Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla. 0 Epätosi Piste (, ) ei ole suoralla.. a) y 0 y y y 0 y y ( ) : Vastaus:, m. Lasetaan pisteen (-, ) etäisyys esipisteestä (0, 0). Jos piste on ympyrän ulopuolella (eli etäisyys > 9), tangentti voidaan piirtää. d ( 0) ( 0) 0,9... < 9 Piste on ympyrän sisällä, joten tangenttia ei voida piirtää.. Sijoitetaan ja y - suoran yhtälöön. a ( ) a a a a a 9. a) 0 : 90
. Lasetaan suoran ulmaerroin. 0 Valitaan ( 0, y 0 ) (0, ). Suoran yhtälö on y 0 y Lasetaan ulmaerroin. ( 9) 0 Valitaan ( 0, y 0 ) (-, -9). Suoran yhtälö on y ( 9) y 9 y 9. Suoran ulmaerroin on. Pisteen (a, ) avulla määritetty ulmaerroin on a a a Jotta aii olme pistettä olisivat samalla suoralla, on ulmaertoimien oltava samat. a a a a 0 : 0 a 0. Kulmaerroin on muotoa ( a ) 0 a a a Kosa ulmaerroin on -, saadaan yhtälö a ( a ) 0 a a a a a a : a Suoran yhtälö on y 0 y 0 y. a) Kosa ulmaerroin > 0, suora on nouseva. Kirjoitetaan suoran yhtälö rataistussa muodossa. y 0 y ( ) y Kosa ulmaerroin < 0, on suora laseva.. Kirjoitetaan yhtälö rataistussa muodossa. y 0 y : y a) -aselin leiauspisteessä y 0. 0 ( ) Leiauspiste on (, 0). 9
Suoran yhtälön rataistusta muodosta nähdään, että y-aselin leiauspiste on (0, ).. Suora l ulee pisteiden (-, ) ja (0, -) autta. Suoran ulmaerroin on. 0 Kirjoitetaan toinen suoran yhtälö rataistussa muodossa. y 0 y y 0 0 Suoran ulmaerroin on. Kosa - < - on suora l jyrempi.. a) y 0 0. Kirjoitetaan suorien yhtälöt ensin rataistussa muodossa. y y y : y y y : Kirjoitetaan suoran yhtälö rataistussa muodossa. 9 y 0 9 y y : ( 9) Lasetaan suorien leiauspisteen -oordinaatti. 9 : 9
Leiauspisteen y-oordinaatti on y Leiauspiste on,. y 0 0 y 0 0. Piirretään ensin suorat samaan oordinaatistoon. Lasetaan olmion äripisteet. Piste A :, - A Piste B ) :(, B Piste C : y, C 9
Kolmion anta on sivu AB. Kannan pituus on. Koreus h saadaan huipun y-oordinaatin avulla. h Kolmion ala A. Myyntitulot hinta määrä 9. Kulmaertoimien tulo on -. c c c y y : y : Piiraoita myydään appaletta, hintaan, joten myyntituloja uvaa suora y, ( 0) Koonaisustannuset iinteät ustannuset muuttuvat ustannuset Kiinteät ustannuset ovat 00,00. Kun piiraoita valmistetaan appaletta, valmistusustannuset ovat,00. Koonaisustannusia uvaa suora y 00, 00 Lasetaan ensin, milloin ustannuset ja myyntitulot ovat yhtä suuret., 00,00 0, 00,00,... :0, a) Suoran ulmaerroin y ( ) y y 9 0, 0 Suoran yhtälö on y 0 y 0 0 y 0 ( 0). Kun piiraoita myydään 90 appaletta, liietoiminta on annattavaa.. a) Kulmaertoimet ovat samat. c : c 0. Kaupunien A ja B autta ulevaa laivaväylää uvaavan suoran ulmaerroin 0 0 0 0, Suoran yhtälö on y 0, 0 y, 9
Majaan autta ulevan suoran normaalin ulmaerroin on, :,, Suoran normaalin yhtälö on y 0 ( 0) y 0 0 y 0 Suoran ja sen normaalin leiauspisteen -oordinaatti on:, 0 ) ) 0 9 0 0 0 : 0,9... y-oordinaatti on 0 y,,... Leiauspisteen (,9 ;, ) ja majaan (0, 0) etäisyys toisistaan on d d ( 0,... ) ( 0,9... ) 9,0... d,0... (m) d (m). a) t 0,0 C pk W 0,0 0,0,0,, pk, W 0,0t,0, 0,0t 0,90 t,0... t, ( C) :( 0,). Kuuausipala riippuu lasinten määrästä, joten lasinten määrä (pl) y uuausipala ( ) Suora ulee pisteiden (0, 0) ja (90, 0) autta. Suoran ulmaerroin on 0 0 00 90 0 0 Valitaan ( 0, y 0 ) (0, 0). Suoran yhtälö on y 0 0 y 0 00 y 0 a) Sijoitetaan 0 y 0 0 0 y 00 00 0 0,... ( ) Lasimia myytävä noin pl Vastaus: Etäisyys on noin m. 9
c) Jos lasimia ei myydä yhtään, pala on 0 0 0 ( ). Meritään ävijöiden määrä (pl) y lipun hinta ( ) Suora ulee pisteiden (0, 0) ja (0 0, 0 ) (0, ) autta. Suoran ulmaerroin 0 0 0 0 0 Valitaan ( 0, y 0 ) (0, 0). Suoran yhtälö on y 0 ( 0) 0 y 0 0 0 y 0 0 Sijoitetaan yhtälöön 00. y 00 0 ( ) 0. Lasetaan paraabelin nollaohdat 0 ± ± ± tai. ± 0 ( ) ( ) ± ± tai Kun -, y ( ) ( ) Kun, y Vastaus: (-, ) ja (, -). Lasetaan ensin paraabelin nollaohdat. 0 0 Tulon nollasäännön muaan 0 tai 0 : Huippu on nollaohtien puolivälissä, joten 0 huipun -oordinaatti on. Vastaus: (, 0) ja,0 Huipun y-oordinaatti on y. Huippupiste on (, -). 9
. Lasetaan paraabelin nollaohdat. 0,0 0 0,0 :0,0,9... ±,9... ±,99... 9. a) Kosa 0 niin f ( ) Roton leveys on nollaohtien välinen etäisyys. d,99... (,99...) 9,9... 9,9... 0 (m). Lasetaan nollaohdat. 0, 0,0 0 ( 0, 0,0) 0 Tulon nollasäännön muaan 0 tai 0, 0,0 0 0, 0,0,... Huipun -oordinaatti: 0,... 0,... :( 0,) Kosa niin y ( ) 0. a) f ( ) 9 f. a) s(,0),90,0, (m),90t s( t ) 00 t 00,... t ± Kosa aia positiivinen :,90,... ±,... t, (s) Huipun y-oordinaatti: y 0,,... 0,0,... 0, Huipun oreus on 0, m, m 0 m 9
. a) f ( ) - 0-9 - 0 - - - - 0 - - - - - 0. a) f ( 0) f g( ) - - - -0 0 - - -. a) f ( ) f ( ) 0 9
. g( ) Nollaohdissa g ( ) 0. 0 ± ±,... Piirretään funtion uvaaja. g ( ) - - - - - 0 - - -. % massasta muuttuu aldehydisi eli massasta jää jäljelle 9 %. a) Tunnin uluttua aloholia 0,9, g. Kahden tunnin uluttua aloholia 0,9, g. Aloholin määrä tunnin uluttua on f ( ) 0,9, (g). Kolmen tunnin uluttua massa on f () 0,9,,9...,9 (g). 0 f (0) 0,9,,9...,9 (g) c) Viiossa on tunteja h h. f () 0,9, 0,09... (g) 0,09 (g) 9, g 9, g. a) Massa vuoroauden uluttua on,0 g,0... 0 g,0 0 Massa 0 tuntia sitten oli 0,0 g,... 0 0,00000... g 0,00... g g, mg, mg g. Vuoroaudet Tautiin sairastui vuoroauden uluttua tautiin sairastui f ( ) henilöä. Viion uluttua tautiin sairastui f () 0000 henilöä. 9. Videoameran hinta lasee % eli tulee 0,-ertaisesi vuosittain. vuoden uluttua hinta on 00 0, m. Vuonna 99 amera masoi (m): 00 0,,... 00 (m) Vuonna 00 ameran hinta olisi maroina 00 0,,... (m) 99
Kosa,9 m, niin m,9 Kameran hinta euroina: 00 0, 00 0,,9,9,... 0 ( ). a) lg 0 lg 0 lg lg 0 lg 0 lg,99...,0 :lg 0. a) ( ) 0 0 0 0 c) 0 0 0 0 ( ) : ( ) t 0,9 t lg 0,9. a) 0, lg 0, t lg 0,9 lg 0, t lg 0, lg 0,9 t,... 9 0 lg lg lg lg lg ( ) lg lg : :lg,0..., lg lg lg lg lg lg lg,... :lg 0,9 :lg :,9...,9 00
. a) Testiarvo Toteutuuo yhtälö? Johtopäätös 0 0 0 < > 0 0 0 > < 0, 0,... < > 0, 0, 0,0... > < 0, 0, 0,9... < > 0, 0, 0,... < > 0, 0, 0,... < > 0, 0,9 0 9,9... < > 0,9. Bateerien massaa tunnin uluttua uvaa funtio f ( ), (grammaa). a), f ( ),0, lg,,0 0,... lg 0,... lg, lg 0,... lg 0,... lg,,... : :lg, Massa oli,0 g noin, h sitten. 0,9 0 0, 9,9... < > 0,9 Kosa > 0,9 ja < 0,, niin ahden meritsevän numeron taruudella 0,0. 0 Logaritmin määritelmän muaan lg 0,9... 0,0, f ( ), lg,,... lg,... lg, lg,... lg,... lg,,... : :lg,. a) p () 0 0, p ( ),9 (mbar) 0 0, 0, lg 0,,9 0,00... lg 0, lg 0,00...,9... 0(mbar) lg 0,00... :0 lg 0,00... lg 0, :lg 0, Massa on g noin, h uluttua.. Talletus asinertaistui vuodessa.,00 :,00 lg,00 lg lg,00 lg lg lg,00,99... :lg,00,9... (m) Talletus asinertaistui vuoden 99 aluun mennessä. 0
Talletus nelinertaistui y vuodessa. y,00 :,00 lg,00 lg y lg,00 lg y y y lg lg,00 y,9... :lg,00 Talletus nelinertaistui vuoden 99 aluun mennessä. Vuoteen 00 mennessä talletus oli ollut tilillä 00 99 0 vuotta. Talletusen suuruus oli frangeina: 0,00,... (frangia) 0 0. a),...,. a),9..., 9 c),..., 0 ± 0 ±,... ±, s 0,0000 s s 0,99... s 0,9 0,0000 9. a) 0. 0 0 0 0 0,9...,0 t t σt t t, t ± I T σ, t ±,... t ±, I σt I : : σ I T ± σ Kosa T > 0, niin I T σ. Meritään muutoserrointa irjaimella. 9,0,00 :,0 9,... 9,...,00... : Kuuausittainen arvonnousu on,00... 0,00...,%. 0
. a) A (,0),0,99...,, A( r ) r r 9,0 r 9,0 r,9... r, (fm),. Meritään muutoserrointa irjaimella. 0 :0 0,... 0,... 0,... Joa erta pallon oreus tulee 0, -ertaisesi eli on noin % edellisestä oreudesta. Vastaus: p. Meritään varpusmäärää alussa irjaimella a ja muutoserrointa irjaimella. 0 a 0,a : a 0 0 0, ± 0 0, ± 0,9... Kosa muutoserroin positiivinen, 0,9 Vuotinen vähennys on ollut 0,9... 0,0...,%.. Meritään oroerrointa irjaimella. 0 0 :0,0,0,09... Meritään ysyttyä vuosien määrää irjaimella n. n 0,09... 00 :0,09... lg,09..., lg, n lg,09... lg, n n n lg, lg,09... n 9,... Vastaus: 0 vuoden uluttua : lg,09.... Lämpötila nousi, % vuoden aiana. Jos lämpötila tarastelun alussa on t, niin 00 vuoden uluttua se on,0 t,0... t Lämpötila siis nousee, %.. a) Meritään muutoserrointa irjaimella. Jos energian määrä alussa on a, saadaan yhtälö a 0,9a : a 0 0,9 0,9 0,99... Kilometriä ohti energiaa häviää: 0,99... 0,00... 0,% 0
Meritään ilometrien määrää irjaimella. a 0,99... 0,a : a 0 0,99... lg 0,99... 0, lg 0, lg 0,99... lg 0, lg 0, lg 0,99...,... :lg 0,99... (m). Meritään natriumin määrää alussa irjaimella a ja muutoserrointa irjaimella. a 0,a : a 0 0, 0, 0,9... Meritään ysyttyä aiaa irjaimella t. t a 0,9... 0,0a : a 0 t 0,9... t lg 0,9... 0,0 lg 0,0 t lg 0,9... lg 0,0 t Harjoitusoe lg 0,0 lg 0,9... t,... :lg 0,9... (h). a) Valitaan suorilta asi pistettä ja määritetään yhtälöt. Suora s (, y ) (0, ) (, y ) (, ) 0 0 0 Suoran yhtälö: y Suora t (, y ) (0, -) (, y ) (, ) 0 Suoran yhtälö: y Suora u (, y ) (0, 0) (, y ) (, -) 0 0 Suoran yhtälö: y Lasetaan leiauspisteen -oordinaatti. Leiauspisteen y-oordinaatti y. Suorien leiauspiste on,. : c) Lasetaan ensin suorien s ja u leiauspiste. ( ) Piste A (-, ) Piste B, Janan AB pituus on d d,99..., 0
. a),,, lg,,, lg, lg, lg, lg, lg, 0,90... 0,9 0,... ± ± 0,99... 0,90 0,... : :, :lg,. a) Kuuausittain iinteinä uluina lasutetaan,,0,9. Kolmen uuauden aiana iinteitä uluja on siis,9,. Jos sähön ulutus uuauden aiana on Wh, niin tällöin lisäsi lasutetaan, snt,9 snt, snt 0,0 Kolmen uuauden aiana sähöstä masetaan siis 0,0,. f ( ) 0,0, f (0) 0,0 0,,, ( ). Sijoitetaan ja y - suoran yhtälöön. c c 0 c c 0 c c Suoran yhtälö on siis y 0 y y : ( ) Tarastellaan ulmaertoimien tuloa: Suorat ovat siis ohtisuorassa toisiaan vastaan.. a) Myryn määrä vähenee, % eli tulee 0,9-ertaisesi tunnissa. Ainetta on jäljellä h uluttua: 9 0,9 g, g, g Lasetaan milloin myryä on jäljellä 9 g: 9,g. 9 0,9 0,9 lg 0,9 9, 0, lg 0, lg 0,9 lg 0, lg 0, lg 0,9,0..., (h) :9 :lg 0,9 0
. Meritään päästöjen määrää irjaimella a ja ysyttyä vuosien määrää irjaimella. a 0, 0,a : a 0 0, lg 0, 0, lg 0, lg 0, lg 0, lg 0, lg 0,,0... Harjoitusoe., (vuotta) f ( ) 0 0 y-aselin leiausohta: f ( 0) 0 -aselin leiausohta: 0, : :lg 0,. a) ± Tapa. lg lg lg lg : ± lg lg Tapa. : lg. a) Kirjoitetaan suoran yhtälö rataistussa muodossa. y 0 y Suoran ulmaerroin on siis -. Suoran yhtälö: y ( ) y 0 y Suoran ulmaerroin 0 Suoran yhtälö: y 0 ( y ( ) y Vastaus: Aselien leiauspisteet ovat (0, -) ja (,; 0) 0
. Lasetaan leiauspisteiden -oordinaatti. 0 0 ± Kun, y. Kun -, y Tarastellaan pistettä (, ). Sijoitetaan ja y suoran y yhtälöön. 9 Epätosi Piste (, ) ei ole suoralla. Sijoitetaan - ja y suoran yhtälöön. ( ) Tosi Piste (-, ) on suoralla y.. Meritään oroerrointa irjaimella. 00,00 0,00 :00,00,0,09... Koroprosentti on,09-0,09,%. Meritään teeren sijaintia oordinaatistossa irjaimella C. Piste on suorien leiauspiste. 0 0 0 y 0 0 : Teeri sijaitsee pisteessä (0, 0). Tutijan A etäisyys teerestä on d A ( 0 0) ( 0 0) 000,... Tutijan B etäisyys teerestä on d A ( 0 ) ( 0 ) 0,... < d Vastaus: Tutija B on lähempänä. A. a) Meritään muutoserrointa irjaimella. 9 :9,... ±,... ±,0... Muutoserroin positiivinen, joten,0... Vuonna 00 oppilaita on:,0... 0,9... 0 (oppilasta) Oppilaita vuonna 990 oli:,0...,... (oppilasta) 0
c) Meritään vuodesta 00 uluneiden vuosien määrää irjaimella n. n,0... 000 :,0... lg,0... n n,... lg,... n lg,0... lg,... n 00,... lg,... lg,0... n,... 0,... :lg,0 Oppilasmäärä ylittää 000 oppilaan rajan vuonna 0.. Meritään valon määrää pinnalla irjaimella a ja muutoserrointa irjaimella. a 0,9a : a 0,9 0,9 0,99... Valon määrä tulee siis 0,99 -ertaisesi aina 0 cm matalla. Oloon ysytty syvyys 0,99... 0,99... lg 0,99... a 0,a 0, lg 0, lg 0,99... lg 0, lg 0, lg 0,99... 0 cm. : a 0 : lg 0,99...,9... Syvyys on,9... 0 cm,9 cm, m Harjoitusoe. a) Suora s leiaa y-aselin ohdassa y 0. Suoran s yhtälö on y. Suoran t ulmaerroin on. 0 Suoran t yhtälö on y 0 y y Lasetaan leiauspisteen -oordinaatti. : y Leiauspiste on (, -). c) Suoran ulmaerroin on -. Suoran yhtälö: y 0 y y. a) Paraabelin nollaohdat: 0 ± ( ) ± ± tai 0
Huipun -oordinaatti on nollaohtien puolivälissä. Huipun y-oordinaatti: y ( ) Huippupiste on (-, ). 0 - - 0 - - - - 0-0 Kylä C sijaitsee pisteessä (0, ). Kylä D sijaitsee pisteessä (0, -). Pisteet sijaitsevat y-aselilla, joten pisteiden autta ulevan suoran yhtälö on 0. Sijoitetaan 0 yhtälöön y,,. y, 0,, Teiden risteys on pisteessä (0;,) eli,m,m ironylästä pohjoiseen.. Suoran yhtälö rataistussa muodossa on: y 0 y y : Meritään normaalin ulmaerrointa irjaimella. Normaalin yhtälö on y y y. Kylä A sijaitsee pisteessä (,; 0). Kylä B sijaitsee pisteessä (-,; -). Pisteiden autta ulevan suoran ulmaerroin on 0,., (,) Suoran yhtälö y 0, (, ) y 0,, y,, Lasetaan ensin normaalin ja suoran leiauspiste. y 09
Leiauspiste on,. Leiauspisteen etäisyys pisteestä (, -) on d d. a),,..., lg 0 lg0 lg lg0 lg0 lg,9,... 0 ± 0,..., c) lg lg lg lg lg lg 0, :lg : 0,... :lg. Meritään muutoserrointa irjaimella. 000 000 :000,9...,9...,0... Vuotuinen asvuprosentti on,0... 0,0... 0%. Meritään pääomaa alussa irjaimella a ja ysyttyä vuosien määrää irjaimella., a a : a., lg, lg lg, lg lg lg,,... :lg, Vastaus: vuodessa Testiarvo Toteuttaao yhtälön Johtopäätös < > > <,,, > <,,,,9 > <,,,, < >,,,,9 < >,,,,000> <,,,,9... < >, Kosa, < <, on vastaus ahden desimaalin taruudella,. 0