031021P Tilastomatematiikka (5 op)

Koko: px
Aloita esitys sivulta:

Download "031021P Tilastomatematiikka (5 op)"

Transkriptio

1 031021P Tilastomatematiikka (5 op) Jukka Kemppainen Mathematics Division

2 Käytännön asioita Luennot (yht h) ti ja to 8-10 (ks. tarkempi opetusohjelma Oodista tms.) Harjoitukset (yht h) alkavat viikolla 3 Suorittaminen: Kurssin voi suorittaa joko 1. loppukokeella (4-5 tehtävää á 6 pistettä, max pistettä) 2. kahdella välikokeella (21.2. ja klo 9-12). Välikokeiden pistesummaan voi saada lisäpisteitä osallistumalla aktiivisesti laskuharjoituksiin. Laskuharjoituspisteet (harjoituksia 11) Laskuharjoitusten lkm Laskuharjoituspisteet Kurssin läpäisyn välikokeilla ratkaisee välikoepisteiden ja laskuharjoituspisteiden summa. 1. vk:sta voi saada max. 24 pistettä (4 tehtävää, kukin 6 p) ja 2. vk:sta 30 p. Maksimipistemäärä on = 59. Varma läpipääsy 27 pisteellä. Jukka Kemppainen Mathematics Division 2 / 48

3 Mitä tilastomatematiikka on? Tilastomatematiikan pyrkimyksenä on hallita satunnaisilmiöitä todennäköisyyslaskennan avulla. Tilastollisessa tutkimuksessa kerätään havaintoja, joista pyritään tekemään mahdollisimman luotettavia johtopäätöksiä. Tarvittaessa havaintoja joudutaan muokkaamaan niin, että tietyn todennäköisyysmallin oletukset tulevat voimaan, minkä jälkeen tehdään kyseisen mallin avulla johtopäätöksiä tutkimuksen kohteesta. Nykyään todennäköisyysmalleja käytetään ilmiöiden kuvailussa käytännöllisesti katsoen kaikilla tieteenaloilla. Opintojakson tavoitteena on antaa teoreettiset perusvalmiudet satunnaisilmiöiden mallintamiseen ja tilastollisten menetelmien opiskeluun. Jukka Kemppainen Mathematics Division 3 / 48

4 Satunnaiskoe vs. deterministinen koe Koe, jonka lopputulos voidaan alkutilanteen ja ilmiön mekanismin perusteella ennustaa tarkkaan, on deterministinen. Satunnaiskokeella tarkoitetaan ilmiötä, jossa (1) koetta voidaan toistaa samoissa oloissa (2) kokeella on useampi kuin yksi lopputulos, jonka määrää satunnainen mekanismi (3) kun koetta toistetaan, esiintyy lopputuloksissa tilastollista säännönmukaisuutta suorituskertojen lukumäärän kasvaessa. Jukka Kemppainen Mathematics Division 4 / 48

5 Esimerkki Esim. 1 Onko seuraavissa kyse deterministisestä kokeesta vai satunnaiskokeesta? (1) Tämän illan Kärpät-Pelicans-ottelun lopputulos? (2) Satunnaisesti valitun miehen sosiaaliturvatunnuksen toiseksi viimeinen merkki on parillinen luku? (3) Perheeseen syntyvä lapsi on tyttö? (4) Auringonnousun ajankohta Oulussa ? (5) Differentiaaliyhtälön y (x) = y(x) ratkaisu alkuehdolla y(0) = 1? (6) Tilastomatematiikka-kurssin läpäiseminen keväällä 2015? Jukka Kemppainen Mathematics Division 5 / 48

6 Otosavaruus ja tapahtuma Määr. 1 Satunnaiskokeen E mahdolliset lopputulokset ovat alkeistapahtumia ja kaikkien alkeistapahtumien e joukko on otosavaruus S. Määr. 2 Satunnaiskokeessa tapahtuma on otosavaruuden S osajoukko. Tapahtumasysteemi E on kaikkien tapahtumien muodostama joukko. Huomautus 1 Myös tyhjä joukko φ on tapahtuma. Tapahtumasysteemi on siis otosavaruuden osajoukkojen muodostama joukko E = {A A S}. Jukka Kemppainen Mathematics Division 6 / 48

7 Esimerkkejä Esim. 2 Määrää otosavaruudet seuraaville satunnaiskokeille. (a) Heitetään kolikkoa kolme kertaa. (b) Heitetään kolikkoa, kunnes saadaan ensimmäinen kruuna. (c) Määritetään lampun kestoikä. Esim. 3 Esitä tapahtumat (a) Saadaan vähintään kaksi kruunaa. (b) Korkeintaan 5 heittoa. (c) Vähintään 100 tuntia. Jukka Kemppainen Mathematics Division 7 / 48

8 Joukko-oppia Kuten edellä jo tuli ilmi, on joukko-oppi hyvin keskeisessä asemassa. Kerrataan sen vuoksi joukko-opin perusoperaatiot. Perusjoukko S (satunnaiskokeessa otosavaruus), A, B S osajoukkoja (A ja B tapahtumia) Joukon komplementti A = S \ A = {x S x / A} ( A ei tapahdu ) Yhdiste A B = {x S x A tai x B} ( A tai B tapahtuvat ) Leikkaus A B = {x S x A ja x B} ( A ja B tapahtuvat ) Erotus A\B = A B = {x S x A ja x / B} ( A tapahtuu, mutta B ei tapahdu ) Jukka Kemppainen Mathematics Division 8 / 48

9 Vennin diagrammi Joukko-opin operaatioita voidaan havainnollistaa Vennin diagrammien avulla. Niistä on apua myös yksinkertaisten todennäköisyyksien laskemisessa. Kuva : Joukon A komplementti A. Kuva : Joukkojen A ja B yhdiste A B. Jukka Kemppainen Mathematics Division 9 / 48

10 Kuva : Joukkojen A ja B leikkaus A B. Kuva : Joukkojen B ja A erotus B \ A. Jukka Kemppainen Mathematics Division 10 / 48

11 Lisää joukko-oppia Määr. 3 Tapahtumasysteemi E on Boolen algebra, jos 1.,S E 2. A E = A E 3. A,B E = A B E 4. A,B E = A B E Jos lisäksi 5. A i E kaikilla i N i=1 A i E, niin tapahtumasysteemiä sanotaan σ-algebraksi. de Morganin kaavat: A B A B = A B = A B Jukka Kemppainen Mathematics Division 11 / 48

12 Satunnaiskokeen malli Satunnaiskoetta mallinnetaan siis matemaattisesti joukko-opin avulla. Kannattaa opetella ilmaisemaan satunnaiskoe joukko-opillisesti ja kääntäen. Havainnollistetaan peruskäsitteitä taulukon avulla: Satunnaiskokeessa Symboli Mallissa Alkeistapausten joukko S Otosavaruus Alkeistapahtuma e i Otosavaruuden alkiot Tapahtuma A S:n osajoukko Tapahtumasysteemi E σ-algebra S:ssä Varma tapahtuma S Otosavaruus Mahdoton tapahtuma φ Tyhjä joukko A tai B sattuu A B Yhdiste A ja B sattuu A B Leikkaus A ei satu A Komplementti A sattuu, mutta B ei A\B erotus Jukka Kemppainen Mathematics Division 12 / 48

13 Mallin hyödyntäminen käytännössä Monia todennäköisyyteen liittyviä ongelmia voidaan ratkoa tapauskohtaisesti ns. maalaisjärjellä. Mallin avulla todennäköisyyksien laskentaa voidaan kuitenkin helpottaa ja nopeuttaa. Joskus se voi olla jopa välttämätöntä (myös koneellisessa laskemisessa), jos suotuisia alkeistapahtumia on valtava määrä. Joukko-opin avulla kiinnostava tapahtuma A voidaan esimerkiksi hajottaa toisensa poissulkeviin osiin A B ja A B, joiden tn:t osataan laskea ja A:n tn. saadaan identiteetistä A = (A B) (A B) Usein myös siirtyminen komplementtiin A voi auttaa, jos A:n tn. voidaan laskea helposti, mutta A:n todennäköisyyttä ei. Jukka Kemppainen Mathematics Division 13 / 48

14 Klassinen todennäköisyys Otosavaruus on äärellinen S = {e 1,e 2,...,e N }. Alkeistapahtumat ovat yhtä todennäköisiä eli P(e i ) = 1 N. Satunnaiskokeen tapahtuman B esiintymistodennäköisyys P(B) = m N, missä m = #(B) on joukon B alkioiden lukumäärä. Ilmeisestikin P(S) = 1, 0 P(A) 1, P(A) = 1 P(A), A B P(A) P(B), P(A\B) = P(A) P(A B), P(A B) = P(A)+P(B) P(A B). Jukka Kemppainen Mathematics Division 14 / 48

15 Esimerkkejä Esim. 4 Olkoot A, B ja C tapahtumia, joille P(A) = 0.8, P(B) = 0.36, P(C) = 0.28, P(A B) = 0.29, P(A C) = 0.24, P(B C) = 0.16 ja P(A B C) = (a) Piirrä tilannetta havainnollistava Vennin diagrammi ja määrää kunkin osan todennäköisyys annettujen tietojen perusteella. (b) Laske todennäköisyys, että tapahtumat A ja B toteutuvat, mutta C ei toteudu. (c) Laske tn., että A toteutuu, mutta B tai C ei toteudu. (d) Laske tn., että mikään tapahtumista A, B ja C ei toteudu. (e) Laske tn. P(A (B C)). Jukka Kemppainen Mathematics Division 15 / 48

16 Esimerkkejä Esim. 5 (de Mérén probleema) Ranskalainen aatelismies de Méré oli innokas uhkapeluri. Hän havaitsi kokeellisesti seuraavaa (a) Kannattaa lyödä vetoa siitä, että heitettäessä 4 noppaa saadaan ainakin yksi kuutonen. (b) Ei kannata lyödä vetoa siitä, että heitettäessä kahta noppaa 24 kertaa saadaan ainakin yksi kuutospari. De Méré ei kuitenkaan kyennyt teoreettisesti selittämään havaintoaan, joten hän kääntyi Pascalin puoleen (n. 1650). Tämä tapahtuma toimi virikkeenä todennäköisyyslaskennan syntyyn. Jukka Kemppainen Mathematics Division 16 / 48

17 Kombinatoriikkaa Olkoon E = {e 1,e 2,...,e n }, missä n N = {1,2,...}. Permutaatio Äärellisen joukon E alkioiden jono (e i1,e i2,...,e in ), jossa jokainen alkio esiintyy täsmälleen kerran. Permutaatioiden lukumäärä on n! = (n 1) n. k-permutaatio on äärellisen joukon E k:n eri alkion jono (e i1,...,e ik ), joiden lukumäärä on n! (n k)!. k-kombinaatio on äärellisen joukon E k-alkioinen osajoukko {e i1,...,e ik }. Näiden joukkojen lukumäärä on ( n) k = n! (n k)!k!. Jukka Kemppainen Mathematics Division 17 / 48

18 Esimerkkejä Esim. 6 (a) Lotossa arvotaan 7 numeroa 39 mahdollisesta. Kuinka monta erilaista lottoriviä voidaan arpoa? (b) Pokerissa pelaajalle jaetaan 5 korttia 52 mahdollisesta. Kuinka monta erilaista pokerikättä voidaan jakaa? (c) Vakioveikkauksessa valitaan yksi kolmesta eri merkistä {1, X, 2} 13 kohteeseen. Kuinka monta erilaista vakioriviä voidaan veikata? Esim. 7 Tarkastellaan erilaisia pokerikäsiä. Millä tn:llä käsi on (a) ns. hai eli kaikki kortit ovat eri suuruisia eivätkä ne voi olla 5 peräkkäistä (ns. suora) eikä samaa maata (ns. väri)? (b) neloset eli saadaan neljä samansuuruista korttia. Jukka Kemppainen Mathematics Division 18 / 48

19 Esimerkkejä Esim. 8 Laatikossa on 15 palloa; 4 valkoista, 5 punaista ja 6 mustaa. Laatikosta nostetaan umpimähkään 3 palloa. Millä todennäköisyydellä pallojen joukossa on (a) valkoinen pallo tai punainen pallo? (b) valkoinen pallo ja punainen pallo? (c) valkoinen pallo, mutta ei punaista palloa? Jukka Kemppainen Mathematics Division 19 / 48

20 Geometrinen todennäköisyys Otosavaruus S on jana, alue tai 3-ulotteinen tila. Tapahtuma A on S:n osajoukko. Tapahtuman A todennäköisyys on P(A) = m(a) m(s), missä m(a) joukon A pituus, pinta-ala tai tilavuus. Jukka Kemppainen Mathematics Division 20 / 48

21 Esimerkki Esim. 9 Heitetään r-säteistä lanttia neliöruutuiselle tasaiselle alustalle. Oletetaan, että ruutujen sivun pituus on a 2r. Mikä on todennäköisyys, että lantti peittää jonkin ruudun kärjen? Laske likiarvo tn:lle esimerkkitapauksessa a = 2r. Yllä olevalla tavalla voidaan määrätä likiarvo π:lle, kun heittokoe toistetaan useasti. Jukka Kemppainen Mathematics Division 21 / 48

22 Todennäköisyyden aksioomat Määr. 4 Todennäköisyysavaruus on kolmikko {S, E, P}, missä S on epätyhjä joukko, E on σ-algebra ja kuvaus P : E R toteuttaa ehdot 1. 0 P(A) 1 2. P(S) = 1 3. Jos A i E ja A i A j = aina, kun i j ja i,j = 1,2,..., niin P ( ) A i = P(A i ). i=1 Ehtoja 1 3 sanotaan todennäköisyyslaskennan aksioomiksi ja kuvausta P, joka toteuttaa ehdot 1 3, sanotaan todennäköisyydeksi. i=1 Jukka Kemppainen Mathematics Division 22 / 48

23 Todennäköisyyden perusominaisuudet Lause 1 Todennäköisyydelle on voimassa: (i) P( ) = 0; (ii) P(A) = 1 P(A); (iii) Jos tapahtumat {A 1,A 2,...,A n } ovat erillisiä, ts. A i A j =, kun i j, niin P(A 1 A 2 A n ) = P(A 1 )+ +P(A n ); (iv) P(A) P(B) aina, kun A B; (v) P(A B) = P(A) P(A B); (vi) P(A B) = P(A)+P(B) P(A B). Jukka Kemppainen Mathematics Division 23 / 48

24 Yleinen yhteenlaskukaava Lause 2 P(A 1 A 2 A n ) n = P(A i ) P(A i A j )+... i=1 +( 1) k 1 1 i<j n 1 i 1 < <i k n +( 1) n 1 P(A 1 A 2 A n ). P(A i1 A ik )+... Jukka Kemppainen Mathematics Division 24 / 48

25 Esimerkkejä Esim. 10 Olkoon P(A) = 3 5, P(B) = 1 2 ja P(A B) = 1 5. Laske todennäköisyydet P(A B), P(A), P(B), P(A B), P(A B) ja P(A B). Esim. 11 Vakioveikataan umpimähkään yksi rivi. Millä todennäköisyydellä saadaan (a) täysosuma? (b) ainakin yksi oikein? Jukka Kemppainen Mathematics Division 25 / 48

26 Ehdollinen todennäköisyys Määr. 5 Olkoon S otosavaruus, A, B S tapahtumia ja P todennäköisyys. Tapahtuman A ehdollinen todennäköisyys ehdolla B on jos P(B) > 0. P(A B) = P(A B), P(B) Ehdollista todennäköisyyttä ei ole määritelty, kun P(B) = 0. Tilastollisessa päättelyssä ehdollinen tn. P(A B) on tapahtuman A tn:n P(A) päivitys, kun on havaittu informaatio B. Tapahtuma B voidaan ottaa uudeksi otosavaruudeksi, jolloin funktio P : A P(A B) kaikilla tapahtumilla A on todennäköisyys B:ssä. Jukka Kemppainen Mathematics Division 26 / 48

27 Ehdolllisen todennäköisyyden ominaisuudet Ehdollinen tn. P on siis tn. B:ssä ja P on tn. S:ssä sekä P voidaan laskea alkuperäisen tn:n P avulla. Ehdollinen tn. P täyttää kaikki todennäköisyydeltä vaadittavat ominaisuudet. Esimerkiksi 1. 0 P(A) = P(A B) 1 kaikilla tapahtumilla A 2. P(B) = P(B B) = 1; 3. P(A 1 A 2 ) = P(A 1 A 2 B) = P(A 1 B)+P(A 2 B) aina, kun A 1 A 2 =. = P(A 1 )+ P(A 2 ). Jukka Kemppainen Mathematics Division 27 / 48

28 Kertolaskusääntö Ehdollisen todennäköisyyden määritelmä voidaan esittää kahtena kertosääntönä P(A B) = P(B)P(A B),jos P(B) > 0 P(A B) = P(A)P(B A),jos P(A) > 0 Täydellisellä induktiolla voidaan todistaa: Lause 3 Olkoot A 1,A 2,...,A n E siten, että P(A 1 A n 1 ) > 0. Tällöin on voimassa P(A 1 A 2 A n ) =P(A 1 )P(A 2 A 1 )P(A 3 A 2 A 1 ) P(A n A 1 A n 1 ). Jukka Kemppainen Mathematics Division 28 / 48

29 Esimerkkejä Esim. 12 Tuotteessa voi olla materiaalivika (tapahtuma A) tai käsittelyvika (tapahtuma B). Tuote on susi, jos siinä on molemmat viat. Olkoot P(A) = 0,1, P(B) = 0,06 ja P(A B) = 0,005. Mikä on todennäköisyys, että (a) tuote on susi ehdolla, että siinä on ainakin yksi vika? (b) tuotteessa on materiaalivika ehdolla, että siinä on tarkalleen yksi vika? Esim. 13 Pokerissa kullekin pelaajalle jaetaan viisi korttia. Jos pelaajia on 2, niin millä todennäköisyydellä molemmat saavat 2 ässää? Jukka Kemppainen Mathematics Division 29 / 48

30 Kokonaistodennäköisyys Olkoon {A 1,A 2 } on otosavaruuden S ositus eli A 1 A 2 = ja A 1 A 2 = S. Oletetaan, että P(A i ) > 0, i = 1,2. Olkoon B tapahtuma, jolle P(B) > 0. Tällöin (A 1 B) (A 2 B) = B (A 1 B) (A 2 B) = ja P(B) = P(A 1 B)+P(A 2 B). Toisaalta kertolaskusäännön nojalla i = 1, 2: P(A i B) = P(B A i )P(A i ). (1) Jukka Kemppainen Mathematics Division 30 / 48

31 Kokonaistodennäköisyys Edellä osituksen {A 1,A 2 } tapauksessa saadaan kokonaistodennäköisyydeksi P(B) = P(A 1 )P(B A 1 )+P(A 2 )P(B A 2 ) Yleisesti, jos {A 1,A 2,...,A n } on ositus, saadaan Lause 4 (Kokonaistodennäköisyyden kaava) n P(B) = P(A k )P(B A k ). k=1 Jukka Kemppainen Mathematics Division 31 / 48

32 Esimerkki Esim. 14 Korttipakan 52 kortista nostetaan umpimähkään takaisinpanematta kaksi korttia. Mikä on todennäköisyys, että toinen kortti on pata? Jukka Kemppainen Mathematics Division 32 / 48

33 Bayesin kaava Käyttämällä kaavaa (1) saadaan ehdolliselle todennäköisyydelle Bayesin kaava P(A k B) = P(A k B) P(B) = P(B A k)p(a k ), P(B) joka kokonaistodennäköisyyden kaavaan mukaan voidaan kirjoittaa muodossa Lause 5 (Bayesin kaava) P(A k B) = P(B A k )P(A k ) n k=1 P(A k)p(b A k ). Jukka Kemppainen Mathematics Division 33 / 48

34 Bayesin kaava (2/2) Todennäköisyyttä P(A k ) sanotaan priori-todennäköisyydeksi. - prior (lat.) (edeltävä, aikaisempi) - Käsityksemme tapahtuman A k tn:stä ennen kuin tiedetään, onko B sattunut vai ei. P(A k B) sanotaan posteriori-todennäköisyydeksi - posterior (lat.) (jälkeen tuleva, myöhempi) - Päivitetään tapahtuman A k tn., kun tiedetään, että B on sattunut. P(B A k ) sanotaan uskottavuudeksi (likelihood) - Mikä on tapahtuman B tn., kun havaitaan A k, eli B:n uskottavuus ehdolla A k ). Jukka Kemppainen Mathematics Division 34 / 48

35 Esimerkkejä Esim. 15 Neljä teknikkoa tekee säännöllisesti korjauksia, kun eräällä automaatiolinjalla ilmenee vika. Teknikko 1 tekee 20% korjauksista, mutta tekee virheen keskimäärin yhdessä korjauksessa suorittamissaan 20 korjauksessa, teknikko 2 tekee 60% korjauksista ja tekee yhden virheen 10 korjauksessa, teknikko 3 tekee 15% korjauksista ja tekee virheen 1 tapauksessa 10:stä ja teknikko 4 tekee 5% korjauksista ja virheen 1 tapauksessa 20:sta. Automaatiolinjalla ilmenee vika ja sen diagnosoidaan johtuvan virheellisestä korjauksesta. Millä todennäköisyydellä korjauksen on tehnyt teknikko 1? Jukka Kemppainen Mathematics Division 35 / 48

36 Esimerkkejä Esim. 16 Tiedetään, että eräässä perheessä on 2 lasta. (i) Jos toinen lapsista on poika, niin millä todennäköisyydellä myös toinen lapsi on poika? (ii) Jos lapsista valitaan satunnaisesti toinen ja se on poika, niin millä todennäköisyydellä myös toinen on poika? Jukka Kemppainen Mathematics Division 36 / 48

37 Esimerkkejä Esim. 17 Tutkimusten mukaan HIV esiintyy väestössä todennäköisyydellä 0,0004. Sairautta tutkitaan verikokeella, jossa on seuraavat virhemahdollisuudet: (i) sairaan henkilön testitulos on negatiivinen todennäköisyydellä 0,001; (ii) terveen henkilön testitulos on positiivinen todennäköisyydellä 0,002. Millä todennäköisyydellä satunnaisesti valitulla, positiivisen testituloksen saaneella henkilöllä todella on HIV? Jukka Kemppainen Mathematics Division 37 / 48

38 Esimerkkejä Esim. 18 Tenttitehtävässä on väittämiä, joista kuhunkin tenttijän pitää vastata valitsemalla toinen kahdesta vaihtoehdosta (kyllä tai ei). Turo Teekkarin asiat ovat niin kehnosti, että hän tietää vastauksen vain 60 % väittämistä ja loput hän veikkaa täysin umpimähkään. (a) Millä todennäköisyydellä Turo vastaa oikein (tietämällä tai veikkaamalla) satunnaisesti valittuun väittämään? (b) Jos Turo vastasi oikein satunnaisesti valittuun väittämään, niin mikä on todennäköisyys, että hän päätyi oikeaan vastaukseen tietämällä eikä veikkaamalla? Jukka Kemppainen Mathematics Division 38 / 48

39 Riippumattomuus Määr. 6 Tapahtumat A ja B ovat riippumattomia, jos Huomautus 2 P(A B) = P(A)P(B). (2) Tulosääntöä (2) voidaan käyttää vain riippumattomille tapahtumille! Tilastollinen riippumattomuus on todennäköisyysfunktion ominaisuus ja on eri asia kuin joukko-opillinen erillisyys. Jukka Kemppainen Mathematics Division 39 / 48

40 Esimerkki Esim. 19 Valitaan korttipakasta satunnaisesti yksi kortti. Olkoot A = kortti on pata ; B = kortti on ässä ; C = kortti on hertta. tapahtumia. Tutki, ovatko (a) A ja B riippumattomia. (b) A ja C riippumattomia. (c) B ja C riippumattomia. (d) A, B ja C riippumattomia. Jukka Kemppainen Mathematics Division 40 / 48

41 Riippumattomien tapahtumien ominaisuuksia Jos P(B) = 0, niin B on riippumaton mistä tahansa tapahtumasta A. Jos P(B) > 0, niin Lause 6 A ja B ovat riippumattomia P(A B) = P(A). eli B:n esiintyminen ei vaikuta tapahtuman A todennäköisyyteen. Tapahtumat A ja B ovat riippumattomia, jos ja vain jos mikä tahansa seuraavista ominaisuuksista on voimassa (a) A ja B ovat riippumattomia. (b) A ja B ovat riippumattomia. (c) A ja B ovat riippumattomia. Jukka Kemppainen Mathematics Division 41 / 48

42 Usean tapahtuman riippumattomuus Määr. 7 Tapahtumat A 1,...,A n ovat (keskinäisesti) riippumattomia, jos kaikille indeksijoukoille {i 1,...,i k } {1,...,n} P(A i1 A ik ) = P(A i1 )P(A i2 )...P(A in ). Tulosääntö pätee kaikille osajoukoille. Ei riitä, että tulosääntö pätee pareittain P(A i A j ) = P(A i )P(A j ) kaikillai j. Jukka Kemppainen Mathematics Division 42 / 48

43 Riippumattomien tapahtumien yhdiste ja leikkaus Olkoot tapahtumat A 1,A 2,...,A n riippumattomia. Todennäköisyys tapahtumalle kaikki tapahtumat A i sattuvat on P(A 1 A 2 A n ) = P(A 1 )P(A 2 ) P(A n ) Todennäköisyys tapahtumalle "ainakin yksi tapahtumista A i sattuu" P(A 1 A 2 A n ) =1 P(A 1 A 2 A n ) ( ) ( ) =1 1 P(A 1 ) 1 P(A n ). Jukka Kemppainen Mathematics Division 43 / 48

44 Esimerkki Edellä olevia ominaisuuksia tarvitaan esimerkiksi komponenttien luotettavuuden arvioinnissa. Esim. 20 Systeemi koostuu kolmesta rinnankytketystä identtisestä komponentista. Systeemi toimii, jos ainakin yksi kolmesta rinnakkaisesta komponentista on toimiva. Jokaisen komponentin kestoikä on yli 10 viikkoa todennäköisyydellä 0.2. Millä todennäköisyydellä kokonaissysteemin virheetön toiminta-aika on yli 10 viikkoa? Jukka Kemppainen Mathematics Division 44 / 48

45 Riippumattomuus käytännössä Usein riippumattomuus on käytännössä oletus, joka on ilmiselvästi voimassa. Esimerkiksi kolikonheitto. Heittojen tulokset eivät riipu toisistaan. ottelukierroksen tulokset (vakioveikkauksessa). Pelien lopputulokset ovat riippumattomia toisistaan. Näin oletamme, ellei toisin mainita. Joskus oletukset on syytä asettaa kyseenalaiseksi. Esimerkiksi havaitaan epätavalliset vetosuhteet ottelukierroksella (sopupeli). Jukka Kemppainen Mathematics Division 45 / 48

46 Satunnaismuuttuja (s.15) Useissa luonnon- tai teknistieteellisissä sovellutuksissa satunnaiskokeen lopputulos on numeerinen lukuarvo. Virtapiireissä mitataan jännitteitä ja virranvoimakkuuksia Törmäyskokeissa lasketaan esiintyvien hiukkasten lukumääriä Sähkömagneettisissa sovellutuksissa arvioidaan kentän intensiteettiä Termodynamiikassa määrätään lämpötilajakaumia Tietoliikennetekniikassa oikein koodattujen bittien lukumäärä Jos satunnaiskokeen tulos ei ole valmiiksi reaaliluku, voidaan se usein muuntaa reaaliluvuksi sopivalla funktiolla. Jukka Kemppainen Mathematics Division 46 / 48

47 Satunnaismuuttuja (s.15) Määr. 8 Olkoon S satunnaiskokeen otosavaruus. Satunnaismuuttuja X on funktio, joka liittää reaaliluvun X(e) jokaiseen alkeistapahtumaan e S ja jos kaikilla x R pätee {X x} = {e S X(e) x} E. (3) Kaikki kuvaukset X : S R eivät siis ole satunnaismuuttujia. Kuvaus on satunnaismuuttuja vain, jos Määritelmän 8 ehto (3) toteutuu. Tällä kurssilla meille riittää mielikuva, että satunnaismuuttuja on funktio otosavaruudelta reaaliluvuksi. Satunnaismuuttujan arvojoukko S X voidaan tulkita satunnaismuuttujan otosavaruudeksi. Satunnaismuuttujan arvoa x sanotaan satunnaismuuttujan realisaatioksi. Jukka Kemppainen Mathematics Division 47 / 48

48 Esimerkki Esim. 21 Tarkastellaan satunnaiskoetta E = pistelukujen summa kahden nopan heitossa. Määrää satunnaiskoetta vastaavan satunnaismuuttujan arvojoukko ja arvoja vastaavat tapahtumat. Jukka Kemppainen Mathematics Division 48 / 48

031021P Tilastomatematiikka (5 op)

031021P Tilastomatematiikka (5 op) 031021P Tilastomatematiikka (5 op) Jukka Kemppainen Mathematics Division Yleinen todennäköisyys Kertausmateriaalissa esiteltiin koulusta tuttuja todennäköisyysmalleja. Tällä kurssilla todennäköisyys on

Lisätiedot

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta 031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 7 4 h) ke 12-14 ja pe 8-10 (ks. tarkemmin Oodista tai Nopasta) Harjoitukset

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Todennäköisyyslaskennan käsitteitä Satunnaisuus ja deterministisyys Deterministisessä ilmiössä alkutila määrää lopputilan yksikäsitteisesti. Satunnaisilmiö puolestaan arpoo - yhdestä alkutilasta voi päätyä

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi M-0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 1: Todennäköisyyslaskennan peruskäsitteet; Todennäköisyyden aksioomat; Todennäköisyyslaskennan peruslaskusäännöt; Kokonaistodennäköisyyden

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja. Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Kurssi käsittelee todennäköisyyslaskentaa ja tilastotiedettä. Laaditaan satunnaisilmiöille todennäköisyysmalleja. Miten hyvin mallit kuvaavat todellisuutta?

Lisätiedot

&idx=2&uilang=fi&lang=fi&lvv=2015

&idx=2&uilang=fi&lang=fi&lvv=2015 20.10.2015/1 MTTTP5, luento 20.10.2015 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1 Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Tehtävä 1 on klassikko. 1. Tässä tehtävässä tapahtumat A ja B eivät välttämättä

Lisätiedot

Todennäköisyys. Antoine Gombaud, eli chevalier de Méré?.? Kirjailija ja matemaatikko

Todennäköisyys. Antoine Gombaud, eli chevalier de Méré?.? Kirjailija ja matemaatikko Todennäköisyys TOD.NÄK JA TILASTOT, MAA10 Todennäköisyyslaskennan juuret ovat ~1650-luvun uhkapeleissä. Kreivi de Mérén noppapelit: Jos noppaa heitetään 4 kertaa, niin kannattaako lyödä vetoa sen puolesta,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 13. syyskuuta 2007 Antti Rasila () TodB 13. syyskuuta 2007 1 / 21 1 Klassinen todennäköisyys 2 Kombinatoriikkaa Kombinatoriikan perusongelmat Permutaatiot

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt - Satunnaiskokeet, otosavaruudet ja tapahtumat - Todennäköisyyden määritteleminen KE (2014) 1 Satunnaiskokeet, otosavaruudet ja tapahtumat

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan

Lisätiedot

(x, y) 2. heiton tulos y

(x, y) 2. heiton tulos y Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen

Lisätiedot

30A02000 Tilastotieteen perusteet

30A02000 Tilastotieteen perusteet 30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden aksioomat >> Todennäköisyyden määritteleminen Todennäköisyyden

Lisätiedot

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 25.10.2016/1 MTTTP5, luento 25.10.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden peruslaskusäännöt >> Uusien tapahtumien muodostaminen

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,

Lisätiedot

Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä

Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä Todennäköisyys 1 Klassinen todennäköisyys: p = Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä Esimerkkejä: Nopan heitto, kolikon heitto Satunnaismuuttuja Tilastollisesti vaihtelevaa

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden aksioomat Todennäköisyyden määritteleminen Todennäköisyyden aksioomat äärellisissä otosavaruuksissa

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

1. Matkalla todennäköisyyteen

1. Matkalla todennäköisyyteen 1. Matkalla todennäköisyyteen Wovon man nicht sprechen kann, darüber muss man schweigen (Ludwig Wittgenstein, Tractatus Logico-Philosophicus 1921) Miten ihmeessä tämä liittyy tähän kurssiin????!?? 1.1

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden

Lisätiedot

9 Yhteenlaskusääntö ja komplementtitapahtuma

9 Yhteenlaskusääntö ja komplementtitapahtuma 9 Yhteenlaskusääntö ja komplementtitapahtuma Kahta joukkoa sanotaan erillisiksi, jos niillä ei ole yhtään yhteistä alkiota. Jos pysytellään edelleen korttipakassa, niin voidaan ilman muuta sanoa, että

Lisätiedot

TODENNÄKÖISYYS JA TILASTOT MAA6 KERTAUS

TODENNÄKÖISYYS JA TILASTOT MAA6 KERTAUS TODENNÄKÖISYYS JA TILASTOT MAA6 KERTAUS Klassinen todennäköisyys P suotuisten alkeistapausten lkm kaikkien alkeistapausten lkm P( mahdoton tapahtuma ) = 0 P( varma tapahtuma ) = 1 0 P(A) 1 Todennäköisyys

Lisätiedot

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi

Lisätiedot

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Kertaus Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Luokiteltu aineisto. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Hajontaluvut luokittelemattomalle

Lisätiedot

Todennäköisyyslaskenta I. Ville Hyvönen

Todennäköisyyslaskenta I. Ville Hyvönen Todennäköisyyslaskenta I Ville Hyvönen Kesä 2016 Sisältö 1 Todennäköisyys 3 1.1 Klassinen todennäköisyys............................ 3 1.2 Kombinatoriikkaa................................ 6 1.2.1 Tuloperiaate...............................

Lisätiedot

Tilastomatematiikka Kevät 2008

Tilastomatematiikka Kevät 2008 Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/73 Johdanto Moderni yhteiskunta: Todellisuuden tilastollinen malli Kolme

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 Aiheet: Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Klassinen

Lisätiedot

A. Jos A on niiden perusjoukon S alkioiden x joukko, jotka toteuttavat ehdon P(x) eli joille lause P(x) on tosi, niin merkitsemme

A. Jos A on niiden perusjoukon S alkioiden x joukko, jotka toteuttavat ehdon P(x) eli joille lause P(x) on tosi, niin merkitsemme Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 Aiheet: Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Klassinen todennäköisyys

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 7

Inversio-ongelmien laskennallinen peruskurssi Luento 7 Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyslaskenta ja puudiagrammit >> Puutodennäköisyydet

Lisätiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskenta ja puudiagrammit iite: Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskenta ja puudiagrammit: Mitä opimme? Verkkoteoria

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyslaskenta ja puudiagrammit Puutodennäköisyydet Todennäköisyyslaskennan laskusääntöjen

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Klassinen todennäköisyys ja kombinatoriikka Klassinen todennäköisyys Olkoon S = {s 1,s 2,...,s n } äärellinen otosavaruus. Oletetaan, että Pr(s i ) = 1, kaikille i = 1, 2,...,n n Tällöin alkeistapahtumat

Lisätiedot

Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2005) 1 Klassinen todennäköisyys ja kombinatoriikka Klassinen todennäköisyys Kombinatoriikan perusperiaatteet

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

8 Joukoista. 8.1 Määritelmiä

8 Joukoista. 8.1 Määritelmiä 1 8 Joukoista Joukko on alkoidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukkooppi aksiomaattisesti. Näin ei tässä tehdä

Lisätiedot

1. Kuinka monella tavalla joukon kaikki alkiot voidaan järjestää jonoksi? Tähän antaa vastauksen: tuloperiaate ja permutaatio

1. Kuinka monella tavalla joukon kaikki alkiot voidaan järjestää jonoksi? Tähän antaa vastauksen: tuloperiaate ja permutaatio TOD.NÄK JA TILASTOT, MAA10 Kombinatoriikka Todennäköisyyksiä (-laskuja) varten tarvitaan tieto tapahtumille suotuisien alkeistapausten lukumäärästä eli tapahtumaa vastaavan osajoukon alkioiden lukumäärästä.

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Johdanto: Deterministisyys ja satunnaisuus Todennäköisyyden määritteleminen Todennäköisyyslaskennan peruskäsitteet TKK (c)

Lisätiedot

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat jen Kahden joukon A ja B samuutta todistettaessa kannattaa usein osoittaa, että A on B:n osajoukko ja että B on A:n osajoukko. Tällöin sovelletaan implikaation ja ekvivalenssin yhteyttä. Lause 5. (s. 50).

Lisätiedot

Todennäköisyyslaskenta I

Todennäköisyyslaskenta I Todennäköisyyslaskenta I Ville Hyvönen, Topias Tolonen 1 Kesä 2017 1 Luentomateriaali alun perin Villen käsialaa kesältä 2016, materiaalia muokataan kesän 2017 luentojen mukana ajan tapaa ja luennoitsijan

Lisätiedot

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin

Lisätiedot

Todennäköisyyden käsite ja laskusäännöt

Todennäköisyyden käsite ja laskusäännöt Luku 1 Todennäköisyyden käsite ja laskusäännöt Lasse Leskelä Aalto-yliopisto 12. syyskuuta 2017 1.1 Todennäköisyyden käsite Todennäköisyys on tapa kuvailla kvantitatiivisesti jonkin tapahtuman uskottavuutta,

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

Joukot. Georg Cantor ( )

Joukot. Georg Cantor ( ) Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot

TOD.NÄK JA TILASTOT, MAA10 Kombinaatio, k-kombinaatio

TOD.NÄK JA TILASTOT, MAA10 Kombinaatio, k-kombinaatio 1..018 TOD.NÄK JA TILASTOT, MAA10 Kombinaatio, k-kombinaatio Esimerkki 1: Sinulla on 5 erilaista palloa. Kuinka monta erilaista kahden pallon paria voit muodostaa, kun valintajärjestykseen a) kiinnitetään

Lisätiedot

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto Todennäköisyyslaskenta /7 Sisältö ESITIEDOT: joukko-oppi, n laskeminen, käsite Hakemisto Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennassa tarkastelun kohteena ovat satunnaisilmiöt.esimerkkejä

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 2

031021P Tilastomatematiikka (5 op) viikko 2 031021P Tilastomatematiikka (5 op) viikko 2 Jukka Kemppainen Mathematics Division Satunnaismuuttuja Useissa luonnon- tai teknistieteellisissä sovellutuksissa satunnaiskokeen lopputulos on numeerinen lukuarvo.

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku Harjoitus 2 (vko 39/2003) (ihe: tapahtumien todennäköisyys, Laininen luvut 1.6 2.4) 1. Tarkastellaan rinnan- ja sarjaankytketyistä

Lisätiedot

Todennäköisyyslaskenta - tehtävät

Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskentaa käsitellään Pitkän matematiikan kertauskirjan sivuilla 253 276. Klassinen todennäköisyys Kombinatoriikka Binomitodennäköisyys Satunnaismuuttuja,

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyys ja sen määritteleminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyys ja sen määritteleminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyys ja sen määritteleminen TKK (c) Ilkka Mellin (2005) 1 Todennäköisyys ja sen määritteleminen Deterministisyys ja satunnaisuus Todennäköisyyden määritteleminen

Lisätiedot

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt: Esitiedot

Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt: Esitiedot TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskennan peruslaskusäännöt Johdatus todennäköisyyslaskentaan Todennäköisyyslaskennan peruslaskusäännöt TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskennan

Lisätiedot

Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt

Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt Todennäköisyys ja sen laskusäännöt Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt 1. Johdanto 2. Joukko-opin peruskäsitteet 3. Todennäköisyyslaskennan peruskäsitteet 4. Todennäköisyyslaskennan

Lisätiedot

Luku 1. Johdanto. 1.1 Todennäköisyys ja tilastotiede. 1.2 Havaitut frekvenssit ja empiiriset jakaumat

Luku 1. Johdanto. 1.1 Todennäköisyys ja tilastotiede. 1.2 Havaitut frekvenssit ja empiiriset jakaumat Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Tämä kurssi käsittelee sekä todennäköisyyslaskentaa että tilastotiedettä. Uhkapelurien ongelmat inspiroivat todennäköisyyslaskennan uranuurtajien ajattelua,

Lisätiedot

1. Matkalla todennäköisyyteen (kertausta TN I)

1. Matkalla todennäköisyyteen (kertausta TN I) 1. Matkalla todennäköisyyteen (kertausta TN I) Wovon man nicht sprechen kann, darüber muss man schweigen (Ludwig Wittgenstein, Tractatus Logico-Philosophicus 1921) Miten ihmeessä tämä liittyy tähän kurssiin????!??

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Määritelmiä. Nopanheitossa taas ω 1 = saadaan 1, ω 2 = saadaan 2,..., ω 6 = saadaan

Määritelmiä. Nopanheitossa taas ω 1 = saadaan 1, ω 2 = saadaan 2,..., ω 6 = saadaan Todennäköisyys Todennäköisyys on epävarman matematiikkaa. Matemaattinen todennäköisyys mallintaa satunnaisia ilmiöitä, kuten esimerkiksi nopantai lantinheitto. Todennäköisyyttä voi lähestyä mm. tilastollisesti

Lisätiedot

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden peruslaskusäännöt Tapahtumat Peruslaskusäännöt todennäköisyydelle Ehdollinen todennäköisyys

Lisätiedot

1. Logiikan ja joukko-opin alkeet

1. Logiikan ja joukko-opin alkeet 1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista

Lisätiedot

Mallintamisesta. Mallintamisesta

Mallintamisesta. Mallintamisesta Laajasti ymmärtäen jonkin tarkasteltavan ilmiön kuvaamista (esim. matemaattista) kuhunkin tarkoitukseen (ennustaminen, analysointi, visualisointi) parhaiten sopivalla tavalla. Ilmiön pukemista helposti

Lisätiedot

1. laskuharjoituskierros, vko 4, ratkaisut

1. laskuharjoituskierros, vko 4, ratkaisut 1. laskuharjoituskierros, vko 4, ratkaisut D1. Heitetään kahta virheetöntä noppaa, joiden kuudella tahkolla on silmäluvut 1, 2, 3, 4, 5 ja 6. Tällöin heittotuloksiin liittyvä otosavaruus on S = {(x, y)

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

A = B. jos ja vain jos. x A x B

A = B. jos ja vain jos. x A x B Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Klassinen todennäköisyys ja kombinatoriikka Kokonaistodennäköisyys ja Bayesin kaava Avainsanat: Bayesin kaava, Binomikaava, Binomikerroin,

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

JOHDATUS TEKOÄLYYN LUENTO 4.

JOHDATUS TEKOÄLYYN LUENTO 4. 2009 CBS INTERACTIVE JOHDATUS TEKOÄLYYN LUENTO 4. TODENNÄKÖISYYSMALLINNUS II: BAYESIN KAAVA TEEMU ROOS Marvin Minsky Father of Artificial Intelligence, 1927 2016 PINGVIINI(tweety) :- true. Wulffmorgenthaler

Lisätiedot

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat:

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat: MAA6 Loppukoe 26..203 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! Lue ohjeet huolella! A-Osio. Ei saa

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Todennäköisyyslaskenta

Todennäköisyyslaskenta Todennäköisyyslaskenta Syksy 2017 Kerkko Luosto 14. syyskuuta 2017 Kerkko Luosto Todennäköisyyslaskenta 14. syyskuuta 2017 1 / 26 Johdanto Johdantoesimerkki Esimerkki Hannu Huijari ostaa Keijo Kelmiltä

Lisätiedot

Otanta ilman takaisinpanoa

Otanta ilman takaisinpanoa Otanta ilman takaisinpanoa Populaatio, jossa N alkiota (palloa, ihmistä tms.), kahdenlaisia ( valkoinen, musta ) Poimitaan umpimähkään (= symmetrisesti) n-osajoukko eli otos Merkitään tapahtuma A k = otoksessa

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2005) 1 Verkot ja todennäköisyyslaskenta >> Puudiagrammit todennäköisyyslaskennassa:

Lisätiedot

Todennäköisyyslaskenta

Todennäköisyyslaskenta Todennäköisyyslaskenta Syksy 2017 Kerkko Luosto 3. lokakuuta 2017 Kerkko Luosto Todennäköisyyslaskenta 3. lokakuuta 2017 1 / 33 Johdanto Johdantoesimerkki Esimerkki Hannu Huijari ostaa Keijo Kelmiltä Hämärätorilla

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

8.1. Tuloperiaate. Antti (miettien):

8.1. Tuloperiaate. Antti (miettien): 8.1. Tuloperiaate Katseltaessa klassisen todennäköisyyden määritelmää selviää välittömästi, että sen soveltamiseksi on kyettävä määräämään erilaisten joukkojen alkioiden lukumääriä. Jo todettiin, ettei

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

Kurssin puoliväli ja osan 2 teemat

Kurssin puoliväli ja osan 2 teemat Kurssin puoliväli ja osan 2 teemat Kurssin osa 1 keskittyi mittaukseen, tiedonkeruuseen ja kuvailevaan tilastotieteeseen. Osassa 2 painottuu tilastollinen päättely, joka puolestaan rakentuu voimakkaasti

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot