8. Chemical Forces and self-assembly

Koko: px
Aloita esitys sivulta:

Download "8. Chemical Forces and self-assembly"

Transkriptio

1 Luento Kemiallinen potentiaali Sähkökemiallinen potentiaali Kemiallisen reaktion suunta Reaktiokoordinaatti Entsymaattisten reaktioiden kinetiikka Elektro-osmoottiset ilmiöt solukalvolla Donnanin potentiaali Solukalvon ionipumput ja kuljetusmekanismit Solukalvon sähköinen malli

2 8. Chemical Forces and self-assembly Biologinen kysymys: Miten voi hyvin sekoittuneessa liuoksessa oleva molekulaarinen moottori tehdä hyötytyötä? Eikö sen tarvitsisi olla sellaisten kompartmenttien rajalla, joilla eroa lämpötilassa, paineessa tai konsentraatioissa? Fysikaalinen idea: Jopa hyvin sekoitetussa liuoksessa voi olla eri molekyylilajeja, jotka ovat kaukana tasapainosta. Poikkeama tasapainosta synnyttää kemiallisen voiman.

3 Kemiallinen potentiaali Vapaa energia = systeemin käytettävissä oleva energia F = E - TS Yksi muoto: Kemiallinen energia Molekyyleillä sisäistä energiaa sisällytetään energiatermiin E Sidokset Biologiset systeemit avoimia = vaihtavat energiaa ja ainetta ympäristönsä kanssa Ainemäärän vaikutus systeemin vapaaseen energiaan? Kemiallinen potentiaali: ds T dn EN,, ainelajit molekyylilajin 1 sisäinen energia koko systeemin kokonaisenergia: E = E kin +N 1 ε 1 +N 2 ε

4 Lämpötilan määritelmä, kun ainemäärät voivat muuttua: 1 ds T de N Olkoot osasysteemit A ja B kemiallisessa tasapainossa: A, B,, TA TB Kun T A T B energiaa ajava entrooppinen voima Kun A B ainetta ajava entrooppinen voima Esim. Jäävesi, T = 0 C Jääfaasissa olevan veden ja neste veden kemiallinen potentiaali yhtä suuret tasapainossa: vesi = jää

5 Molekyylien sisäisen energian vaikutus kokonaisenergiaan E E N N tot kin Ideaalikaasu: ei vuorovaikutuksia :t vakioita Kemiallinen reaktio: :t eivät vakioita Saadaan (kun E tot = vakio) c kbt T c c0 0 (T ) standarditilan kemiallinen potentiaali lämpötilassa T Referenssipitoisuus c 0 Kaasut: 1 atm, 25 C (1 mol/22,4 L) Vesiliuokset: 1 M = 1 mol/l Poistaa yksikön logaritmista 0 Sisältää molekyylin sisäenergiaosuuden 0 ln ( ), ideaalikaasu, laimeat liuokset k BT c aktiivisuus a e laimeat liuokset c0 N V

6 Jos molekyyleillä myös potentiaalienergiaa: Gravitaatio: U = mgz Varautunut molekyyli sähkökentässä: U = zev Sähkökemiallinen potentiaali: c T k T zev 0 ( ) B ln c0 Vain muutokset kiinnostavia! Esim. Ionilaji i tasapainossa solukalvon yli : 1 2 c c ( T) k T ln zev ( T) k T ln zev B 1 B 2 c0 c0 k T B 1 V V2 V1 ln Nernstin potentiaali! ze c2 c solukalvo 1 2 V 1 V 2 1 2

7 Boltzmann-jakauman yleistys 7 Huomioidaan ainemäärien muuttuminen Olkoon taas pieni osasysteemi a yhteydessä suureen osasysteemiin B Osasysteemin a ainemäärän suhteellinen vaihtelu voi olla suurta Haetaan taas osasysteemin a tilojen j todennäköisyysjakauma tasapainotilassa: P j missä 1 e Z E N j j j k T E Z suurpartitiofunktio j Suurkanoninen (Gibbsin) jakauma B Z e, N j j j k T B

8 Kemialliset reaktiot Kun A, B, ainetta ajava entrooppinen voima ds T dn EN,, Esim. Olkoon molekyylillä 2 tilaa (isomeeria, = 1,2), joilla eri sisäinen energia 2 > 1 Kun yksi isomerisaatio 2 1 (N = 1): 2-1 termiseksi energiaksi S = ( 2-1 )/T ( 2 > 1 ): makroskooppisesti etenee suuntaan 2 1 Mikroskooppisesti myös 1 2 Jos paljon tilassa 1 ( 1 > 2 ) 1 2, vaikka reaktio endoterminen (kuluttaa termistä energiaa, Reaktio pysähtyy, kun 1 = 2 entropia kasvaa) Tällöin c c 2 1 e G k T B 2 1

9 Kemiallisen reaktion suunta Tasapaino: S tot maksimaalinen eli S tot = 0 G = 0 dg Vdp SdT dn dg dn T, p, N Kun dt = dp = 0 (vakiolämpötila, vakiopaine) Reaktio: G N X... X X... X 1 1 k k k1 k1 m m :t stoikiometriset kertoimet (kokonaislukuja) G k1 k1 m m 1 1 k k Oikealle, jos G < 0; vasemmalle, jos G > 0

10 Standarditilassa (c 0 = 1 M kaikille reaktioon osallistuville): k1 k1... m m k k G Tasapainovakio K eq (G = 0): K eq pk eq e 0 G [ 1 1] k k [ ] BT X k X m [ X 1 1] [ X ] k k log 10 K eq m Massavaikutuksen laki [ X ] cx c 0 konsentraatiosta riippumattomat termit Biologiset poikkeustapaukset standarditilakonsentraatioon c 0 = 1 M: Veden konsentraatio suuri, n. 55,5 M (25 C) vesiliuosreaktioissa, joihin vesi osallistuu, veden pitoisuus ei käytännössä muutu: c vesi /c 0,vesi 1 supistuu pois massavaikutuksen laista Protonireaktioissa (H + ) standardikonsentraatio 10-7 M G 0, K eq

11 Kemiallisen reaktion reaktiodiagrammi 11 Molekyyleillä vapaaenergiaminimiä vastaava spatiaalinen atomijakauma Terminen energia: kemiallinen reaktio seurausta satunnaiskävelystä vapaaenergiapinnalla Reaktiodiagrammi: Osa hitaita (korkea energiavalli) yksinkertaistuu (usein reaktio voidaan kuvata sekventiaalisena)

12 Kemiallisen reaktion reaktiokoordinaatti 12 Transitiotila: korkein energia reaktiokoordinaatilla Jos yksi korkea energiavalli, korkeus G : Reaktionopeus ~ Reaktionopeuden lämpötilariippuvuus: ~ H + H 2 H 2 + H e B G k T G E S k T k T k B B B e B E k T

13 Arrhenius-kuvaus 13 Yksi reaktiomekanismi Kaksi reaktiomekanismia e E k T B E 1 e k T B e B 2 E k T

14 Entsymaattisen reaktion kuvaus 14 voimakkain sitoutuminen Entsyymit pienentävät reaktion aktivaatioenergiaa sitoutumalla voimakkaimmin substraatin transitiotilaan. Transitiotilan energia muokkautuu (alenee) substraatin ja entsyymin välisistä heikoista vuorovaikutuksista.

15 Reaktion eteneminen 15 Entsyymi käyttäytyy kuin syklinen molekulaarinen moottori: Satunnaiskävely vapaaenergiapinnalla Useimmiten voidaan kuvata 1-dimensioisena Yksi askel vapaaenergiapinnan laskevaan suuntaan pienentää vapaata energiaa reaktion S P G:n verran Substraattikonsentraatio c s nostaa lähtötilan G tekijällä k B T lnc s

16 Entsyymaattisen reaktion kinetiikka 16 Entsymaattinen reaktio: E S ES EP E P Jos kompleksin EP hajoaminen hyvin nopeaa (k 3 hyvin suuri): E S ES E P Entsyymiä ei kulu reaktiossa: [ E ] [ E] [ ES] tot Reaktion alussa [ P ] = 0 k 1 k 1 k 1 k 1 k 2 k 2 k 2 k 2 k 3 V k [ ES] 0 2 Lisäksi [ E ] << [ S ]

17 E S ES E P V k [ ES] Stationääritilaoletus: Entsyymipitoisuus [E] ja tuotepitoisuus [P] hyvin pieniä substraattipitoisuuteen [S] verrattuna [ES] vakio kompleksin ES muodostumisnopeus ja hajoamisnopeus yhtä suuret k [ E][ S] ( k k )[ ES] k ([ E ] [ ES])[ S] ( k k )[ ES] 1 tot 1 2 k [ E ][ S] ( k [ S] k k )[ ES] 1 tot tot tot tot [ ES] 1[ ] k k 2 [ ] V 0 k [ E ][ S] [ E ][ S] [ E ][ S] k S k k [ S] S K m k k2[ Etot ][ S] [ S] K m V0 Vmax, kun [ ES] [ Etot ] eli Vmax k2[ Etot ] ( kcat[ Etot ]) Vmax[ S] V0 [ S] K Michaelis-Menten -yhtälö m 1 Michaelis-vakio

18 18 V 0 Vmax[ S] [ S] K m Kun [ S] K V ½V m 0 max

19 19 Tarkempi tapa määrätä V max ja K m : Lineweaver-Burke plot V 0 Vmax[ S] [ S] K 1 K m 1 V V [ S] V m 0 max max

20 Entsyymiaktiivisuuden modulaatio 20 Huom.! Allosteeriset entsyymit eivät noudata Michaelis-Menten -kinetiikkaa (sigmoidaalinen reaktionopeus-substraattikonsentraatioriippuvuus)

21 Elektro-osmoottiset ilmiöt 21 Jännite solukalvon yli? Miten tutkia? Mustekalan jättiläisaksoni Jopa 1 mm

22 Ionikonsentraatioerot Nernstin potentiaalit 22 Olkoon aksoni liuoksessa, jossa K + ja Cl - KCl-pitoisuus suurempi aksonin sisällä (c 2 > c 1 ) Solukalvo läpäisee hyvin K +, Cl - huonommin Oletetaan tässä, että solukalvo ei päästä Cl - lävitseen Vähän K + -ioneja siirtyy solukalvon läpi ulos, kunnes tasapaino Tasapaino: K + -konsentraatioeron ja potentiaalieron aiheuttama ajava voima yhtä suuri mutta vastakkaissuuntainen Ei virtoja

23 Konsentraatio- ja potentiaalikäyttäytyminen kalvon eri puolilla: 23 Olet. varaukseton kalvo Vedessä KCl liuenneena Kalvo läpäisee vain K +, ei Cl - Korkeammasta [K + ] K + -ioneja alempaan (S kasvaa), kunnes syntynyt sähkökenttä pysäyttää virtauksen c ( x) vakio e i ziev ( x) k T B V Nernst i kt B z e i ln c c 2, i 1, i ionilaji i

24 Donnanin tasapaino 24 Useita kalvon läpi pääseviä ionilajeja Solussa runsaasti ( q,macroion ) makroanioneja (eivät pääse kalvon läpi) Tasapainoehdot: 1. Jokainen kalvon läpäisemä ionilaji Nernstin tasapainossa k T c k T c k T c V ln ln ln e c e c e c B 2, Na B 2, K B 2, Cl c c c c c c 2, Na 2, K 1, Cl 1, Na 1, K 2, Cl 1, Na 1, K 1, Cl 2. Sekä solu että soluvälitila elektroneutraaleja Soluvälitila: 1c 1c 1c 0 1, Na 1, K 1, Cl Sytoplasma: 1c 1c 1 c / e 0 2, Na 2, K 2, Cl q, macroion V = Donnanin potentiaali (kun ehdot 1. ja 2. toteutuvat)

25 Ionien pumppaus 25 Imettäväisen lihassolun ionipitoisuudet: Solu (mm) Soluvälitila (mm) Nernstin potentiaali (mv) K Na Ca , Cl Mitattu kalvojännite 90 mv Solukalvo läpäisee lepotilassa K +, Na + ja Cl - Solussa negatiivisesti varattuja makroioneja Pitäisi olla [Na + ] in > [Na + ] out Donnanin tasapainon perusteella Na + kaukana tasapainosta Solukalvossa oltava metabolista energiaa käyttävä Na + -pumppausmekanismi (myös osmoottisen paineen takia!) Solun lepotila ei tasapainotila vaan steady-state

26 Solukalvon konduktanssit 26 Kalvojännite: V V V Ionilajin i Nernstin potentiaali: Kun ajava voima pieni: 2 1 V Nernst i kbt ze ln c c 2 1 Nernst j, z ej ( V V ) g q i i i i i Solukalvon sähköinen malli: Ohminen konduktanssi Konduktanssi pinta-alayksikköä kohden Ionilajikohtainen Konsentraatioriippuva? Jänniteriippuva? Merkkisääntö: Virta positiivinen ulospäin!

27 Aktiivinen pumppaus 27 Varhaiset ionivirtausmittaukset: Radioaktiivinen Na + Solukalvo ohminen lepokalvojännitteen lähellä Konduktanssisuhteet solun lepotilassa (mustekalan jättiläisaksoni): g 25g 2g g K Na Cl Na 0 solun lepotila epätasapainossa aktiivinen Na + pumppaus Natriumin kuljettama kokonaisvirta (ainakin) kahdesta komponentista: g Na ( Nernst pump j V V ) j Na Na Na e Na + -pumppaus ulos Energialähde metabolinen

28 28 Hodgkin & Keynes (1955): K + -pumppaus sisäänpäin Vaatii Na + soluvälitilassa kytketty kuljetus (Na +, K + ) Inhiboitavissa metaboliainhibiittorilla ([ATP]) Palautettavissa ATP:lla dinitrofenoli

29 29 Na-K pumppu Aktiivinen kuljetus Elektrogeeninen Kuljettaa nettovarausta Stökiömetria: 3 Na + : 2 K + Osmoottisesti aktiivinen 2 virtakomponenttia: j j j j pump pump pump pump K Na 2 3 j pump Na K

30 Esimerkki: Na-K ATPaasin hyötysuhde 30 G, kun Na + ulos: Nernst e( V V ) e( 60mV 54mV) e 114mV Na G, kun K + sisään: Kokonaiskulutus: Nernst e( V V ) e[ 60mV ( 75mV)] e 15mV K 3e 114mV 2e 15mV =15k B T r Yhden ATP-molekyylin hydrolyysi vapauttaa 19 k B T r Hyötysuhde: ,79

Kemiallisen reaktion reaktiodiagrammi

Kemiallisen reaktion reaktiodiagrammi Luento 11 1.4.2016 1 Reaktiokoordinaatti Entsymaattisten reaktioden kinetiikka Elektro-osmoottiset ilmiöt solukalvolla Donnanin potentiaali Solukalvon ionipumput ja kuljetusmekanismit Solukalvon sähköinen

Lisätiedot

8. Chemical Forces and self-assembly

8. Chemical Forces and self-assembly 8. Chemical Forces and self-assembly Biologinen kysymys: Miten voi hyvin sekoittuneessa liuoksessa oleva molekulaarinen moottori tehdä hyötytyötä? Eikö sen tarvitsisi olla sellaisten kompartmenttien rajalla,

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Entrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit

Entrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Chapter 7. Entropic forces at work

Chapter 7. Entropic forces at work Chapter 7. Entropic forces at work 1 Luento 8 4.3.2016 Osmoottinen paine Pintajännitys Tyhjennysvuorovaikutus MIKSI? Vapaa energia F a = E a -TS a voi pienentyä 1. Pienentämällä energiaa 2. Kasvattamalla

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Chapter 7. Entropic forces at work

Chapter 7. Entropic forces at work Chapter 7. Entropic forces at work Osmoottinen paine Pintaännitys Tyhennysvuorovaikutus MIKSI? Hiukan termodynamiikan kertausta Tasapainotila: systeemiin vaikuttava nettovoima = 0 Jos vain yksi systeemin

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

HERMOSTON FYSIOLOGIA I

HERMOSTON FYSIOLOGIA I Hermoston fysiologia I 1 HERMOSTON FYSIOLOGIA I Biosähköiset ilmiöt Kalvopotentiaali Hermosolun lepopotentiaali Hermosolun aktiopotentiaali Ionikanavat Intrasellulaarinen/ekstrasellulaarinen mittaus Neuronin

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

Chapter 3. The Molecular Dance. Luento Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely

Chapter 3. The Molecular Dance. Luento Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Chapter 3. The Molecular Dance 1 Luento 15.1.016 Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Chapter 3. The Molecular Dance Solut: Korkeasti järjestyneitä systeemeitä Terminen

Lisätiedot

Sähkökemian perusteita, osa 1

Sähkökemian perusteita, osa 1 Sähkökemian perusteita, osa 1 Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 4 - Luento 1 Teema 4: Suoritustapana oppimispäiväkirja Tehdään yksin tai pareittain Tehtävät/ohjeet löytyvät kurssin

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

Biofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia.

Biofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia. Biofysiikka Luento 7 1 6. Entropia, lämpötila ja vapaa energia Shannonin entropia Boltzmannin entropia M I NK P ln P S k B j1 ln j j Lämpötila Vapaa energia 2 Esimerkkiprobleemoita: Miten DNA-sekvenssistä

Lisätiedot

SISÄLLYSLUETTELO SYMBOLILUETTELO 4

SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 KEMIALLISESTI REAGOIVA TERMODYNAAMINEN SYSTEEMI 6 11 Yleistä 6 12 Standarditila ja referenssitila 7 13 Entalpia- ja entropia-asteikko 11 2 ENTALPIA JA OMINAISLÄMPÖ

Lisätiedot

Biofysiikka, Luento

Biofysiikka, Luento Biofysiikka, Luento 4 3..017 1 Diffuusio eri geometrioissa ja sovelluksia Varattujen partikkelien diffuusio (elektrodiffuusio) Johdatus matalien Reynolds-lukujen maailmaan Aikariippuvat diffuusioprosessit

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

Luento 9 Kemiallinen tasapaino CHEM-A1250

Luento 9 Kemiallinen tasapaino CHEM-A1250 Luento 9 Kemiallinen tasapaino CHEM-A1250 Kemiallinen tasapaino Kaksisuuntainen reaktio Eteenpäin menevän reaktion reaktionopeus = käänteisen reaktion reaktionopeus Näennäisesti muuttumaton lopputilanne=>

Lisätiedot

Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut

Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut 1 a Kaasuseoksen komponentin i vapaa energia voidaan kirjoittaa F i (N,T,V = ln Z i (T,V missä on ko hiukkasten lukumäärä tilavuudessa

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

6. Entropia, lämpötila ja vapaa energia

6. Entropia, lämpötila ja vapaa energia 6. Entropia, lämpötila a vapaa energia 1 Luento 6 24.2.2017: Shannonin entropia M I NK P ln P 1 Boltzmannin entropia S k B ln Lämpötila Vapaa energia 2 Probleemoita: Miten DNA-sekvenssistä määräytyvän

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena

Lisätiedot

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa 766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa

Lisätiedot

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä):

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä): CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 10/017 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa E409 Kemiallinen tasapaino Tehtävä 1. Tasapainokonversion

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2 infoa tavoitteet Huomenna keskiviikkona 29.11. ei ole luentoa. Oppikirjan lukujen 12-13.3. lisäksi kotisivulla laajennettu luentomateriaali itse opiskeltavaksi Laskarit pidetään normaalisti. Ymmärrät mitä

Lisätiedot

ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia)

ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia) ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia) Elämän edellytykset: Solun täytyy pystyä (a) replikoitumaan (B) katalysoimaan tarvitsemiaan reaktioita tehokkaasti ja selektiivisesti eli sillä on oltava

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä

Lisätiedot

ELEC-C2210 Molekyyli- ja solubiologia

ELEC-C2210 Molekyyli- ja solubiologia ELEC-C2210 Molekyyli- ja solubiologia Entsyymikatalyysi Vuento & Heino ss. 66-75 ECB: Luku 3, s. 90-93 & luku 4, s. 144- Dos. Tuomas Haltia, Biotieteiden laitos, biokemia ja biotekniikka Miten entsyymit

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

kuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä

kuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä Termodynamiikan peruskäsitteitä The Laws of thermodynamics: (1) You can t win (2) You can t break even (3) You can t get out of the game. - Ginsberg s theorem - Masamune Shirow: Ghost in the shell Systeemillä

Lisätiedot

Hermoimpulssi eli aktiopotentiaali

Hermoimpulssi eli aktiopotentiaali Hermoimpulssi eli aktiopotentiaali Piirrä opettajan johdolla kuvat hermoimpulssin etenemisestä 1. KAIKKI solut ovat sähköisesti varautuneita o sähköinen varaus solun sisäpuolella on noin 70 millivolttia

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

Luku 21. Kemiallisten reaktioiden nopeus

Luku 21. Kemiallisten reaktioiden nopeus Luku 21. Kemiallisten reaktioiden nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista tasapainoreaktiota:

Lisätiedot

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on:

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on: Esimerkki Pourbaix-piirroksen laatimisesta Laadi Pourbaix-piirros, jossa on esitetty metallisen ja ionisen raudan sekä raudan oksidien stabiilisuusalueet vesiliuoksessa 5 C:een lämpötilassa. Ratkaisu Tarkastellaan

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

Vedessä dielektrisyysvakiosta energiavaimennustekijä n. 80 Suolakiteiden hajoamisesta entropian kasvu

Vedessä dielektrisyysvakiosta energiavaimennustekijä n. 80 Suolakiteiden hajoamisesta entropian kasvu Luento 11 31.3.2017 1 Dissosiaatioreaktiot ph-puskurit Itseorganisoituminen Molekulaariset moottorit Solukalvon ionipumput ja kuljetusmekanismit Solukalvon sähköinen malli Kalvojännite stationääritilassa

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.

Lisätiedot

Veden ionitulo ja autoprotolyysi TASAPAINO, KE5

Veden ionitulo ja autoprotolyysi TASAPAINO, KE5 REAKTIOT JA Veden ionitulo ja autoprotolyysi TASAPAINO, KE5 Kun hapot ja emäkset protolysoituvat, vesiliuokseen muodostuu joko oksoniumioneja tai hydroksidi-ioneja. Määritelmä: Oksoniumionit H 3 O + aiheuttavat

Lisätiedot

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos ympäristö ympäristö 15.12.2016 REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos Kaikilla aineilla (atomeilla, molekyyleillä) on asema- eli potentiaalienergiaa ja liike- eli

Lisätiedot

Teddy 2. välikoe kevät 2008

Teddy 2. välikoe kevät 2008 Teddy 2. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

Kemiallinen reaktio

Kemiallinen reaktio Kemiallinen reaktio REAKTIOT JA ENERGIA, KE3 Johdantoa: Syömme elääksemme, emme elä syödäksemme! sanonta on totta. Kun elimistömme hyödyntää ravintoaineita metaboliassa eli aineenvaihduntareaktioissa,

Lisätiedot

(l) B. A(l) + B(l) (s) B. B(s)

(l) B. A(l) + B(l) (s) B. B(s) FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 LIUKOISUUDEN IIPPUVUUS LÄMPÖTILASTA 6. 11. 1998 (HJ) A(l) + B(l) µ (l) B == B(s) µ (s) B FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 1. TEOIAA Kyllästetty liuos LIUKOISUUDEN

Lisätiedot

Luku 8. Reaktiokinetiikka

Luku 8. Reaktiokinetiikka Luku 8 Reaktiokinetiikka 234 8.1 Reaktion nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista

Lisätiedot

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7 KEMIALLINEN TASAPAINO Määritelmiä Kemiallinen reaktio A B pyrkii kohti tasapainoa. Yleisessä tapauksessa saavutetaan tasapainoa vastaava reaktioseos, jossa on läsnä sekä lähtöaineita että tuotteita: A

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

Luento Sähköstaattiset vuorovaikutukset. Veden ominaisuudet Hydrofobinen vuorovaikutus. x = 0

Luento Sähköstaattiset vuorovaikutukset. Veden ominaisuudet Hydrofobinen vuorovaikutus. x = 0 Luento 9 11.3.016 1 Sähköstaattiset vuorovaikutukset Poissonoltzmann yhtälö Varatut pinnat nesteessä Varatut pallomaiset partikkelit nesteessä Veden ominaisuudet Hydrofobinen vuorovaikutus = 0 Sähköstaattiset

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden.

Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden. . Hiilidioksidiolekyyli CO tiedetään lineaariseksi a) Mitkä ovat eteneisliikkeen, pyöriisliikkeen ja värähtelyn suuriat ekvipartitioperiaatteen ukaiset läpöenergiat olekyyliä kohden, kun kaikki vapausasteet

Lisätiedot

Tietokoneavusteinen ongelmanratkaisu biologiselle datalle Luento

Tietokoneavusteinen ongelmanratkaisu biologiselle datalle Luento 1 Tietokoneavusteinen ongelmanratkaisu biologiselle datalle Luento 31.1.2017 MEO EKROOS KURSSIASSISTENTTI ELEC-A8720 - BIOLOGISTEN ILMIÖIDEN MITTAAMINEN Harjoitukset ja deadlinet 2 Luento + ATK-harjoitus

Lisätiedot

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.

Lisätiedot

Normaalipotentiaalit

Normaalipotentiaalit Normaalipotentiaalit MATERIAALIT JA TEKNOLOGIA, KE4 Yksittäisen elektrodin aiheuttaman jännitteen mittaaminen ei onnistu. Jännitemittareilla voidaan havaita ja mitata vain kahden elektrodin välinen potentiaaliero

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?

Lisätiedot

Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen

Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen KEMA221 2009 YKSINKERTAISET SEOKSET ATKINS LUKU 5 1 YKSINKERTAISET SEOKSET Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen Seoksia voidaan tarkastella osittaisten moolisuureitten

Lisätiedot

Käytännön esimerkkejä on lukuisia.

Käytännön esimerkkejä on lukuisia. PROSESSI- JA Y MPÄRISTÖTEKNIIK KA Ilmiömallinnus prosessimet allurgiassa, 01 6 Teema 4 Tehtävien ratkaisut 15.9.016 SÄHKÖKEMIALLISTEN REAKTIOIDEN TERMODYNAMIIKKA JA KINETIIKKA Yleistä Tämä dokumentti sisältää

Lisätiedot

Luento Sähköstaattiset vuorovaikutukset. Veden ominaisuudet Hydrofobinen vuorovaikutus. x = 0

Luento Sähköstaattiset vuorovaikutukset. Veden ominaisuudet Hydrofobinen vuorovaikutus. x = 0 Luento 9 17.3.017 1 Sähköstaattiset vuorovaikutukset Poissonoltzmann yhtälö Varatut pinnat nesteessä Varatut pallomaiset partikkelit nesteessä Veden ominaisuudet Hydrofobinen vuorovaikutus = 0 Sähköstaattiset

Lisätiedot

KEMS448 Fysikaalisen kemian syventävät harjoitustyöt

KEMS448 Fysikaalisen kemian syventävät harjoitustyöt KEMS448 Fysikaalisen kemian syventävät harjoitustyöt Jakaantumislaki 1 Teoriaa 1.1 Jakaantumiskerroin ja assosioituminen Kaksi toisiinsa sekoittumatonta nestettä ovat rajapintansa välityksellä kosketuksissa

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 5: Termodynaamiset potentiaalit Ke 9.3.2016 1 AIHEET 1. Muut työn laadut sisäenergiassa

Lisätiedot

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis 763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

= 84. Todennäköisin partitio on partitio k = 6,

= 84. Todennäköisin partitio on partitio k = 6, S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat

Lisätiedot

Luku 2. Kemiallisen reaktion tasapaino

Luku 2. Kemiallisen reaktion tasapaino Luku 2 Kemiallisen reaktion tasapaino 1 2 Keskeisiä käsitteitä 3 Tasapainotilan syntyminen, etenevä reaktio 4 Tasapainotilan syntyminen 5 Tasapainotilan syntyminen, palautuva reaktio 6 Kemiallisen tasapainotilan

Lisätiedot

Johdantoa. Kemia on elektronien liikkumista/siirtymistä. Miksi?

Johdantoa. Kemia on elektronien liikkumista/siirtymistä. Miksi? Mitä on kemia? Johdantoa REAKTIOT JA ENERGIA, KE3 Kemia on elektronien liikkumista/siirtymistä. Miksi? Kaikissa kemiallisissa reaktioissa tapahtuu energian muutoksia, jotka liittyvät vanhojen sidosten

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

Määritelmät. Happo = luovuttaa protonin H + Emäs = vastaanottaa protonin

Määritelmät. Happo = luovuttaa protonin H + Emäs = vastaanottaa protonin Hapot ja emäkset Määritelmät Happo = luovuttaa protonin H + Emäs = vastaanottaa protonin Happo-emäsreaktioita kutsutaan tästä johtuen protoninsiirto eli protolyysi reaktioiksi Protolyysi Happo Emäs Emäs

Lisätiedot

Laskuharjoitus 3 palautus 11. 11. 2003 mennessä. Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa):

Laskuharjoitus 3 palautus 11. 11. 2003 mennessä. Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa): Laskuharjoitus 3 palautus 11. 11. 2003 mennessä Tehtävä 1: Entsyymikinetiikkaa Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa): 1. A:n sitoutuminen saa konformaatiossa aikaan muutoksen,

Lisätiedot

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike) KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:

Lisätiedot

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella. S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.

Lisätiedot

Ohjeellinen pituus: 2 3 sivua. Vastaa joko tehtävään 2 tai 3

Ohjeellinen pituus: 2 3 sivua. Vastaa joko tehtävään 2 tai 3 PHYS-A0120 Termodynamiikka, syksy 2017 Kotitentti Vastaa tehtäviin 1, 2/3, 4/5, 6/7, 8 (yhteensä viisi vastausta). Tehtävissä 1 ja 7 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla sekä

Lisätiedot

LUKU 16 KEMIALLINEN JA FAASITASAPAINO

LUKU 16 KEMIALLINEN JA FAASITASAPAINO Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 LUKU 16 KEMIALLINEN JA FAASITASAPAINO Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

Nesteen sisäinen kitka ja diffuusio

Nesteen sisäinen kitka ja diffuusio Nesteen sisäinen kitka ja diffuusio 1 Luento.1.016 (oppikirjan luku 4) Nesteen sisäinen kitka Satunnaiskävelyilmiöitä Diffuusio Diffuusio kalvon läpi Diffuusiotensorikuvaus: Magneettiresonanssi (MR) Hermoratojen

Lisätiedot

Palautus yhtenä tiedostona PDF-muodossa viimeistään torstaina

Palautus yhtenä tiedostona PDF-muodossa viimeistään torstaina PHYS-A0120 Termodynamiikka, syksy 2018 Kotitentti Vastaa tehtäviin 1/2/3, 4, 5/6, 7/8, 9 (yhteensä viisi vastausta). Tehtävissä 1, 2, 3 ja 9 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT JA PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei

Lisätiedot

Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa

Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän

Lisätiedot

Ekvipartitioteoreema

Ekvipartitioteoreema Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

Puolijohteet. luku 7(-7.3)

Puolijohteet. luku 7(-7.3) Puolijohteet luku 7(-7.3) Metallit vs. eristeet/puolijohteet Energia-aukko ja johtavuus gap size (ev) InSb 0.18 InAs 0.36 Ge 0.67 Si 1.11 GaAs 1.43 SiC 2.3 diamond 5.5 MgF2 11 Valenssivyö Johtavuusvyö

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 31.10.2016 TERVETULOA! v. 02 / T. Paloposki Tämän päivän ohjelma: Virtaussysteemin energiataseen soveltamisesta Kompressorin energiantarve, tekninen

Lisätiedot

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio.

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio. REAKTIOT JA TASAPAINO, KE5 REAKTIOTASAPAINO Johdantoa: Usein kemialliset reaktiot tapahtuvat vain yhteen suuntaan eli lähtöaineet reagoivat keskenään täydellisesti reaktiotuotteiksi, esimerkiksi palaminen

Lisätiedot

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio Luku 1 Mooli, ainemäärä ja konsentraatio 1 Kemian kvantitatiivisuus = määrällinen t ieto Kemian kaavat ja reaktioyhtälöt sisältävät tietoa aineiden rakenteesta ja aineiden määristä esim. 2 H 2 + O 2 2

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT 1 a) Vaihtoehto B on oikein. Elektronit sijoittuvat atomiorbitaaleille kasvavan

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Juha Ahola juha.ahola@oulu.fi Kemiallinen prosessitekniikka Sellaisten kokonaisprosessien suunnittelu, joissa kemiallinen reaktio

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Tasapainotilaan vaikuttavia tekijöitä

Tasapainotilaan vaikuttavia tekijöitä REAKTIOT JA TASAPAINO, KE5 Tasapainotilaan vaikuttavia tekijöitä Fritz Haber huomasi ammoniakkisynteesiä kehitellessään, että olosuhteet vaikuttavat ammoniakin määrään tasapainoseoksessa. Hän huomasi,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot