kvanttiluku saadaan Glebsch-Gordan sarjana J = L + S,L + S 1,..., L S Käyttämämme menetelmä on ns. Russell-Saunders kytkentä Suljettukuorisille atomeille L = 0, ts. niiden termi on S. Lisäksi S = 0, joten J =0 33

Raskaille atomeille parempi malli on ns. jj-kytkentä, missä kytketään j-arvot keskenään J = j 1 + j 2, j 1 + j 2 1,..., j 1 j 2 Spektroskopiset valintasäännöt voidaan määritellä seuraavasti: ΔS = 0 ΔL = 0,±1 Δl = 0,±1 mutta J = 0 J = 0 34

Mitkä seuraavista siirtymistä ovat sallittuja: 5d 2s, 5p 3s, 5p 3f? Rubidiumin ( 4p 6 5d 1 ) spektrissä havaitaan kaksi lähekkäistä siirtymää aaltoluvun arvoilla 25700,56 cm -1 ja 25703,52 cm -1. Määritä rubidiumin spin-rata kytkeytymisvakion arvo. Tarkastele seuraavia elektronikonfiguraatioita: 1s 2 2s 1 2p 1 ja 1s 2 2s 1 2p 2. Mitkä ovat mahdolliset kokonaisspin kvanttiluvun (S) arvot ja multiplisiteetit näille konfiguraatioille? Mitkä J:n arvot voidaan liittää termeihin 3 D, 4 D ja 2 G? Listaa myös mahdolliset M J :n arvot. Mitkä termisymbot voidaan johtaa konfiguraatiosta d 2? 35