Tuulen nopeuden mittaaminen



Samankaltaiset tiedostot
KON C H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, Koesuunnitelma

Pullon venymän mittaaminen KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt. Henri Järlström ja Olli Sarainmaa

Koesuunnitelma. Tuntemattoman kappaleen materiaalin määritys. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt. Janne Mattila.

Koesuunnitelma Kimmokertoimien todentaminen

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C

KJR-C3004 KONE- JA RAKENNUSTEKNIIKAN LABORATORIOTYÖT KOESUUNNITELMA. Hiilikuituisen kajakkimelan varren jännitysprofiilin lineaarisuus

Ryhmä T. Koesuunnitelma. Kone- ja rakennustekniikan laboratoriotyöt, KON-C3004

Ene LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE

Koesuunnitelma Alumiinin lämpölaajenemiskertoimen määrittäminen

Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt Aleksi Purkunen (426943) Joel Salonen (427269)

Kojemeteorologia (53695) Laskuharjoitus 1

Demo 5, maanantaina RATKAISUT

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2)

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe , malliratkaisut

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

LIITE 1 VIRHEEN ARVIOINNISTA

NESTEEN TIHEYDEN MITTAUS

LIITE 1 VIRHEEN ARVIOINNISTA

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi?

LIITE 1 VIRHEEN ARVIOINNISTA

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

Palkin ominaistaajuuden määrittäminen venymäliuska anturin avulla. Ryhmä O Timo Huuskonen Santeri Koivisto Teemu Tero

Laskuharjoitus 1 Ratkaisut

Materiaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

MUODONMUUTOKSET. Lähtöotaksumat:

SwemaAir 5 Käyttöohje

Motocrosspyörien melupäästömittaukset

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

SEISOVA AALTOLIIKE 1. TEORIAA

Palkin taivutus. 1 Johdanto. missä S on. määritetään taivuttamalla. man avulla.

RAKENNEPUTKET EN KÄSIKIRJA (v.2012)

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit ILMAVIRTAUKSEN ENERGIA JA TEHO. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS

Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V

PUHDAS, SUORA TAIVUTUS

MAB3 - Harjoitustehtävien ratkaisut:

Laskuharjoitus 2 Ratkaisut

Palkin kimmokertoimen kokeellinen määrittäminen. KON-C3004 Eetu Veikkanen, Aino Salmi, Jarna Verho

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

t osatekijät vaikuttavat merkittävästi tuloksen epävarmuuteen Mittaustulosten ilmoittamiseen tulee kiinnittää kriittistä

KJR-C2002 Kontinuumimekaniikan perusteet

Muutoksen arviointi differentiaalin avulla

Värähtelymittaus Tämän harjoituksen jälkeen:

Mittaustekniikka (3 op)

Työ 5: Putoamiskiihtyvyys

PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS

Maa Kameran kalibrointi. TKK/Fotogrammetria/PP

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA

Muuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4].

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet

tutustuttaa materiaalien lujuusominaisuuksiin luentoja perusteellisemmin

1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

PHYS-A3121 Termodynamiikka (ENG1) (5 op)

KJR-C2002 Kontinuumimekaniikan perusteet, tentti

POIKKIPINNAN GEOMETRISET SUUREET

Nimi: Muiden ryhmäläisten nimet:

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

7. Resistanssi ja Ohmin laki

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

Laskuharjoitus 7 Ratkaisut

Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).


Työ 2324B 4h. VALON KULKU AINEESSA

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Puutavaran tukkimittarimittauksessa käytettävä tyvisylinterin pituus ja tarkastusmittauksen mittaussuunta

PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: huone 138 (OK 4A)

Luento 6: 3-D koordinaatit

761121P-01 FYSIIKAN LABORATORIOTYÖT 1. Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 2016

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

Opetusmateriaali. Tutkimustehtävien tekeminen

Differentiaalilaskennan tehtäviä

FYSP101/K1 KINEMATIIKAN KUVAAJAT

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Mitä on huomioitava kaasupäästöjen virtausmittauksissa

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Luvun 10 laskuesimerkit

4. Funktion arvioimisesta eli approksimoimisesta

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

Differentiaali- ja integraalilaskenta

SMG-4500 Tuulivoima. Kahdeksannen luennon aihepiirit. Tuulivoiman energiantuotanto-odotukset

SUORAN PALKIN RASITUKSET

BMEP004 / Lapputyö 1. Nousukorkeuden määrittäminen eri hyppytekniikoille ja kahta eri menetelmää käyttäen

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

Shrödingerin yhtälön johto

Transkriptio:

KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2 1

Tiivistelmä Mittauksen tarkoitus on tutkia mittariin kohdistuvan ilman virtausnopeuden vaikutusta sauvan taipumaan. Sauvaan kiinnitettyyn vastelevyyn kohdistuu ilmavirran aiheuttama dynaaminen paine, jonka resultanttina vastelevyn keskipisteeseen kohdistuu virtauksen nopeudesta ja väliaineen (fluidin) tiheydestä riippuva voima. Voima aiheuttaa sauvaan sauvan materiaalista ja sauvan sekä varjostimen geometriasta riippuvan taivutusjännityksen ja venymän. Sauvan poikkipinnassa vaikuttavan venymän perusteella (havaitaan venymäliuskoilla) voidaan kalibroinnin jälkeen mitata ilmavirran vastelevyä kohtisuoraan vastaan kohdistuvaa virtauskomponentin nopeutta. Sisällysluettelo Tutkimuksen tavoite...3 Mittauksen teoreettinen periaate..3 Koejärjestely...6 Mittauksen suorittaminen...8 Kalibrointi tunnetuilla virtausnopeuksilla...8 Tuntemattoman virtausnopeuden mittaus..9 Tulosten ja virheiden käsittely.10 Lasketun tuulen nopeuden kokonaisvirheen arviointi 10 Lähteet 11 2

Tutkimuksen tavoite Ryhmämme tutkii ilman virtausnopeuden mittaamista metallisauvan taipuman avulla. Tavoitteena on rakentaa toimiva tuulennopeusmittari, joka mittaa tuulen nopeuden. Tuulennopeuden tavoitemittaustarkkuudeksi ryhmämme on asettanut ±1 m/s, mikä riittää mitatun tuulennopeuden asettamiseen Beaufortin asteikolle. Mittauksen teoreettinen periaate Mittaus perustuu virtaavan väliaineen (ilman) vaikutuksen mittaamiseen geometrialtaan ja aineominaisuuksiltaan tunnetun sauvan venymän avulla. Sauvan venymä mitataan venymäliuskalla sauvan virtauksenpuoliselta pinnalta sekä takapuolen pinnalta pituusakselin suuntaisesti. Kuvassa 1 esitetty venymäliuskojen asettelu ja mittauksen perusperiaate. Kuva 1 Mittauslaitteisto kahdella eri tuulennopeudella. Sauvan päädyssä oleva ohut vastelevy ei näy sivukuvakulmasta. Varjostimeen vaikuttavan patopaineen voimaresultantti vaikuttaa kohtisuorasti sauvan yläpään vastelevyn geometrisessä painopisteessä. Kun tunnetaan voimaresultantin ja sauvan tuennan (kohta, jossa vaikuttaa suurin venymä ja johon venymäliuskat asennetaan) välinen etäisyys ja sauvan materiaaliominaisuudet (sauvan materiaalin kimmomoduuli, poikkileikkauspinnan 3

jäyhyysmomentti), saadaan laskettua tuennassa vaikuttava venymä. Kääntäen, kun saadaan mitattua sauvan poikkileikkauksessa vaikuttava venymä, saadaan laskettua varjostimessa vaikuttava voima ja edelleen ilmavirran nopeus. Matemaattisesti tämä etenee seuraavasti: Newtonin vastuslailla saadaan vastelevyn painopisteessä laskettu voimaresultantti: v = virtauksen nopeus ja c v = vastelevyn muotokerroin. Sauvaa taivuttava taivutusmomentti saadaan kaavasta l =vastelevyn keskipisteen ja tuennan välinen etäisyys. Edellinen voidaan sijoittaa sauvan poikkileikkauksen x suuntaisen taivutusjännityksen lausekkeeseen I z = sauvan poikkileikkauksen jäyhyysmomentti ja y = venymäliuskan y koordinaatti. Kuva 2 Venymäliuskojen sijainti sauvan poikkileikkauksessa Hooken lailla saadaan jännityksen ja venymän välinen yhteys: 4

E = sauvan materiaalin kimmomoduuli. Näistä kaavoista saadaan seuraava yhtälö virtauksen nopeudelle Tuntematonta virtausnopeutta mitattaessa todellisilla venymillä edellä olevasta kaavasta ratkaistavaan nopeuteen lisätään kalibroinnin avulla määritetty keskimääräinen erotus v. Tämä erotus saadaan kalibrointipisteiden ja laskennallisen käyrän erotuksien keskiarvona. Kalibroinnista ja sen avulla määritetystä keskimääräisestä erotuksesta lisää Mittauksen suorittaminen osiossa. 5

Koejärjestely Mittarimme koostuu pystyssä olevasta ja alapäästä jäykästi tuetusta 50 cm pitkästä sauvasta, jonka yläpäähän on hitsattu kiinni kevyt neliönmuotoinen 30 cm x 30 cm vastelevy, johon mitattava ilmavirta kohdistaa voiman, jolloin sauva taipuu Sauvan alaosassa vastelevyn tason suuntaisesti, lähellä tuentaa, on kaksi tasaiseksi jyrsittyä sivua, joissa molemmissa on kiinni yksi venymäliuska niin, että ne ovat kohtisuorassa toisiaan kohti. Toinen venymäliuska mittaa venymää ja toinen puristusta. Tasainen tuulennopeus luodaan kolmitehoisen pöytätuulettimen avulla. Kuva 3 Mittauslaitteisto 6

Kuva 4 Koejärjestely Mittauslaitteistossa, sauvassa, kiinni olevista venymäliuskoista menevät johdot kuvan 5 mukaisesti virtapiirissä olevaan Wheatstonen siltaan. Virtapiirin jännite vahvistetaan vahvistimella ennen jännitelukeman siirtämistä A/D muuntimen kautta tietokoneelle, jossa jännitedataa käsitellään LabView ohjelmalla. 7

Kuva 5 Virtapiirin kytkennät Mittauksen suorittaminen Käsikäyttöisellä tuulimittarilla mitataan kalibroinnissa käytettävän pöytätuulettimen kaikilla kolmella tehoasteella tuottama ilman virtausnopeus. Virtaus kohdistetaan kohtisuoraan vastelevyä kohti ja mitataan sauvan venymät kolmella eri teholla. Venymäliuskoilla mitataan venymät sauvan varresta kummankin puolen sauvaa (toinen sivu puristuu, toinen venyy). Wheatstonen siltakytkennällä ja signaalivahvistimella saadaan AD konvertterille sopiva jännitesignaali. Tietokone lukee konvertterilta digitoidun vahvistetun jännitteen ja laskee sen perusteella venymäliuskoissa vaikuttavan todellisen venymän. Laskennallisen ja havaitun (todellisen) venymän arvoja vertailemalla voidaan laskea kompensointikerroin lopulliselle virtausnopeudelle. Mittarin kalibrointi on tärkeää. Kalibrointi tunnetuilla virtausnopeuksilla Kytkettyäsi koejärjestelyn kuva 4:n mukaisesti mittaa tuulettimen kaikki nopeudet ja niitä vastaavat (todelliset) venymät (LabView skripti). Näitä pisteitä käytetään keskimääräisen virheen laskemisessa silloin, kun todellista tuulennopeutta ei tunneta. 8

Tee seuraava jokaiselle pöytätuulettimen tehoasteelle: 1. mittaa virtausnopeus luotettavalla käsikäyttöisellä mittarilla 2. suuntaa tuuletin mahdollisimman kohtisuoraan kohti vastelevyä ja mittaa (todellinen) venymä 3. tallenna kalibrointipiste (ε,v) Kun olet saanut mitattua kaikki kalibrointipisteet (ε,v), laske keskimääräinen erotus v kalibrointipisteiden ja vastaavaa venymää vastaavien laskennallisten virtausnopeuksien v(ε) välillä. Tuntemattoman virtausnopeuden mittaaminen Laskennallinen virtausnopeus v(ε) kertoo matemaattista ideaalitapausta vastaavan virtausnopeuden. Koska mittausjärjestelmä ei ole ideaalinen, täytyy ideaalitapauksen kaavasta saatavaa virtauksen arvoa kompensoida kalibroinnin perusteella määritettävällä korjaustermillä v. Kalibroinnin jälkeen on mahdollista mitata todellinen likimääräinen virtausnopeus, kun korjaustermi v on saatu määritettyä. Mitattaessa tuntematonta virtausnopeutta virtausnopeus ratkaistaan kaavasta Mittausdataa voidaan tallentaa esimerkiksi v,t muodossa 9

Tulosten ja virheiden käsittely Virhelähteitä 1) virtaavan väliaineen tiheyden vaihtelu aiheuttaa sen, että painejakauma ei ole todellisuudessa sama vastelevyllä erityisesti eri lämpötiloissa 2) geometristen mittojen mittausvirheet 3) yksinkertaistavat oletukset laskennassa (todellinen tilanne monimutkaisempi) homogeeninen virtauskenttä sauvan poikkileikkauksen neliömomentin epätarkkuus tuennan jäykkyyden epätäydellisyys venymäliuskan sijainnin virhe poikkileikkauspinnan y akselin suhteen 4) asennusvirheet venymäliuskojen epätäydellinen kiinnittäminen Lasketun tuulen nopeuden kokonaisvirheen arviointi Kokonaisvirhettä arvioidaan kokonaisdifferentiaalilla kappaleessa Mittauksen teoreettinen periaate johdetusta nopeuden lausekkeesta: Nopeuden lausekkeesta jäyhyysmomentin I z, kimmomoduuli E ja vastelevyn muotokertoimen c v virhe voidaan olettaa likimain nollaksi, jolloin jäljellä olevilla suureilla kokonaisdifferentiaaliksi saadaan:, missä Δ termit kuvaavat suureiden virheitä. 10

Lähteet http://www.ni.com/white paper/3642/en/ 11