-1- Prof. Jouko Halttunen MIT/TTKK VIRTAUSMITTAUSTEN SUORITUSKYKY 1 JOHDANTO Yksi merkittävimmistä virtausmittausten epävarmuustekijöistä on asennuspaikan vaikutus. Vaikutus on mittauslaitteesta ja profiilin muutoksen suuruudesta riippuen 0... ± 30 %. Riittävästi tietoa virtausolosuhteista ei yleensä ole. Toisaalta niissäkin tapauksissa, joista tietoa on, usein asennuksen vaatimista suoraosuuksista tingitään esim. tila- tai kustannussyistä, vaikka toimenpiteen vaikutusta ei tunnetakaan. Aineominaisuudet, kuten tiheysjakautuma ja sen muutokset, sähkönjohtavuus ja sen muutokset, lämpötilajakautuma jne., vaikuttavat hyvinkin ratkaisevasti mittaustuloksen tarkkuuteen. Tarkkuuteen vaikuttaa myös se, miten virtausolosuhteet, kuten putken pinnan karheus, paine-erolaitteen kriittiset mitat tai pinnat, muuttuvat ajan myötä. Useissa tapauksissa voidaan ajatella virtauksen nopeusprofiilin muokkaukseen virtauksen korjaimen käyttöä. Virtauksen korjaimen käytön ideana on, että sillä muokattaisiin aina samanlainen profiili mittarille tulovirtauksen ominaisuuksista riippumatta. Profiilin korjaus tapahtuu yleensä suurehkon painehäviön kustannuksella. Periaate on hyvä, mutta vain harvoissa tapauksissa se toteutuu. Usein voi käydä niinkin, että vääränlaisen korjaimen käytöllä väärässä paikassa aiheutetaan enemmän virhettä kuin ilman. Nykyinen suuntaus korjainten suunnittelussa onkin toteuttaa korjain-mittauslaitepaketti yhtenä kokonaisuutena, sillä yhdelle mittarille soveltuva korjain ei saata sopiakaan toiselle. Korjainten käytössä on lisäksi muistettava, ettei tarvittava suoraosuus läheskään aina ole suinkaan lyhyempi kuin ilman korjainta, mutta suotuisissa olosuhteissa tarkkuus saattaa kuitenkin olla parempi. Lämpötilan vaikutus on oleellisesti riippuvainen käytetystä mittauslaitteesta ja jonkin verran myös putkikoosta. Kaikissa mittauslaitteissa putkiston lämpölaajenemisen vaikutus poikkipinnan muutoksen kautta on samantapainen. Niinpä muutos halkaisijassa aiheuttaa suoraan muutoksen virtausnopeuteen. Virtausnopeuden muutoksen vaikutus puolestaan on riippuvainen mittauslaitetyypistä ja suhteellinen virhe yleensä pienenee putkikoon ja virtausnopeuden kasvaessa. Lisäksi lämpölaajenemisen vaikutuksesta syntyy lämpöjännityksiä, jotka voivat muuttaa anturien asentoa ja siten painotusta. Ultraäänen etenemisnopeus muuttuu lämpötilan funktiona, joten se on otettava huomioon niissä ultraäänimittareissa, joissa ei ole äänen etenemisnopeuden kompensointia. Useimmissa nykyisissä ultraäänimittareissa kompensointi on kuitenkin toteutettu siten, että äänen nopeus periaatteessa mitataan jokaisessa mittaustapahtumassa, joten sen vaikutus on vähäinen. Nestemittauksissa painevaihtelut ovat yleensä pieniä ja niiden vaikutus on siten melko pieni, mutta ei aina merkityksetön. Kaasumittauksissa painevaihtelut luonnollisesti on otettava huomioon. Eri asia on painesykkeiden, ja muiden värähtelyjen, aiheuttama putkistotärinä. Niiden huomioonottaminen yleisellä tasolla ei yleensä onnistu, vaan tarvitaan tilanteen tarkempaa analyysiä esim. kiihtyvyysanturien taajuusspektriä apuna käyttäen. Tavoiteltava on tilanne, jossa värähtelyt voidaan poistaa tai ainakin siirtää mittaustaajuuden ulkopuolelle.
-2- Virtauksen sykkeisyyden vaikutusta on tarkasteltu monesta näkökulmasta. Laajahko esitys on julkaistu Flow Measurement and Instrumentation lehdessä kesäkuussa 1992 /1/. Yleistä ratkaisua ei ole olemassa, mutta mikäli sykkeisyyden aiheuttaja ja luonne pystytään selvittämään, nykyisissä mikroprosessoripohjaisissa laitteissa virheitä voidaan jossain määrin kompensoida laskennallisesti. Hyvin monimutkainen sykkeisyys aiheutuu itse virtauksesta /2/. Usein perussyynä on putkistorakenne. Esimerkiksi kaksi perättäistä eritasomutkaa saa aikaan virtauksen pyörimisen. Tällainen kiertovirtaus ei etene keskeisenä virtauksena, vaan pyörimiskeskipiste etenee epäkeskeisesti putkessa. Näin ollen, mittarityypistä riippuen, virtausmittari havaitsee tällaisen pyörimisen eri tavalla ja virhe vaihtelee positiivisen ja negatiivisen välillä enemmän tai vähemmän säännöllisesti ja siten, että sen aallonpituus muuttuu koko ajan virtauksen kehittyessä. Tällaisen virheen kompensointiin ei nykyisin ole juuri muita mahdollisuuksia kuin mitata tarkka nopeusjakautuma mittauskohdassa tai pyrkiä poistamaan pyörivän virtauksen mahdollisuuskin jo ennen mittaria putkistorakennetta muuttamalla tai käyttämällä oikeita virtauksen korjaimia oikeassa paikassa. 2 NOPEUSPROFIILI Nopeusprofiilin kehittyminen on varsin monimutkainen prosessi. Sen tarkasteluun kvantitatiivisesti ei ole vielä nykyisin muita kuin mittaukseen perustuvia menetelmiä. 2.1 Esimerkkejä nopeusprofiilista Kuvissa 1 ja 2 on esitetty esimerkkejä nopeusjakautumista putken poikkileikkauksessa. Ne on laskettu kahdessa suunnassa mitatuista nopeusprofiileista. 0.5 0.4 0.3 0.2 1.05 1 0.95 0.9 0.5 0.4 0.3 0.2 0.9 1 0.95 0.8 Y 0.1 0 1.1 Y 0.1 0 1.05-0.1-0.1 1-0.2-0.2-0.3-0.4 1.15-0.3-0.4-0.5-0.5 0 0.5 X -0.5-0.5 0 0.5 X z/d=2,7 z/d=6,2 Kuva 1. Aksiaalisia vakionopeuskäyriä yhden mutkan jälkeen.
-3-0.5 0.5 0.4 0.3 0.4 0.3 1.05 0.2 0.2 1 Y 0.1 0 1.1 0.9 Y 0.1 0-0.1-0.2 1.05 0.95-0.1-0.2 0.95-0.3 1-0.3-0.4-0.4 0.8 0.9-0.5-0.5 0 0.5 X -0.5-0.5 0 0.5 X z/d =2,6 z/d =6,2 Kuva 2. Aksiaalisia vakionopeuskäyriä kahden eri tasossa olevan mutkan jälkeen. 2.2 Nopeusprofiilin vaikutus ultraäänivirtausmittareissa Kuvassa 3 on esitetty yhden 90 o mutkan vaikutus putken halkaisijalle sijoitetun yksisäteisen kulkuaikaeroon perustuvan ultraäänivirtausmittarin virheeseen. Kulma F tarkoittaa antureiden sijaintitason ja häiriölähteen viimeisen mutkan mutkatason välistä kulmaa. Kulma 0 o tarkoittaa, että anturit ovat mutkan tasossa. Kuva 3. Yhden mutkan vaikutus yksisäteisen ultraäänivirtausmittarin virheeseen.
-4- Kuva 4. Lasketut virheet yksisäteiselle ultraäänivirtausmittarille erilaisten putkimutkayhdistelmien jälkeen, kun anturit ovat viimeisen mutkan mutkatasossa. Kuvassa 4 on esitetty erilaisten kaksitasomutkayhdistelmien vaikutus yksisäteisen ultraäänivirtausmittarin virheeseen, kun anturit ovat mutkatasossa ja kuvassa 5 vastaava tilanne, kun anturit ovat kohtisuorassa mutkatasoa vastaan. Kuvissa on esitetty vertailun vuoksi myös yhden mutkan aiheuttamat virheet. Kuvissa s tarkoittaa kaksitasomutkayhdistelmissä mutkien välistä etäisyyttä putken sisähalkaisijoina. Kuten kuvista havaitaan, ei mittarin asennon muutoksella ole suurta merkitystä. Sen sijaan etäisyydellä ja pyörivässä virtauksessa pyörimisen luonteella on vaikutusta. Kuva 5. Lasketut virheet yksisäteiselle ultraäänivirtausmittarille erilaisten putkimutkayhdistelmien jälkeen, kun anturit ovat viimeisen mutkan mutkatasoa vastaan kohtisuorassa. Esimerkkinä useampisäteisistä ultraäänivirtausmittareista on kuvissa 6 ja 7 esitetty lasketut
-5- virheet kaksisäteisille ultraäänivirtausmittareille säteiden erilaisilla sijoitusvaihtoehdoilla. Säteiden paikat ovat jollakin tavalla optimoituja, toiset teoreettisesti, toiset kokeellisesti. Säteiden painotus on perustunut Gaussin menetelmään, jossa kummankin säteen painoarvo on yhtä suuri. Kuvassa 6 on esitetty tulokset yhden mutkan tapauksessa ja kuvassa 7 eritasomutkayhdistelmän tapauksessa. Kuva 6. Säteiden paikan vaikutus kaksisäteisten ultraäänivirtausmittareiden laskettuihin virheisiin yhden mutkan jälkeen. Kuva 7. Säteiden paikan vaikutus kaksisäteisten ultraäänivirtausmittareiden virheisiin eritasomutkayhdistelmän jälkeen. Kuvista havaitaan selkeästi, kuinka jo varsin pieni säteen paikan muutos vaikuttaa virheen suuruuteen; joissakin tapauksissa jopa virheen merkki muuttuu. Tämä seikka on pidettävä
-6- mielessä, kun tarkastellaan clamp-on mittareiden asennukselle asetettavia tarkkuusvaatimuksia. 2.3 Nopeusprofiilin vaikutus magneettisissa virtausmittareissa Magneettisen virtausmittarin malli, joka soveltuu profiilihäiriöiden tutkimiseen, voidaan muodostaa usealla eri tavalla. Ehkäpä yleisimmin käytetty malli perustuu painovektorin käyttöön. Sen perustana on yhtälö, jossa elektrodien välille syntyvä jännite U on U = W B V τ ( ) d τ missä τ on tilavuus, W on painovektori, B on magneettivuon tiheys ja V on nopeusvektori. Jos voidaan olettaa, että nopeus säilyy muuttumattomana mittarin pituisen matkan, voidaan yhtälöä yksinkertaistaa ja päästään kaksidimensioiseen painovektoriin eli painofunktioon. Kuvassa 8 on esitetty kaksi esimerkkiä painofunktioista: Shercliffin painofunktio, joka on homogeenisella magneettikentällä ja pienikokoisilla elektrodeilla varustetun mittarin painofunktio (analyyttisesti laskettavissa) sekä erään kaupallisen pulssimagnetoidun magneettisen virtausmittarin painofunktio, joka perustuu mitattuun magneettivuon tiheysjakautumaan. a) b) Kuva 8. a) Shercliffin painofunktio, b) erään kaupallisen magneettisen virtausmittarin (A200) painofunktio. Kuvassa 9 on esitetty vertailu kahden eri magneettisen virtausmittarin laskettujen ja toisen kokeellisten tulosten avulla.
-7- Kuva 9. Magneettisten virtausmittareiden laskettuja ja mitattuja virheitä eri etäisyyksillä yhden mutkan jälkeen. Kuva 10. Kaupallisten magneettisten virtausmittareiden laskettuja virheitä eri etäisyyksillä yhden mutkan jälkeen.
-8- Kuva 11. Kaupallisten magneettisten virtausmittareiden laskettuja virheitä eritasomutkayhdistelmän jälkeen.
3 ERÄITÄ MITTAUSTULOKSIA CORIOLIS-MITTAREISTA /3/ -9- Seuraavissa kuvissa on esitetty NEL:n koordinoiman, Coriolis-mittareiden kalibrointimenetelmiä vertailevan kansainvälisen vertailumittauksen tuloksia. Korostettakoon, että tässä vertailumittauksessa päätavoitteena oli kalibrointimenetelmien vertailu, mutta mielestäni tuloksista voidaan tarkastella myös mittareiden ominaisuuksia. NEL:stä on saatavissa CD, jossa on esitetty täydelliset tulokset vertailumittauksista. Seuraavassa on perustiedot kierrätetyistä mittareista. Manufacturer Micro Motion Model (Sensor : transmitter) CMF200M418 : RFT9739D4EMA Serial No (Sensor : transmitter) 327985 : Nominal Bore 50 mm Nominal flow range 0-12 kg/s Pulse output 15V square pulses Material Stainless Steel Nominal K-factor 660 p/kg Manufacturer Endress and Hauser Model (Sensor : transmitter) Promass 63 FS 50 Serial No (Sensor : transmitter) ZT396424 Nominal Bore 50 mm Nominal flow range 0-12 kg/s Pulse output 25V square pulses Material Stainless Steel Nominal K-factor 100 p/kg
K-kerroin [p/kg] K-kerroin [p/kg] -10- Vertailumittaus - Micro Motion 672,00 0,3% 670,00 668,00 666,00 664,00 662,00 DTI NMI-w NMI-p PTB EAM NEL-P NEL-I IMGC TTK SP-init SP-rep. Labien NEL-rep. 660,00 Massavirta [ kg/s] 101,00 Vertailumittaus - Endress & Hauser 100,80 100,60 100,40 100,20 100,00 99,80 99,60 99,40 99,20 0,2% DTI NMI-w NMI-p PTB EAM NEL-P NEL-I IMGC TTK SP-init SP-rep. Labien NEL-rep. 99,00 Massavirta [ kg/s] Kuva 12. Vertailumittausten tulokset.
K-kerroin [p/kg] K-kerroin [p/kg] -11- Lämpötilariippuvuus - Micro Motion 672,00 670,00 668,00 DTI-50Deg.C DTI-70Deg.C DTI-23Deg.C NEL-5Deg.C NEL-23Deg.C 666,00 0,3% 664,00 662,00 660,00 Massavirta kg/s Lämpötilariippuvuus - Endress & Hauser 101,00 100,80 100,60 100,40 100,20 DTI-50Deg.C DTI-23Deg.C NEL-23Deg.C DTI-70Deg.C NEL-5Deg.C DTI-23 Deg.C corrected 100,00 99,80 0,2% 99,60 99,40 99,20 99,00 Massavirta [kg/s] Kuva 13. Mitattavan aineen (vesi) lämpötilan vaikutus.
K-kerroin [p/kg] K-kerroin [p/kg] -12- Paineriippuvuus - Micro Motion 672,00 Tests carried out by SFOM 670,00 668,00 0,3% 1.4 bar 9.1 bar 15.5 bar 666,00 664,00 662,00 660,00 Massavirta [kg/s] Paineriippuvuus- Endress & Hauser 100,80 100,30 0,5% 99,80 99,30 98,80 1.4 bar 9.1 bar 15.3 bar Tests carried out by SFOM 98,30 Massavirta [kg/s] Kuva 14. Väliaineen paineen vaikutus.
K-kerroin [p/kg] K-kerroin [p/kg] -13- Aineriippuvuus - Micro Motion 672,00 670,00 668,00 0,3% NEL-Glycol NEL-water SP-high viscosity oil NEL-kerosene PTB-white spirit PTB-water SP- water 666,00 664,00 662,00 660,00 Massavirta [kg/s] Aineriippuvuus - Endress & Hauser 100,60 100,40 100,20 100,00 0,2% 99,80 99,60 99,40 PTB-white sp. NEL-Glycol 99,20 NEL-water PTB-water 99,00 SP-visc.oil 98,80 SP-water NEL-kerosene 98,60 Massavirta [kg/s] Kuva 15. Mitattavan aineen vaikutus.
K-kerroin [p/kg] K-kerroin [p/kg] -14- Ympäristölämpötilan vaikutus - Micro Motion 672,00 670,00 668,00 0,3% 666,00 664,00 662,00 1st Ambient Temp. Body Temp. 35 Deg.C Meter Adjusted Body Temp. 50 Deg.C 2nd Ambient Temp. Tests carried out by LABIEN 660,00 Massavirta [kg/s] Ympäristölämpötilan vaikutus - Endress & Hauser 101,000 100,800 100,600 100,400 100,200 1st Ambient Temp. Body Temp. 36 Deg.C Body Temp. 50 Deg.C 2nd Ambient Temp. Tests carried out by LABIEN 100,000 99,800 0,2% 99,600 99,400 99,200 99,000 Massavirta [kg/s] Kuva 16. Ympäristön lämpötilan vaikutus mittareiden suorituskykyyn.
K-kerroin [p/kg] K-kerroin [p/kg] -15- Tärinätestit- Micro Motion 672,000 670,000 0,3% 668,000 666,000 664,000 662,000 0 Hz 110 Hz 285 Hz 240 Hz 535 Hz 955 Hz 0 Hz rep 660,000 Massavirta [kg/s] Tärinätestit - Endress & Hauser 101,000 100,800 100,600 100,400 100,200 0,2% 0 Hz 100,000 99,800 99,600 99,400 99,200 110 Hz 285 Hz 340 Hz 535 Hz 955 Hz 0 Hz rep. 99,000 Massavirta [kg/s] Kuva 17. Tärinän vaikutus.
-16-4 TESTAUSTULOKSIA CLAMP-ON ULTRAÄÄNIVIRTAUSMITTAREISTA Clamp-on ultraäänivirtausmittareista ollaan kiinnostuneita niihin liittyvien monien hyvien ominaisuuksiensa vuoksi. TTKK:ssa tehtiin kahdella kaupallisella mittarilla testejä TUKESin toimeksiannosta, koska haluttiin selvittää, olisiko näillä mittareilla mahdollista tehdä paikalla tapahtuva vesimittarien tarkistus. Tulokset eivät kuitenkaan vaikuta kovin lupaavilta, vaikka mittareissa, niiden kiinnityksissä ym. onkin tapahtunut huomattavaa kehitystä. Jatkokehitystä tarvitaan, jotta mittausten luotettavuus saataisiin hyväksyttävälle tasolle. Seuraavissa kuvissa on esitetty Fortumin kalibrointilaboratoriossa vuosien 1989-1999 välisenä aikana tehdyistä kalibrointituloksista yhteenvedot. Kuvia tulkittaessa on muistettava, että kalibroinneissa on ollut useita laitteita, erilaisia antureita, eri putkikokoja, mittausalue on ollut erilainen, eri valmistajien laitteita, jotka ovat eri tuotekehityksen vaiheista ym. Alle 200 mm mittaukset Suhteellinen virhe [%] 6 5 4 3 2 1 0 0 10 20 30 40 50 60 70 80 90 100 110-1 -2-3 -4-5 Tilavuusvirta [%] Controlotron 80mm Controlotron 80mm Controlotron 80mm Controlotron 125mm Controlotron 150mm Panametrics 150mm Controlotron 80mm Controlotron 80mm Controlotron 150mm Controlotron 50mm Controlotron 32mm Panametrics 150mm Panametrics 50mm Panametrics 50mm Panametrics 150mm Kuva 18. Kalibrointitulokset kaikista kalibroinneista, joissa putkikoko on ollut pienempi kuin 200 mm.
-17-200 mm mittaukset Suhteellinen virhe [%] 7 6 5 4 3 2 1 0 0 10 20 30 40 50 60 70 80 90 100 110-1 -2-3 -4 Tilavuusvirta [%] Altosonic 200mm Fuji 200mm Controlotron 200mm Fuji 200mm Controlotron 200mm Controlotron 200mm Panametrics 200mm Controlotron 200mm Controlotron 200mm Controlotron 200mm Controlotron 200mm Controlotron 200mm Panametrics 200mm Kuva 19. Kalibrointitulokset kaikista mittareista, kun putkikoko on ollut 200 mm. 250 mm ja suuremmat 6 5 4 3 Suhteellinen virhe [%] 2 1 0 0 10 20 30 40 50 60 70 80 90 100 110-1 -2-3 -4-5 -6 Tilavuusvirta [%] Controlotron 800mm Controlotron 300mm Controlotron 250mm Controlotron 700mm Controlotron 700mm Panametrics 800mm Panametrics 800mm Controlotron 250mm Controlotron 250mm Panametrics 250mm Panametrics 250mm Panametrics 300mm Kuva 20. Kalibrointitulokset, kun putkikoko on ollut 250 mm 800 mm.
-18- Kuten kuvista voidaan havaita suhteellinen virhe vaihtelee välillä -5% +5%. Valmistajakohtaisia eroja on, mutta kovin selvä se ei ole. Usein esille tuleva käsitys on myös se, että pienissä putkissa virheet ovat suurempia, mutta sitäkään tulokset eivät vahvista. Tulosten perusteella näyttääkin siltä, että mittauksen hyvyyteen vaikuttaa edelleenkin oleellisesti mittausolosuhteet ja asennuksen onnistuminen. Valmistajakohtaisesti kaikki kalibrointitulokset on esitetty kuvassa 21. 6 4 Suhteellinen virhe [%] 2 0 0 10 20 30 40 50 60 70 80 90 100 110-2 -4-6 Tilavuusvirta [%] Controlotron 200mm Controlotron 200mm Controlotron 200mm Controlotron 200mm Controlotron 80mm Controlotron 800mm Controlotron 300mm Controlotron 80mm Controlotron 200mm Controlotron 80mm Controlotron 200mm Controlotron 125mm Controlotron 250mm Controlotron 150mm Controlotron 700mm Controlotron 80mm Controlotron 200mm Controlotron 700mm Controlotron 80mm Controlotron 150mm Controlotron 250mm Controlotron 250mm Controlotron 200mm Controlotron 50mm Controlotron 32mm
-19-6 4 Suhteellinen virhe [%] 2 0 0 10 20 30 40 50 60 70 80 90 100 110-2 -4-6 Tilavuusvirta [%] Panametrics 200mm Panametrics 150mm Panametrics 800mm Panametrics 800mm Panametrics 250mm Panametrics 250mm Panametrics 200mm Panametrics 150mm Panametrics 50mm Panametrics 50mm Panametrics 150mm Panametrics 300mm Kuva 21. Valmistajakohtaiset (Controlotron ja Panametrics) kalibrointitulokset kaikista kalibroinneista. 4.1 Testituloksia kahdella clamp-on mittarilla TTKK:n Mittaus- ja informaatiotekniikan laboratoriossa on testattu kahta clamp-on mittaria erityyppisissä olosuhteissa ja erilaisilla materiaaleilla. Kuvassa 22 on esitetty tuloksia, joilla on selvitetty mittausten uusittavuutta. Jokainen piste on kuuden mittauksen keskiarvo. Pisteet muodostuvat siten, että anturit on välillä irrotettu ja asennettu mahdollisimman hyvin samaan paikkaan. Putki on ollut DN50 ruostumatonta teräsputkea, Reynoldsin luku 22500, anturit asennettu 20D 90 o mutkasta suoraan putkeen siten, että mittaussäde on kohtisuorassa mutkatasoa vastaan.
-20- Kuva 22. Virheet tutkittaessa uusittavuutta. a) Eri mittausmenetelmät: suora mittaus, mittari A, anturipari A2, x yksi heijastus, mittari A, anturipari A2, o kolme heijastusta, mittari B, anturipari B2. b) Yksi heijastus, o mittari A, anturipari A2, * mittari A, anturipari A1, x mittari B, anturipari B1. Tutkittaessa asennusolosuhteiden vaikutusta anturit asennettiin eri etäisyyksille ja eri kulmiin yhden mutkan jälkeen. Asennuskulma on kuvan 23 mukainen. o 330 o 0 o 30 o 90 Kuva 23. Anturien sijoittamiskulmat katsottaessa ylävirran suuntaan.
-21- Kuva 24. Suhteelliset virheet Reynoldsin luvun funktiona eri mittareilla ja eri anturipareilla eri etäisyyksillä yhdestä mutkasta. Mittari A, yhden heijastuksen ja mittari B kolmen heijastuksen menetelmä.
-22- Kuva 25. Seinämäpaksuuden määritysvirheen vaikutus DN25 ruostumattomassa teräsputkessa. Mittaus tehty 60D etäisyydellä supistuksesta DN50->DN25, yksi heijastus, 0 o. Kuva 26. Seinämäpaksuuden määritysvirheen vaikutus DN25 kupariputkessa. Mittaus tehty 60D etäisyydellä supistuksesta DN50->DN25, yksi heijastus, 0 o.
-23- KIRJALLISUUSVIITTEET /1/ Flow Measurement and Instrumentation, Special Issue - Pulsating Flows, 3(1992)3, p. 114-208. /2/ Halttunen, J., A Model-Based Approach to Flowmeter Installation Effects. Tampere University of Technology, Publications 96, Tampere 1992, 58 p. /3/ Paton, R., Calibration Techniques for Coriolis Mass Flowmeters. Proceedings of the 9th International Conference on Flow Measurement, FLOMEKO 98, June 15-17, 1998, Lund, Sweden. p. 505-508.