Insinöörimatematiikka D
|
|
- Aila Hakala
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot 14 1 of 39
2 Matriisit Määritelmä Matriisi A on kaavio A = A 11 A A 1n A 21 A A 2n A m1 A m2... A mn. Tyyppi m n: m riviä, n saraketta. A ij : matriisin alkiot A ij R: reaalinen matriisi A ij C: kompleksinen matriisi M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot 14 2 of 39
3 Matriisit Matriisien alkeisoperaatiot Kahden rivin järjestyksen vaihtaminen Rivin kertominen nollasta eroavalla vakiolla Rivin lisääminen toiseen vakiolla kerrottuna Määritelmä Jos matriisi B saadaan matriisista A alkeisoperaatioilla, sanotaan että matriisi A on riviekvivalentti B:n kanssa ja merkitään A B. Huom.: A B on ekvivalenssirelaatio. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot 14 3 of 39
4 Matriisit Määritelmä Matriisi A on porrasmuodossa, jos sen jokainen rivi alkaa nollilla, joita on enemmän kuin millään ylemmällä rivillä. Ensimmäisen rivin ei tarvitse alkaa nollalla ja jostain rivistä alkaen rivit voivat koostua kokonaan nollista. Esimerkki Pisteet merkitsevät nollia M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot 14 4 of 39
5 Matriisit Matriisi A on redusoidussa porrasmuodossa, jos A on porrasmuodossa A:n jokaisen rivin ensimmäinen nollasta poikkeava alkio on 1. A:n jokaisen rivin ensimmäisen nollasta poikkeavan alkion yläpuolella on vain nollia. Esimerkki Pisteet merkitsevät nollia ja asteriskit mitä tahansa lukuja. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot 14 5 of 39
6 Matriisit Gaussin-Jordanin menetelmä Jokainen matriisi saadaan alkeisoperaatioilla redusoituun porrasmuotoon käyttämällä Gaussin-Jordanin menetelmää. Määritelmä Matriisiin A aste (rank) r(a) on sen (redusoidun) porrasmatriisin porrasluku (nollarivistä eroavien rivien määrä), joka saadaan A:sta alkeisoperaatioilla. Esimerkki Saatetaan seuraava matriisi redusoituun porrasmuotoon: M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot 14 6 of 39
7 Lineaariset yhtälöryhmät Lineaarisen yhtälöryhmän ratkaiseminen Lineaarinen n:n muuttujan yhtälöryhmä voidaan ratkaista seuraavalla menetelmällä: Muodostetaan yhtälöryhmän augmentoitu matriisi A. Saatetaan augmentoitu matriisi redusoituun porrasmuotoon. Lausutaan portaan aloittavat muuttujat (r(a) kpl) muiden muuttujien (n r(a) kpl) avulla. Esimerkki Ratkaistaan lineaarinen yhtälöryhmä 4x 2y + z + 4w = 3 5x + y + 4w = 2 3x + 3y 5z + 4w = 1. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot 14 7 of 39
8 Vektoriavaruudet Määritelmä V on vektoriavaruus summan + ja skalaarilla kertomisen suhteen, jos seuraavat aksioomat toteutuvat kaikilla X, Y, Z V ja a, b K: V1 X + (Y + Z) = (X + Y ) + Z V2 X + Y = Y + X V3 X + 0 = X, missä 0 on nolla-alkio V4 X + ( X ) = 0, missä X on vasta-alkio V5 a(x + Y ) = ax + ay V6 (a + b)x = ax + bx V7 a(bx ) = (ab)x V8 1X = X M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot 14 8 of 39
9 Vektoriavaruudet Esimerkkejä Esimerkkejä vektoriavaruuksista: R n = {(x 1, x 2,..., x n ) x i R} on (reaalinen) vektoriavaruus. C n = {(x 1, x 2,..., x n ) x i C} on (kompleksinen) vektoriavaruus. Välillä [a, b] määriteltyjen, jatkuvien reaalifunktioiden joukko C 0 [a, b] on vektoriavaruus seuraavien yhteen- ja skalaarikertolaskujen suhteen: (f + g)(x) = f (x) + g(x) (af )(x) = a f (x) Nolla-alkiona f 0 (x) = 0 ja vasta-alkiona f (x). M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot 14 9 of 39
10 Vektoriavaruudet Määritelmä Vektoriavaruuden V epätyhjä osajoukko U V on aliavaruus, jos c 1 v 1 + c 2 v 2 U aina kun v 1, v 2 U. Merkintä: U V. Lineaarikombinaatiot Olkoot v 1, v 2,..., v k vektoriavaruuden V vektoreita. Lineaarikombinaatioiden joukko L(v 1,..., v k ) = {c 1 v c k v k c 1,..., c k K}. on V :n aliavaruus. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
11 Vektoriavaruudet Lineaarinen riippumattomuus Vektorijoukko {v 1,..., v k } on lineaarisesti riippumaton tarkalleen silloin kun c 1 v c k v k = 0 c 1 = = c k = 0. Lineaarisen riippumattomuuden vastakohta on lineaarinen riippuvuus. Kanta Joukko B on vektoriavaruuden V kanta, jos V = L(B) ja B on lineaarisesti riippumaton. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
12 Vektoriavaruudet Dimensio Olkoon B vektoriavaruuden V äärellinen kanta, jossa on k vektoria. Silloin V :n dimensio on dim(v ) = k. Kantaesitys Jokaisella x V on olemassa yksikäsitteinen kantaesitys V :n kannan B = {b 1, b 2,..., b k } lineaarikombinaationa: x = x 1 b 1 + x 2 b x k b k. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
13 Vektoriavaruudet Lineaarinen riippumattomuus R n :ssä Olkoon S = {v 1, v 2,..., v k } joukko vektoriavaruudessa R n. Muodostetaan matriisi A laittamalla vektorit v i sen vaakariveiksi. Olkoon B sellainen matriisi redusoidussa porrasmuodossa, että A B. Vektorijoukko S on lineaarisesti riippuva tarkalleen silloin kun B:ssä on nollarivi. Lineaarikombinaatiot R n :ssä Olkoot u 1, u 2,..., u l edellä olevan matriisin B nollasta eroavat vaakarivit. Silloin L(v 1, v 2,..., v k ) = L(u 1, u 2,..., u l ). M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
14 Vektoriavaruudet Esimerkki Olkoon S = {( 5, 5, 0), (1, 2, 1), (3, 5, 2)}. Koska on S lineaarisesti riippuva. Lisäksi V = L(( 5, 5, 0), (1, 2, 1), (3, 5, 2)) = L((1, 0, 1), (0, 1, 1))., Koska joukko B = {(1, 0, 1), (0, 1, 1)} on lineaarisesti riippumaton, niin B on vektoriavaruuden V kanta. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
15 Matriisit Esimerkki (skalaarilla kertominen) ( ) A = on 2 3-matriisi, 5A = Esimerkki (yhteenlasku) ( ) A = on 2 3-matriisi ja B = matriisi. Summaa A + B ei ole määritelty. ( ) ( ) A + B T = + = ( ) ( ) M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
16 Matriisit Esimerkki (kertolasku) Olkoot matriisit A = ( ) ja B = ( ) Nyt ( ) ( 3) 0 1 ( 3) + ( 3) ( 1) ( 3) 4 AB = ( 3) + 2 ( 1) ( ) = ja BA ei ole määritelty, sillä B:ssä on 3 saraketta ja A:ssa on 2 riviä. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
17 Matriisit Käänteismatriisi Olkoon A n n-matriisi. Jos on olemassa sellainen n n-matriisi B, että AB = BA = I n, sanotaan, että B on A:n käänteismatriisi ja merkitään B = A 1. Jos A:lla on käänteismatriisi, sanotaan että A on säännöllinen. Muutoin A on singulaarinen. Käänteismatriisi Gaussin-Jordanin menetelmällä Muodostetaan seuraava matriisi ja saatetaan se redusoituun porrasmuotoon: ( A I ) ( I A 1 ) M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
18 Matriisit Esimerkki (käänteismatriisi) Olkoon A = Etsitään käänteismatriisi A 1 Gaussin-Jordanin menetelmällä: A = Siis A 1 = M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
19 Lineaarikuvaukset Määritelmä Funktio f : R n R m on lineaarinen (tai lineaarikuvaus), jos f (ax + by) = af (x) + bf (y) aina, kun x, y R n ja a ja b ovat skalaareita. Huomautus Merkitsemällä y = f (x) ja a ij = f (e j ) i saadaan y i = f (e 1 ) i x 1 + f (e 2 ) i x f (e n ) i x n = a i1 x 1 + a i2 x a in x n Kuvavektorin y koordinaatit y i ovat ensimmäisen asteen lausekkeita alkukuvan x koordinaateista. Tämä olisi voitu ottaa lineaarikuvauksen määritelmäksi. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
20 Lineaarikuvaukset Lineaarikuvauksen matriisi Lineaarikuvaus f : R n R m voidaan esittää muodossa f (x) = Ax, missä x on pystyvektori ja A on m n-matriisi. Matriisi A = A f on lineaarikuvauksen f matriisi luonnollisen kannan suhteen. Esimerkki Kuvaus f : R 3 R 2, f (x, y, z) = (y 2z, 5x + 5y 2z), on edellisen huomautuksen nojalla lineaarinen. Lineaarikuvauksen f matriisi voidaan lukea suoraan muuttujien kertoimista: ( ) M f = Huomaa, että matriisin sarakkeina ovat luonnollisen kannan vektoreiden kuvat f (e 1 ), f (e 2 ) ja f (e 3 ). M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
21 Determinantti 2-rivinen determinantti det(a) Merk. = a c b d = ad bc 3-rivinen determinantti a b c d e f g h i = a e h f i b d g f i + c d g e h. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
22 Determinantti 4-rivinen determinantti +c a b c d e f g h i j k l m n o p e f h i j l m n p = a d f g h j k l n o p e f g i j k m n o b e g h i k l m o p M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
23 Determinantti Lause Neliömatriisin A determinantti ei muutu, mikäli Matriisin A rivi lisätään toiseen vakiolla kerrottuna tai Matriisi A transponoidaan. Lisäksi determinantilla on seuraavat ominaisuudet: Jos matriisin A kahden rivin järjestys vaihdetaan, muuttuu determinantin merkki. Jos matriisissa on nollarivi, on sen determinantti nolla. Jos matriisissa on kaksi samaa riviä, on sen determinantti nolla. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
24 Determinantti Esimerkki Lasketaan matriisin A = determinantti. Saadaan det(a) = 17. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
25 Determinantti Lause Olkoon A n n-neliömatriisi. Seuraavat ehdot ovat ekvivalentit eli yhtäpitävät: A on säännöllinen eli A:n käänteismatriisi on olemassa. det(a) 0. Matriisin A vaakarivit u 1, u 2,..., u n ovat lineaarisesti riippumattomat. Matriisin A vaakarivit u 1, u 2,..., u n muodostavat R n :n kannan. Esimerkki Edellisen esimerkin matriisille A on voimassa det(a) = Joten matriisi A on säännöllinen ja sen vaakarivit muodostavat R 4 :n kannan. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
26 Ominaisarvot ja -vektorit Määritelmä Olkoon A neliömatriisi. λ C on matriisin A ominaisarvo, jos on olemassa x 0 siten, että Ax = λx. Jokaista tämän yhtälön toteuttavaa vektoria x sanotaan ominaisarvoon λ kuuluvaksi ominaisvektoriksi. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
27 Ominaisarvot ja -vektorit Lause Matriisin A ominaisarvot λ ovat tarkalleen seuraavan yhtälön ratkaisut: det(a λi ) = 0. Ominaisvektorien määrittäminen Jos ominaisarvo λ on tunnettu, voidaan siihen kuuluvat ominaisvektorit x määrittää yhtälöstä Gaussin-Jordanin menetelmällä. Ax = λx M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
28 Vektoriavaruuksien geometriaa Sisätulo Olkoon V reaalinen vektoriavaruus. Kuvaus V V R, on sisätulo, jos se toteuttaa seuraavat ehdot: (x, x) 0 ja (x, x) = 0 tarkalleen silloin kun x = 0 (epänegativisuus ja epädegeneratiivisuus). (x, y) = (y, x) (vaihdannaisuus eli kommutatiivisuus). (ax + by, z) = a(x, z) + b(y, z) (lineaarisuus). M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
29 Vektoriavaruuksien geometriaa Normi Olkoon V vektoriavaruus. Vektoriavaruuden normi on kuvaus V R, x x, joka toteuttaa seuraavat ehdot: Etäisyys x 0 ja x = 0 tarkalleen silloin kun x = 0 (positiivisuus ja epädegeneratiivisuus) ax = a x (skalaarin siirto) x + y x + y (kolmioepäyhtälö) Olkoon V vektoriavaruus. Etäisyys on funktio V V R, joka toteuttaa seuraavat ehdot: d(x, y) 0 ja d(x, y) = 0 tarkalleen silloin kun x = y d(x, y) = d(y, x) (symmetria). d(x, y) d(x, z) + d(z, y) (kolmioepäyhtälö). M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
30 Vektoriavaruuksien geometriaa Lause Jokainen sisätulo (x, y) indusoi normin x = (x, x). Lause Jokainen normi indusoi etäisyysfunktion d(x, y) = x y. Pistetulo Vektoreiden x = (x 1,..., x n ) ja y = (y 1,..., y n ) R n pistetulo määritellään x y = x 1 y x n y n. Pistetulon indusoima pituus ja etäisyys Pistetulon indusoima normi on x = (x 1, x 2,..., x n ) = x x x 2 n. Edelleen tämä normi indusoi etäisyyden d(x, y) = x y. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
31 Vektoriavaruuksien geometriaa Vektoreiden kulma Jos θ on vektoreiden x ja y välinen kulma, niin Ortogonaalisuus cos θ = x y x y. Vektorit x ja y ovat ortogonaaliset eli kohtisuorat, jos sisätulo (x, y) = 0. Erityisesti R n :ssä pistetulo antaa vektoreiden tavanomaisen kohtisuoruuden (vrt. vektoreiden välistä kulmaa). M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
32 Avaruuden R 3 geometriaa Ristitulo Ristitulo x y voidaan ajatella seuraavan determinantin avulla: x y i j k = x 1 x 2 x 3 y 1 y 2 y 3 = i x 2 x 3 y 2 y 3 j x 1 x 3 y 1 y 3 + k x 1 x 2 y 1 y 2 = (x 2 y 3 x 3 y 2 )i (x 1 y 3 x 3 y 1 )j + (x 1 y 2 x 2 y 1 )k = (x 2 y 3 x 3 y 2, x 3 y 1 x 1 y 3, x 1 y 2 x 2 y 1 ) Lause Ristitulo on kohtisuorassa alkuperäisiin vektoreihin nähden eli x (x y) = 0 ja y (x y) = 0. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
33 Avaruuden R 3 tasot Parametriesitys T = r + L(x, y) = {r + c 1 x + c 2 y c 1, c 2 R} Vektoreita x ja y sanotaan tason T suuntavektoreiksi ja vektoria r tason T paikkavektoriksi. Reaaliluvut c 1 ja c 2 ovat parametreja. Käyttökelpoinen tason T pisteiden generoimiseksi. Parametrimuodosta hankala selvittää, onko v T. Normaalimuoto Olkoon n R 3 tason T normaalivektori ja x 0 sen paikkavektori. T = {x 0 + x x R 3, n x = 0} = {x R 3 (x x 0 ) n = 0}. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
34 Avaruuden R 3 tasot Koordinaattimuoto Merkitsemällä n = (a, b, c), x = (x, y, z) ja x 0 = (x 0, y 0, z 0 ) saadaan yhtälö (x x 0 ) n = 0 muotoon a(x x 0 ) + b(y y 0 ) + c(z z 0 ) = 0, ja edelleen missä d = ax 0 + by 0 + cz 0. ax + by + cz = d, Käyttökelpoinen kysymyksen v T? ratkaisemiseksi Hankala tason pisteiden generoimiseksi. Vertaamalla koordinaattimuotoja voidaan selvittää ovatko kaksi tasoa T 1 ja T 2 samat. Kolme pistettä Jos avaruuden R 3 pisteet p 1, p 2 ja p 3 eivät ole samalla suoralla, ne määrittävät tason T yksikäsitteisesti. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
35 Avaruuden R 3 tasot Esimerkki Olkoot x = (6, 1, 2) ja y = ( 3, 2, 0) tason T suuntavektoreita sekä r = (4, 2, 2) sen paikkavektori. Etsitään tason T normaalivektori n. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
36 Avaruuden R 3 suorat Parametrimuoto L = r + L(x) = {r + tx t R} Vektoria r kutsutaan suoran L paikkavektoriksi ja vektoria x sen suuntavektoriksi. Käyttökelpoinen suoran pisteiden generoimiseksi. Hankala kysymyksen v L ratkaisemiseksi. M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
37 Avaruuden R 3 suorat Koordinaattimuoto Merkitään r = (x 0, y 0, z 0 ) ja x = (a, b, c), jolloin saadaan koordinaattimuoto x x 0 a = y y 0 b = z z 0 c Kaksi pistettä Mitkä hyvänsä pisteet p 1 ja p 2 määrittävät niiden kautta kulkevan suoran yksikäsitteisesti M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
38 Differentiaaliyhtälöt Tärkeimmät DY-tyypit Separoituva DY: dy dx = y = g(x)f (y). Vakiokertoiminen lineaarinen DY: a n y (n) + a n 1 y (n 1) a 2 y + a 1 y + a 0 y = b(x), missä a i R. 1. kertaluvun lineaarinen DY: y + a(x)y = b(x). M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
39 Differentiaaliyhtälöt Tärkeimmät DY-tyypit Eksakti DY: f (x, y) + g(x, y)y = 0, missä jollakin F (x, y) on voimassa F x = f (x, y) ja = g(x, y). F y Lineaarinen vakiokertoiminen DY-ryhmä: x 1 = a 11 x a 1n x n + f 1 (t) x 2 = a 21 x a 2x x n + f 2 (t). x n = a n1 x a nn x n + f n (t) M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot of 39
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotAlkeismuunnokset matriisille, sivu 57
Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotMatematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotKäänteismatriisin ominaisuuksia
Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
LisätiedotSeuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117
Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
Lisätiedot1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
LisätiedotLineaarialgebra (muut ko)
Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotDemorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104
Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot
LisätiedotTällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162
Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................
LisätiedotEnsi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159
Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/159 Lineaarialgebra (muut ko) p. 2/159 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotLineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
LisätiedotMuistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.
Lineaarialgebra (muut ko) p. 1/139 Ensi viikon luennot salissa X Muistutus: Matikkapaja ke 14-16 Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta
LisätiedotSisätuloavaruudet. 4. lokakuuta 2006
Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
Lisätiedot1.1. Määritelmiä ja nimityksiä
1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
LisätiedotJohdatus lineaarialgebraan. Juha Honkala 2017
Johdatus lineaarialgebraan Juha Honkala 2017 Sisällysluettelo 1 Lineaariset yhtälöryhmät ja matriisit 11 Lineaariset yhtälöryhmät 12 Matriisit 13 Matriisien alkeismuunnokset ja porrasmatriisit 14 Yhtälöryhmien
LisätiedotSuorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.
Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus
Lisätiedot6 MATRIISIN DIAGONALISOINTI
6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot5 Lineaariset yhtälöryhmät
5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
LisätiedotEnnakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
LisätiedotNeliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
Lisätiedotx 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili
6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 06 laskuharjoituksien esimerkkiratkaisut Alla olevat esimerkkiratkaisut ovat melko ksitiskohtaisia Tenttivastauksissa ei leensä tarvitse muistaa lauseiden, määritelmien, esimerkkien
LisätiedotLineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V
LisätiedotMatriisi-vektori-kertolasku, lineaariset yhtälöryhmät
Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
LisätiedotOrtogonaaliset matriisit, määritelmä 1
, määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,
Lisätiedot1. Normi ja sisätulo
Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo
LisätiedotVektoreiden virittämä aliavaruus
Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden
LisätiedotOminaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
LisätiedotMatriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotBM20A0700, Matematiikka KoTiB2
BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
Lisätiedot802118P Lineaarialgebra I (4 op)
802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu
LisätiedotKanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
LisätiedotMika Hirvensalo. Insinöörimatematiikka D 2018
Mika Hirvensalo Insinöörimatematiikka D 2018 Sisältö 1 Lineaarialgebran peruskäsitteitä 5 11 Lineaariset yhtälöryhmät 5 111 Gaussin-Jordanin menetelmä 5 112 Ratkaisujoukon systemaattinen esittäminen 8
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
LisätiedotEnsi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66
Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
Lisätiedot