Häiriöt kaukokentässä
|
|
- Marja-Leena Matilda Melasniemi
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa säteilyssä Tietää väliaineiden keskeisten sähköisien suureiden merkityksen aallon vaimenemiseen ja tunkeutumissyvyyteen Tuntee silmukan ja suoran johtimen muodostaman antennin keskeiset eroavaisuudet
2 Sähkömagneettisen aallon eteneminen voidaan ajatella tapahtumana siirtää energiaa, informaatiota tai kohinaa kahden pisteen välillä, lähettimestä vastaanottimeen Sähkömagneettinen aallon eteneminen on mahdollista siirtojohdossa, aaltoputkessa, eristeessä, ilmassa ja tyhjössä Kaukokenttä ja sähkömagneettisen aallon eteneminen Kaukokentässä sähkömagneettisen säteilyn voidaan olettaa kulkevan kuvan mukaisena TEM-aaltona ( transverse electromagnetic mode ) E Etenemissuunta Kaukokentässä E H = 377Ω H
3 TEM-aallossa sähkö-ja magneettikentän komponentit ovat toisiaan ja etenemissuuntaa vastaan kohtisuorassa Lisäksi sähkö- ja magneettikentillä on tietty, väliaineesta riippuva suhde, aaltoimpedanssi Aaltoimpedanssilla η kuvataan sähkökentän suhdetta magneettikenttään η = µ ε TEM ja eteneminen Tasoaallon (TEM) aaltoimpedanssi on tyhjiössä 377 Ω, joka pätee likimääräisesti myös ilmassa. Aaltoimpedanssi riippuu väliaineen lisäksi myös mm. materiaalien rajapintojen läheisyydestä, geometrisista muodoista ym
4 E = jωµ 0H H = jωε E 0 D = 0 B = 0 Maxwellin kanssa hieman puuhasteltuamme saamme SMG-aallon etenemistä kuvaavan, laskennallisesti tärkeän aaltoyhtälön, joka sähkökentälle on E+ ω µ ε E 0 0 = 0 Samankaltainen yhtälö voidaan johtaa myös magneettikentälle H Aaltoyhtälö on siis vektorikentän toisen kertaluvun differentiaaliyhtälö, joka kuvaa sähkömagneettisen aallon etenemistä
5 Jos tarkastellaan yksinkertaista tapausta suorakulmaisessa koordinaatistossa, jossa sähkökenttä E on x -akselin suuntainen ja ainoastaan z -akselin funktio (etenemissuunta), edellä esitetty aaltoyhtälö voidaan saattaa muotoon, E z x + ω µ 0ε0Ex = 0 Ratkaisu edelliseen differentiaaliyhtälöön on tällöin E( z) = 0 E e jkz Yhtälö kuvaa tasoaallon sähkökenttää jossa E o on sähkökentän amplitudi kohdassa z=0, ja k on aaltoluku Aaltoluku k saadaan ratkaistua yhtälöstä Aaltoluvun ja aallonpituuden välillä vallitsee riippuvuus k =ω µ ε λ = π k 0 0
6 Z-suuntaan etenevälle magneettikentälle saadaan johdettua yhtälö µ 0 jkz H( z) = E0e ε0 µ 0 = η0 jossa suhde ε0 on aaltoimpedanssi, tässä tapauksessa tyhjön intrinsiikkinen aaltoimpedanssi Mikäli sähkökenttä muuttuu ajan funktiona, on meillä samalla sitä vastaan kohtisuoraan muuttuva magneettikenttä Muuttuva magneettikenttä taas vaatii parikseen kohtisuoraan muuttuvan sähkökentän E ja H vektorikenttien täytyy aina olla kaikkialla kohtisuorassa toisiaan vastaan, koska rotaatioyhtälöt sitovat ne toisiinsa Kentät ovat myös kohtisuorassa etenemissuuntaansa nähden, mikä tarkoittaa sitä, että aalto on pitkittäissuuntainen ja polarisoituu
7 Poyntingin vektori S on määritelty S = E H Poyntingin vektorin S yksiköksi saadaan W/m, joka on tehotiheyden yksikkö. Yleisesti vektorin divergenssi esittää vektorin virtausta tilavuusyksiköstä ulospäin, jolloin tätä soveltamalla sähkömagneettisen energian virtaus saadaan Poyntingin vektorin divergenssistä S Säteilyn tehon ja energian siirtoa voidaan siis tarkastella Poyntingin teoreeman avulla Poyntingin teoreema sanallisesti ilmaistuna antenniin syötettävä teho = sähkö- ja magneettikenttiin varastoitunut teho + säteilyteho Aalto häviöllisessä väliaineessa Edellä esitetyssä aaltoyhtälöiden tarkastelussa käsiteltiin aallon etenemistä häviöttömässä väliaineessa, jolloin sähkömagneettinen aalto jatkaa kulkuaan vaimenematta Jos tarkastellaan aallon etenemistä häviöllisessä väliaineessa (käytännön tapaus) sähkömagneettinen aalto vaimenee materiaalissa lähinnä sähköisten häviöiden, eli materiaalin johtavuuden, vuoksi
8 Aalto häviöllisessä väliaineessa Tällöin osa säteilyn energiasta muuttuu ohmisten (ja dielektrisisten polarisaatio-) häviöiden vuoksi lämmöksi ja säteilyn mukanaan kuljettama energia (Poyntingin vektori) pienenee Yksi tapa mallintaa häiviöitä on käyttää käsitettä kompleksisen permittiivisyys Kompleksisen permittiivisyyden ε reaaliosa ε' kuvaa materiaalin dielektrisiä ominaisuuksia ja imaginääriosa ε'' kuvaa materiaalin häviöitä Kompleksiseksi permittiivisyydeksi saadaan σ = ε j = ε0ε ω r j σ ω
9 Materiaalin johtavuus määrää käytännössä häviöt ja sähkömagneettisen aallon vaimenemisen Sijoittamalla kompleksinen permittiivisyys edellä esitettyyn aaltoyhtälöön, saadaan tasoaallon sähköja magneettikentät ratkaistua häviöllisessä väliaineessa Aaltoyhtälöissä aaltoluku ja aaltoimpedanssi muuttuvat kompleksisiksi Kompleksinen aaltoluku k voidaan nyt jakaa reaalija imaginääriosaansa, jolloin aaltoluvulle saadaan muoto k = α + jβ jossa kerroin α on vaimenemiskerroin ja β on vaihekerroin Kertoimiksi saadaan µε σ α = ω 1+ 1 ωε µε σ β = ω ωε
10 Sähkömagneettisen säteilyn vaimeneminen havaitaan parhaiten sijoittamalla sähkökentän yhtälöön aaltoluku reaali- ja imaginääriosat eroteltuina, jolloin α z jβz E( z) E e e = 0 Tärkeintä on huomata, että sähkömagneettinen säteily vaimenee eksponetiaalisesti kertoimella e αz E E 0 Aallon vaimeneminen matkan funktiona Kentänvoimakkuus 0.368Ε 0 δ Matka z
11 E E 0 Tunkeutumissyvyys Tunkeutumissyvyys kertoo häviöllisellä väliaineella matkan, jossa aalto on vaimentunut 1/e osaan, eli noin 37 %:iin alkuperäisestä arvostaan Ε 0 δ µε σ α = ω 1+ 1 ωε z Tunkeutumissyvyys 1 δ = α Tunkeutumissyvyydellä on merkitystä häiriösuojauksessa mm. suunniteltaessa RFsuojattua laitekoteloa Tällöin tunkeutumissyvyyden avulla voidaan arvioida mm. tarvittavan kotelon seinämäpaksuus, sillä tunkeutumissyvyys johteella riippuu lähinnä taajuudesta ja materiaalin johtavuudesta
12 Virran ahto skin effect Tunkeutumissyvyyttä joudutaan tarkastelemaan myös johtimissa Tällöin ilmiö aiheuttaa virran ahtautumista, eli johtimen tehollinen pinta-ala pienenee taajuuden kasvaessa Virran jakauma taajuuden kasvaessa: Tummuus kuvaa virran tiheyttä johtimen poikkipintaalassa Läheisyysvaikutus johtimissa Johtimissa täytyy myös tarkastella toisten virrallisten johtimien vaikutusta Nk. läheisyysvaikutus johtimissa vääristää vielä kenttäkuvaa, ja efektiivinen pinta-ala voi olla vieläkin edellistä esimerkkiä pienempi Virran jakauma suurella taajuudella meno- ja paluujohtimen ollessa vierekkäin
13 Esitetään vielä yksi tärkeä sähkömagneettisen aallon etenemiseen liittyvä suure, eli sähkömagneettisen aallon etenemisnopeus v ω 1 v = = k µε Esimerkiksi valon nopeus tyhjössä saadaan tästä yhtälöstä seuraavasti c = = 3 10 µ 0ε 0 7 Vs 1 C 4π 10 9 Am 36π 10 Vm m s Eri väliaineiden ominaisuuksia Häviöllinen väliaine Hyvä johde σ ωε >>1 Eriste σ ωε <<1 Tyhjö ( ilma) Vaimenemiskerroin α ω µε + σ ωε 1 1 ωµσ 0 0 Vaihekerroin β Aaltoimpedanssi η ω µε σ ωε jωµ σ + jωε ωµσ ωµ ( 1+ j) σ ω µε ω µε 0 0 µ ε 377
14 Antenneista Häiriötarkastelussa täytyy lähteä asetelmasta, jossa jokainen johdin ja jokainen johtimen muodostama silmukka on potentiaalinen häiriön lähetin ja vastaanotin (=ANTENNI) Säteilevä kenttä voidaan muodostaa periaatteessa joko: suurella virralla ja pienellä jännitteellä -matalaimpedanssinen antenni, H-lähikenttä, tai suurella jännitteellä ja pienellä virralla -korkeaimpedanssinen antenni, E-lähikenttä.
15 Silmukan muodostama antenni Lähikentässä: E H < 377Ω suuri H pieni E I E H Silmukan muodostama antenni... Lähikentän sähkö- ja magneettikenttien voimakkuuksien suhteen perusteella silmukka-antennia voidaan kutsua matalaimpedanssiseksi antenniksi Kaukokentässä sähkö- ja magneettikenttien voimakkuuksien suhde kasvaa tasoaallon n. 377 :iin.
16 Suoran johtimen muodostama antenni Suoran johtimen muodostamassa antennissa ei kulje suuria virtoja, vaan kenttä saadaan aikaiseksi johtimien välisellä jännite-erolla Nämä potentiaalierot muodostavat ympärilleen voimakkaan sähkökentän Suoran johtimen muodostama antenni I H E Lähikentässä: E H > 377 Ω suuri E pieni H I H E
17 Suoran johtimen muodostama antenni Lähikentän ominaisuuksien perusteella suoran johtimen muodostamaa antennia voidaan kutsua korkeaimpedanssiseksi antenniksi Kaukokentässä sähkö- ja magneettikenttien voimakkuuksien suhde vastaavasti laskee tasoaallon n. 377 :iin Käytännön antenneja Seuraava kuva esittää piirilevyä ja piirilevystä muodostuvia antenneja Piirilevyjohtimet muodostavat virrallisia silmukoita, joista häiriösäteily lähtee silmukka-antennin periaatteella lähinnä magneettisena lähikenttänä Silmukoiden ja johtimien potentiaalin heilahdellessa maatasoon nähden muodostuu taas sähkökenttiä, jolloin kyseessä on yksinkertaistettuna suoran johtimen muodostaman antennin lähikenttä
18 Matalaimpedanssiset magneettikentät Korkeaimpedanssiset sähkökentät Korkeaimpedanssiset sähkökentät Yleisesti ottaen laitteiston muodostamat antennit, eli häiriöiden lähettäjät ja vastaanottajat muodostuvat johtimista Antennin tehokkuus riippuu lähinnä johtimien pituuksista, silmukoiden pinta-alasta ja käytettävästä taajuusalueesta MAHDOLLISIMMAN LYHYET JOHTIMET MAHDOLLISIMMAN PIENET SILMUKAT (pätee myös lähikentän häiriöjuttuihin, kts. ind. ja kap. kytkeytyminen)
19 Johdot yleisesti muodostavat suuria antenneja. Johtojen päissä syntyy helposti suuria silmukoita.
20 Aukkosäteilijä aperture antenna Varo myös reikiä kotelossa Myös metallipinnassa oleva rako tai aukko voi toimia antennina! Esimerkiksi RF-tiiviiksi suunnitellun laitteen metallikuoressa oleva aukko tai kotelon sauman, millin osienkin kokoinen, rako voi toimia tehokkaana aukkosäteilijänä Esimerkiksi raossa merkitystä ei ole korkeudella vaan maksimaalisella pituudella maksimimitta liittyy aukossakin aallonpituuteen Kotelossa vuotavan raon voi tehdä jopa maalikerros metallin pinnalla λ/16
21 Likimääräisenä suunnittelusääntönä johtavassa suojakotelossa on λ/16 sääntö Jos laitekotelossa oleva rako tai aukko on tätä suurempi, alkaa aukosta päästä säteily läpi Gigaherziluokassa tämä tarkoittaa millimetrien osia Lohkomalla esim. tuuletusreiät pienempiin osiin, voidaan antenniefektiä pienentää
22 Impedanssien (epä)sovitusta voidaan käyttää eräänä EMI:n vähentäjänä Jos sekä lähettimellä ja vastaanottimella on sama impedanssi, on häiriön kytkeytyminen todennäköisempää, kuin jos lähettimellä ja vastaanottimella olisi erisuuruiset impedanssit Toisinsanoen pieni-impedanssisella lähteellä on pieni vaikutus suuri-impedanssiseen vastaanottimeen, ja päinvastoin. Tämä kannattaa ottaa huomioon suunnittelussa. Impedanssin epäsovituksen käyttö häiriön kytkeytymisen vähentämiseksi pätee sekä antennikytkeytymiseen, että johtoa pitkin tapahtuvaan kytkeytymiseen
Aaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
3.32. On tärkeätä muistaa, että tehosta desibeleissä puhuttaessa käytetään kerrointa 10 ja kentänvoimakkuuden yhteydessä kerrointa 20.
3.3 3. Desibeli Tasoaallon vaimenemisen häviöllisessä väliaineessa voi laskea aaltoluvusta β. Aaltoluvun imaginaariosa on mitta vaimenemiselle, ja usein puhutaankin β i :stä yksiköissä neperiä/metri eikä
Aaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
Radiotekniikan perusteet BL50A0301
Radiotekniikan perusteet BL50A0301 1. Luento Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto Opetusjärjestelyt Luentoja 12h, laskuharjoituksia 12h, 1. periodi Luennot Juhamatti Korhonen Harjoitukset
V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa
Antennit osana viestintäjärjestelm ää Antennien pääk äy ttö tark o itu s o n to im inta v iestintäjärjestelm issä. V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa
RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen
RF-tekniikan perusteet BL50A0301 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen Antennit Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin
Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds
Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan
SMG-5250 Sähkömagneettinen yhteensopivuus, EMC
TAMPEREEN TEKNILLINEN YLIOPISTO Elektroniikan laitos Sähkömagnetiikka SMG-5250 Sähkömagneettinen yhteensopivuus, EMC Kevät 2009 Kurssimateriaali Jukka-Pekka Uusitalo (Pieni päivitys, 29.01.09 J. Kangas)
Kenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen
Kenttäteoria Viikko 10: Tasoaallon heijastuminen ja taittuminen Tämän viikon sisältöä Todellinen aalto vai tasoaalto Desibelit Esitehtävä Kohtisuora heijastus metalliseinästä Kohtisuora heijastus ja läpäisy
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori
Kapasitiivinen ja induktiivinen kytkeytyminen
Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina
LIITTEET. Leena Korpinen, Jarmo Elovaara, Lauri Puranen
LIITTEET Leena Korpinen, Jarmo Elovaara, Lauri Puranen SISÄLLYSLUETTELO Liite 1 Voimalinjojen sähkö- ja magneettikentän laskenta... 530 Liite 2 Radiotaajuisen kentän laskentamalleja... 537 Liite 3 Mikroaaltoantennin
Scanned by CamScanner
Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä
Laske relaksaatiotaajuus 7 µm (halk.) solulle ja 100 µm solulle.
TEKNILLINEN KORKEAKOULU HARJOITUSTEHTÄVÄT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 31.10.2005 vaikutukset ja mittaukset 1(5) Kari Jokela Säteilyturvakeskus HARJOITUSTEHTÄVÄ 1 Laske relaksaatiotaajuus
SÄHKÖMAGNEETTINEN KYTKEYTYMINEN
SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen
S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö
S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto SATE.2010 DYNAAMINEN KENTTÄTEORIA. Opetusmoniste: Antennit
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Maarit Vesapuisto SATE.010 DYNAAMINEN KENTTÄTEOIA Opetusmoniste: Antennit Vaasassa 04.1.009 ALKULAUSE Tämä opetusmoniste laadittiin marras-joulukuun
23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen
3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista
Yleisen antennin säteily k enttien ratk aisem isen v aih eet:
Sä te ily k e n ttie n ra tk a ise m in e n Yleisen antennin säteily k enttien ratk aisem isen v aih eet: 1. E tsi A integ roim alla y h tälö A = µ e jβr 4π r V Je j βˆr r dv, (40 ) 2. L ask e E E = jωa
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt
Radioastronomian käsitteitä
Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä
MIKROAALTOUUNI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312 SATE.2010 Dynaaminen kenttäteoria MIKROAALTOUUNI Sivumäärä: 12 Jätetty tarkastettavaksi:
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Esimerkki: Kun halutaan suojautua sähkömagneettisia
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu
jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.
71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin
Antennit ja syöttöjohdot
Antennit ja syöttöjohdot http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf Siirtojohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf
Sähköstatiikka ja magnetismi Sähkömagneetinen induktio
Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on
Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008
Antennin impedanssi Antennin sy ö ttö impedanssi on se impedanssi, jolla antenni näk y y sen sy öttöpisteisiin. S y öttöimpedanssiin v aik u ttav at k aik k i antennin läh istöllä olev at rak enteet ja
SMG-5450 Antennit ja ohjatut aallot
Luennot SMG-5450 Antennit ja ohjatut aallot ti 10-12 SC105B pe 11-13 SC105B Luennoijat Tuomas Kovanen, SC307, tuomas.kovanen@tut.fi Jukka Uusitalo, SC305b, jukka-pekka.uusitalo@tut.fi (Luentokalvot: Janne
EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus
EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus Ympäristön häiriöt Laite toimii suunnitellusti Syntyvät häiriöt Sisäiset häiriöt EMC Directive Article 4 1. Equipment must be constructed
= ωε ε ε o =8,853 pf/m
KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys
SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013
SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen
Sähkötekiikka muistiinpanot
Sähkötekiikka muistiinpanot Tuomas Nylund 6.9.2007 1 6.9.2007 1.1 Sähkövirta Symboleja ja vastaavaa: I = sähkövirta (tasavirta) Tasavirta = Virran arvo on vakio koko tarkasteltavan ajan [ I ] = A = Ampeeri
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 11 / versio 23. marraskuuta 2015 Aaltojohdot ja resonaattorit (Ulaby 8.6 8.11) TE-, TM- ja TEM-aaltomuodot Suorakulmaisen aaltoputken perusaaltomuoto
l s, c p T = l v = l l s c p. Z L + Z 0
1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona
RF-tekniikan perusteet BL50A0300
RF-tekniikan perusteet BL50A0300 5. Luento 30.9.2013 Antennit Radioaaltojen eteneminen DI Juho Tyster Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin
Muodonmuutostila hum 30.8.13
Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan
RF-tekniikan perusteet BL50A0300
RF-tekniikan perusteet BL50A0300 1. Luento 26.8.2013 Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto DI Juho Tyster Opetusjärjestelyt Luentoja 14h, laskuharjoituksia 14h, 1.periodi Luennot ja harjoitukset
Havaitsevan tähtitieteen peruskurssi I
Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio
Ongelmia mittauksissa Ulkoiset häiriöt
Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,
4. SÄHKÖMAGNEETTINEN INDUKTIO
4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ
SMG-1400 SMG KENTÄT JA AALLOT 2 Kriteerit tenttiin Suuriniemi
SMG-1400 SMG KENTÄT JA AALLOT 2 Kriteerit tenttiin 26.1.2009. Suuriniemi 1. Ilman perusteluja ei annettu pisteitä. Jos vastaus on oikein ja perustelu liittyy aiheeseen mutta ei mennyt ihan puikkoihin,
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
Vyöteoria. Orbitaalivyöt
Vyöteoria Elektronirakenne ja sähkönjohtokyky: Metallit σ = 10 4-10 6 ohm -1 cm -1 (sähkönjohteet) Epämetallit σ < 10-15 ohm -1 cm -1 (eristeet) Puolimetallit σ = 10-5 -10 3 ohm -1 cm -1 σ = neµ elektronien
3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.
3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.
SEISOVA AALTOLIIKE 1. TEORIAA
1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus
Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon
30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten
Maxwell ja hänen yhtälönsä mitä seurasi?
Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän
Aaltoputket ja resonanssikaviteetit
Luku 13 Aaltoputket ja resonanssikaviteetit Kerrataan ensin ajasta riippuvan sähkömagneettisen kentän käyttäytyminen ideaalijohteessa ja sen pinnalla. Äärettömän hyvän johteen sisällä ei ole sähkökenttää,
203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.
Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C
- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.
7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona
Mustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän
Jännite, virran voimakkuus ja teho
Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin
PHYS-C0240 Materiaalifysiikka (5op), kevät 2016
PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen
Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa
S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että
LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi
LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...
2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9
Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 5 1.4 Pari sanaa laskennasta......................
Aaltoputket ja resonanssikaviteetit
Luku 12 Aaltoputket ja resonanssikaviteetit Tässä luvussa tutustutaan ohjattuun aaltoliikkeeseen. Kerrataan ensin ajasta riippuvan sähkömagneettisen kentän käyttäytyminen ideaalijohteessa ja sen pinnalla.
EMC Johdanto EMC. Miksi? Elektroniikan käytön voimakas kasvu mobiililaitteet, sulautetut järjestelmät
EMC Johdanto EMC Mitä tarkoittaa EMC? ElectroMagnetic Compatibility Sähköisen laitteen kyky toimia laboratorion ulkopuolella laite ei aiheuta häiriöitä muille lähietäisyydellä oleville laitteille laitteen
1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8
Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 6 1.4 Kirjallisuutta...........................
2.1 Ääni aaltoliikkeenä
2. Ääni Äänen tutkimusta kutsutaan akustiikaksi. Akustiikassa tutkitaan äänen tuottamista, äänen ominaisuuksia, soittimia, musiikkia, puhetta, äänen etenemistä ja kuulemisen fysiologiaa. Ääni kuljettaa
9 VALOAALTOJEN SUPERPOSITIO
09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta
Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},
Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,
DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ
1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin
Aaltoputket ja mikroliuska rakenteet
Aaltoputket ja mikroliuska rakenteet Luku 3 Suorat aaltojohdot Aaltojohdot voidaan jakaa kahteen pääryhmääm, TEM ja TE/TM sen mukaan millaiset kentät niissä etenevät. TEM-aallot voivat edetä vain sellaisissa
Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta
LC-577 Sähömagneettisten enttien ja optisen säteilyn biologiset vaiutuset ja mittauset Sysy 16 PINTAAJUIST SÄHKÖ- JA MAGNTTIKNTÄT Lauri Puranen Säteilyturvaesus Ionisoimattoman säteilyn valvonta SÄTILYTURVAKSKUS
LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin
SÄHKÖMAGNETISMI LUT, Sähkötekniikan osasto LH5/216 P.I. Ketausta: 1. Ilassa etenevällä tasoaallolla on sähkökentän voiakkuus z t E cos t z Ex,. Aallon taajuus on 2 MHz. Kuvassa 1 on esitetty tasoaallon
Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1
Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,
Sähkömagneettiset aallot
Luku 11 Sähkömagneettiset aallot Tämä luku käsittelee monokromaattisten sähkömagneettisten aaltojen etenemistä erilaisissa homogeenisissa väliaineissa (RMC luku 17; CL käsittelee aaltoliikettä luvussa
521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3
51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi
Radiokurssi. Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut
Radiokurssi Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut Modulaatiot CW/OOK Continous Wave AM Amplitude Modulation FM Frequency Modulation SSB Single Side Band PM Phase Modulation ASK
Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia
Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia kahdessa eri m oodissa: norm aalim oodi ja aksiaalim
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Ei-ideaaliset piirikomponentit Tarkastellaan
Faradayn laki ja sähkömagneettinen induktio
Faradayn laki ja sähkömagneettinen induktio Haarto & Karhunen Magneettivuo Magneettivuo Φ määritellään magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetuloksi Φ B A BAcos Acosθ θ θ
Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta
ELEC-E5770 Sähkömagneettisten kenttien ja optisen säteilyn biologiset vaikutukset ja mittaukset Syksy 2016 SÄHKÖ- JA MAGNEETTIKENTÄN KYTKEYTYMINEN IHMISEEN (DOSIMETRIA) Lauri Puranen Säteilyturvakeskus
Magneettinen energia
Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee
+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden
5 3 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valo on luonteeltaan kaksijakoinen eli dualistinen. Valoa
KELAN INDUKTANSSI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Miika Manninen, n85754 Tero Känsäkangas, m84051
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Miika Manninen, n85754 Tero Känsäkangas, m84051 SATE.2010 Dynaaminen kenttäteoria KELAN INDUKTANSSI Sivumäärä: 21 Jätetty tarkastettavaksi: 21.04.2008
Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen
Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0
Sähköstatiikka ja magnetismi Kondensaattorit ja kapasitanssi
Sähköstatiikka ja magnetismi Konensaattorit ja kapasitanssi ntti Haarto 1.5.13 Yleistä Konensaattori toimii virtapiirissä sähköisen potentiaalin varastona Kapasitanssi on konensaattorin varauksen Q ja
Shrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähkömagneettiset aallot Aikaharmoniset kentät
Receiver. Nonelectrical noise sources (Temperature, chemical, etc.) ElectroMagnetic environment (Noise sources) Parametric coupling
EMC Sähkömagneettinen kytkeytyminen EMC - Kytkeytymistavat ElectroMagnetic environment (Noise sources) Nonelectrical noise sources (Temperature, chemical, etc.) Conductors Capacitive Inductive Wave propagation
DOSIMETRIA. Kari Jokela
3 DOSIMETRIA Kari Jokela SISÄLLYSLUETTELO 3.1 Yleistä... 60 3.2 Kudosten ja solujen sähköiset ominaisuudet... 60 3.3 Kenttien kytkeytyminen kehoon... 78 3.4 Kvasistaattinen alue... 81 3.5 Resonanssialue...
a P en.pdf KOKEET;
Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten
Maxwell ja hänen yhtälönsä mitä seurasi?
Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän
HÄVIÖLLISEN PYÖREÄN AALTOJOHDON SIMULOINTI
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jukka Hautala j82212 Toni Takalo n86196 SATE.2010 Dynaaminen kenttäteoria HÄVIÖLLISEN PYÖREÄN AALTOJOHDON SIMULOINTI Sivumäärä: 13 Jätetty tarkastettavaksi:
biologisen materian sähkönjohtavuusominaisuuksien määritys
biologisen materian sähkönjohtavuusominaisuuksien määritys Tanja Vilhunen Pro Gradu -tutkielma Kesäkuu 2 Sovelletun fysiikan laitos Kuopion yliopisto KUOPION YLIOPISTO, Luonnontieteiden ja ympäristötieteiden
EMC Suojan epäjatkuvuudet
EMC Suojan epäjatkuvuudet EMC - Aukot suojassa Edelliset laskelmat olettivat että suoja on ääretön ehyt tasopinta Todellisuudessa koteloissa on saumoja, liitoksia aukkoja: tuuletus, painonapit luukkuja,
d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen
MEI-55100 Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen Tehtävä 1: Tarkastellaan luentojen esimerkkiä, jossa johepalkki liikkuu kahen johelevyn välissä homogeenisessä magneettikentässä,
SMG-1400 SMG KENTÄT JA AALLOT 2 Kriteerit tenttiin Lehti, Niemimäki, Suuriniemi
SMG-1400 SMG KENTÄT JA AALLOT 2 Kriteerit tenttiin 27.11.2008. Lehti, Niemimäki, Suuriniemi Ensimmäinen tehtävä tuli arvostelluksi melko tiukasti, mikä näkyi pistekeskiarvossa 3.16: Kyllä/Ei-vastauksiin
Elektrodynamiikan tenttitehtäviä kl 2018
Elektrodynamiikan tenttitehtäviä kl 2018 Seuraavista 30 tehtävästä viisi tulee Elektrodynamiikka I:n loppukokeeseen 6.3.2018. Koska nämä tehtävät ovat kurssin koetehtäviä, vihjeitä niiden ratkaisemiseen
Polarisaatio. Timo Lehtola. 26. tammikuuta 2009
Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu