Puolijohteet. luku 7(-7.3)
|
|
- Annika Kahma
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Puolijohteet luku 7(-7.3)
2 Metallit vs. eristeet/puolijohteet
3 Energia-aukko ja johtavuus gap size (ev) InSb 0.18 InAs 0.36 Ge 0.67 Si 1.11 GaAs 1.43 SiC 2.3 diamond 5.5 MgF2 11 Valenssivyö Johtavuusvyö
4 Intrinsiikkinen puolijohde Puhtaita, eli seostamattomia puolijohteita kutsutaan intrisiikkisiksi Käytännössä tämä tarkoittaa korkeintaan 1 ppm (parts per million) epäpuhtauksia Useasti puhtaus on huomattavasti parempaa
5 Fermi-jakauma Metallille, Fermi-energia on korkein miehitetty energiatila 0K:ssa. Kemiallinen potentiaali on lämpötilariippuva (mutta ei paljon) ja käytännössä sama kuin Fermi-energia. Puolijohteelle Fermi-energian käsite ei ole aivan niin selvä. Siksi käytetään kemiallista potentiaalia. Monissa yhteyksissä kuitenkin käytetään Fermi-energiaa puolijohteillekin, mutta silloin tämä käsite on lämpötilariippuva.
6 Kemiallinen potentiaali Intrinsiikkisen puolijohteen kemiallisen potentiaalin pitää olla noin energia-aukon puolivälissä. Muuten vöiden miehitykset eivät ole tasapainossa.
7 Vöiden miehitykset Elektronit johtovyöllä (CB) Puuttuvat elektronit (aukot) valenssivyöllä (VB)
8 Intrinsiikkisen puolijohteen kemiallisen potentiaalin pitää olla noin energia-aukon puolivälissä. Muuten vöiden miehitykset eivät ole tasapainossa. Sama pinta-ala
9 Elektronit ja aukot
10 Energiavyörakenne: GaAs CB VB CBM VBM
11 Energiavyörakenne: Si
12 Vyörakenteen tulkinta Valenssivyön maksimi yleensä E=0 Elektronin liikeyhtälö Efektiivinen massa * m a m * 2 qe 2 d E k 2 dk 1 Johtovyö: m * 2 Negatiivisesti varattu hiukkanen, jolla on positiivinen massa ( elektroni ) q e 2 1 d E k 0 2 dk
13 Valenssivyön tulkinta Valenssivyön maksimi yleensä E=0 Elektronin liikeyhtälö Efektiivinen massa q q e e * m a m qe Valenssivyö: 2 * 2 d E k m dk tai 2 * 2 d E k m dk Positiivisesti varattu hiukkanen ( aukko ) 2 d E k 2 dk *
14 Yksinkertaistettu vyörakenne Vapaat elektronit Puolijohteen johtavuusvyö Puolijohteen valenssivyö
15 Lämpötilariippuvuus Elektronit johtavuusvyöllä (CB) Aukot valenssivyöllä (VB)
16 Johtavuusvyölle Fermi-jakauman likiarvo Valenssivyölle Molemmat ovat tällöin Boltzmann-jakaumia Tätä tilaa kutsutaan ei-degeneroituneeksi tilanteeksi. Päinvastainen tilanne on degeneroitunut puolijohde.
17 Johtovyön miehitys sijoitus
18 Johtovyön miehitys 32 * 2 mekbt C n 2 e N 2 eff e h E k T E k T g B g B
19 Valenssivyön miehitys * 32 mhkbt k T V k T 2 eff 2 p e N e h 2 B B
20 Vöiden miehitykset Intrisiikkisen puolijohteen vöiden miehitykset saadaan siis Boltzmann-jakauman ja ns. efektiivisten tilatiheyksien avulla. CBM μ VBM
21 Massavaikutuksen laki 3 kt * * 32 B Eg kbt e h np m m e Tämä tulo ei riipu kemiallisen potentiaalin μ paikasta. Intrinsiikkiselle puolijohteelle n i p i 32 kt * * 34 B Eg 2kBT i i e h n p m m e
22 Esimerkkejä gap size (ev) n in m -3 n in m -3 at 150 K at 300 K InSb x x10 23 Si x10 6 2x10 16 diamond 5.5 6x x10-21
23 Missä on μ? n p Nämä parametrit on tunnettava. Efektiivisen massan yhteys johtavuuteen: 2 ne m * e
24 Syklotronikulmataajuus Kvantisoidut tilat Kentässä elektronilla on monia energiatasoja (ns. Landau-tasoja) energiaerolla Radiotaajuussignaalin resonantti absorptio taajuudella
25 Efektiivinen massa m e */m e m h */m e InSb InAs Ge Si GaAs Na 1.2 Cu 0.99 Sb 0.85
26 Seostetut puolijohteet Hyvinkin pieni määrä epäpuhtauksia saattaa muuttaa puolijohteen johtavuutta merkittävästi. Hallittua epäpuhtauksien lisäämistä kutsutaan seostamiseksi. Seostusta on kahdenlaista: n-seostamista (epäpuhtaudet lisäävät elektronien määrää) ja p-seostamista (epäpuhtaudet lisäävät aukkojen määrää). Tyypilliset seostustasot ovat to epäpuhtausataomia/m 3 eli to epäpuhtausataomia/cm 3. Huomaaa, että piissä on 5*10 28 atomia/m 3 ja intrinsiikkinen varauksenkuljettajakonsentratio on elektronia/aukkoa/m 3 huoneenlämpötilassa.
27 Puhdatilaolosuhteet!
28 Donoriatomi puolijohteessa Kun piikiteessä yksi piiatomi korvautuu arseeniatomilla sanotaan, että arseeniatomi toimii donorina piikiteessä. Arseenin ylimmät miehitetyt elektronitilat ovat piin johtovyön reunan alapuolella, joten arseenin ylin elektroni virittyy piin johtovyöhön lämmön vaikutuksesta sanotaan, että arseeni luovuttaa (donate) elektronin johtovyöhön.
29 n- ja p-seostus donoriatomi akseptoriatomi
30 Donori- ja akseptoritasot n-tyypin puolijohde p-tyypin puolijohde Seostetussa puolijohteessa donoriatomit (a) luovuttavat yhden elektronin johtovyöhön, tai akseptoriatomit (b) sitovat valenssivyöstä yhden elektronin jättäen jälkeensä aukon. Epäpuhtausatomien ionisoituminen tapahtuu lämmön vaikutuksesta. Hyvin alhaisissa lämpötiloissa tätä ei tapahdu, jolloin varauksenkuljettajatiheys laskee!
31
32 Donorin ionisoitumisenergia Fosforin valenssi on viisi yksi elektroni liikaa Arvio sidosenergialle Bohrin mallin mukaan: Otetaan huomioon: Suuruusluokka:
33 Varauksenkuljettajatiheys Yleensä numeerinen ratkaisu. Laskentaperusteena on varausneutraliteetti. Hyvin matalassa lämpötilassa seostusatomit eivät ole ionisoituneet (esim. n- seostuksesssa μ on donoritason ja johtovyön minimin välissä). Hyvin korkeissa lämpötiloissa seostusatomit kaikki ionisoituneet (μ on donoritason alapuolella n- seostuksessa)
34 Esimerkkilaskelma
35 Massavaikutuksen laki np n p i i vakio lämpötilassa T 3 kt * * 32 B Eg kbt e h np m m e np ei riipu μ:n paikasta.
36 Enemmistö- ja vähemmistövarauksenkuljattajat Yhtä paljon elektroneja ja aukkoja enemmistö: elektronit vähemmistö: aukot
37 Hall-mittaus electrons holes
38 Kokonaisjohtavuus Elektronien johtavuus 2 ne m * e ne ja liikkuvuus e m * e konsentraatiot 2 ne e n p m * e h e liikkuvuudet
39 Lämpötilan vaikutus johtavuuteen 2 ne ne m * e
PUOLIJOHTEISTA. Yleistä
39 PUOLIJOHTEISTA Yleistä Pyrittäessä löytämään syy kiinteiden aineiden erilaiseen sähkön johtavuuteen joudutaan perehtymään aineen kidehilassa olevien atomien elektronisiin energiatiloihin. Seuraavassa
LisätiedotHomogeeniset puolijohteet Olemme jakaneet kiteet kahteen ryhmään:
Homogeeniset puolijohteet Olemme jakaneet kiteet kahteen ryhmään: metallit ainakin yksi energiavyö on osittain täytetty eristeet energiavyöt ovat joko tyhjiä tai täysiä. Eristeitä karakterisoi nollasta
Lisätiedot1 Johdanto. energiavyö, saavutetaan (1) missä E on
35 PUOLIJOHTEEN ENERGIA-AUKKO 1 Johdanto Kiinteissä aineissa aineen elektronitt ovat järjestyneet niin kutsutuille energiavöille. Hyvissä sähkönjohteissa ylin elektroneita sisältävä energiavyö on vain
LisätiedotPUOLIJOHTEEN SÄHKÖNJOHTAVUUS
PUOLIJOHTEEN SÄHKÖNJOHTAVUUS 1 Johdanto Kiinteissä aineissa aineen elektronit ovat järjestyneet niin kutsutuille energiavöille. Hyvissä sähkönjohteissa ylin elektroneita sisältävä energiavyö on vain osittain
LisätiedotTASASUUNTAUS JA PUOLIJOHTEET
TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan
LisätiedotLuku6 Tilanyhtälö. Ideaalikaasun N V. Yleinen aineen. paine vakio. tilavuus vakio
Luku6 Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät saadaan leikkaamalla painepinta pv suuntaisilla
LisätiedotDEE Aurinkosähkön perusteet
DEE-53010 Aurinkosähkön perusteet Kolmannen luennon aihepiirit Reduktionistinen tapa aurinkokennon virta-jännite-käyrän muodon ymmärtämiseen Lähdetään liikkeelle aurinkokennosta, ja pilkotaan sitä pienempiin
Lisätiedot4 ev OY/MFP R Materiaalifysiikan perusteet P Ratkaisut 6, Kevät 2017
OY/MFP R6 017 Materiaalifysiikan perusteet 514P Ratkaisut 6, Kevät 017 1. Koska kuvitteellisten materiaalien hila on pkk-hila, niiden käänteishila on tkk-hila ja Brillouin-koppi on Kuvan 1.1 mukainen.
LisätiedotLuento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli
Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen
LisätiedotSMG-4300: Yhteenveto ensimmäisestä luennosta
SMG-4300: Yhteenveto ensimmäisestä luennosta Aurinko lähettää avaruuteen sähkömagneettista säteilyä. Säteilyn aallonpituusjakauma määräytyy käytännössä auringon pintalämpötilan (n. 6000 K) perusteella.
LisätiedotFysikaalisten tieteiden esittely puolijohdesuperhiloista
Fysikaalisten tieteiden esittely puolijohdesuperhiloista "Perhaps a thing is simple if you can describe it fully in several different ways without immediately knowing that you are describing the same thing."
Lisätiedot10. Puolijohteet. 10.1. Itseispuolijohde
10. Puolijohteet KOF-E, kl 2005 69 Metallit, puolijohteet ja useat eristeet ovat kiteisiä kiinteitä aineita, joilla on säännönmukainen jaksollinen atomijärjestys ja elektronien energioiden kaistarakenne.
Lisätiedot1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet.
a) ristid, puolijohtid ja talli tyypillist rgiakaistaraktt. i) NRGIAKAISTAT: (lktroi sallitut rgiatilat) Kaksiatoi systi: pottiaalirgia atoi väliatka fuktioa pot rpulsiivi kopotti -lktroit hylkivät toisiaa
LisätiedotSMG-4450 Aurinkosähkö
SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate
LisätiedotVyöteoria. Orbitaalivyöt
Vyöteoria Elektronirakenne ja sähkönjohtokyky: Metallit σ = 10 4-10 6 ohm -1 cm -1 (sähkönjohteet) Epämetallit σ < 10-15 ohm -1 cm -1 (eristeet) Puolimetallit σ = 10-5 -10 3 ohm -1 cm -1 σ = neµ elektronien
LisätiedotSMG-4450 Aurinkosähkö
SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate
LisätiedotLuento 12. Kiinteät aineet
Kiinteät aineet Luento 12 Kiinteät aineet ja nesteet kuuluvat molemmat kondensoituneisiin aineisiin. Niissä atomien väliset etäisyydet ovat atomien koon suuruusluokkaa eli 0.1 0.5 nm. Kiinteä aineen erottaa
LisätiedotZ 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
LisätiedotS Fysiikka III (Est), 2 VK Malliratkaisut (Arvosteluperusteita täydennetään vielä)
S-.7 Fysiikka III (st), VK 8.5.008 Malliratkaisut (Arvosteluperusteita täydennetään vielä). Näytä, että sekä symmetrinen aaltofunktio ψn( x ) ψn ( x) + ψn( x) ψn, että antisymmetrinen aaltofunktioψn( x)
LisätiedotHavaitsevan tähtitieteen peruskurssi I
5. Ilmaisimet Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmaisimet Ilmaisimet (kuvat: @ursa: havaitseva tähtitiede, @kqedscience.tumblr.com) Ilmaisin = Detektori: rekisteröi valon ja muuttaa käsiteltävään
LisätiedotPUOLIJOHTEISTA. Yleistä
39 POLIJOHTEISTA Yleistä Pyrittäessä löytämään syy kiinteiden aineiden erilaiseen sähkön johtavuuteen joudutaan perehtymään aineen kidehilassa olevien atomien elektronisiin energiatiloihin. Seuraavassa
Lisätiedotψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
Lisätiedot1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio
LisätiedotLuku 5: Diffuusio kiinteissä aineissa
Luku 5: Diffuusio kiinteissä aineissa Käsiteltävät aiheet... Mitä on diffuusio? Miksi sillä on tärkeä merkitys erilaisissa käsittelyissä? Miten diffuusionopeutta voidaan ennustaa? Miten diffuusio riippuu
LisätiedotLIITTEET...2. Liite A Stirlingin kaavan tarkkuudesta Liite B Lagrangen kertoimet... 3
LIITTEET... Liite A Stirlingin kaavan tarkkuudesta... Liite B Lagrangen kertoimet... 3 Liite C Kokonaisdifferentiaaleista... 7 C.1 Ristiderivaattojen riippumattomuus derivointijärjestyksestä... 7 C. Osittaisderivaattoja
LisätiedotSähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä
Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä
LisätiedotFysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto
ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen
LisätiedotAstrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut
Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut 1 a Kaasuseoksen komponentin i vapaa energia voidaan kirjoittaa F i (N,T,V = ln Z i (T,V missä on ko hiukkasten lukumäärä tilavuudessa
LisätiedotPehmeä magneettiset materiaalit
Pehmeä magneettiset materiaalit Timo Santa-Nokki Pehmeä magneettiset materiaalit Johdanto Mittaukset Materiaalit Rauta-pii seokset Rauta-nikkeli seokset Rauta-koboltti seokset Amorfiset materiaalit Nanomateriaalit
LisätiedotKuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen
6.2 MONILIITOSAURINKOKENNO Aurinkokennojen hyötysuhteen kasvattaminen on teknisesti haastava tehtävä. Oman lisähaasteensa tuovat taloudelliset reunaehdot, sillä tekninen kehitys ei saisi merkittävästi
Lisätiedotj = I A = 108 A m 2. (1) u kg m m 3, (2) v =
764A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 6 Kevät 28. Tehtävä: Aiemmi olemme laskeeet kupari johtavuuselektroie tiheydeksi 8.5 28 m. Kuparijohdossa, joka poikkipita-ala o mm 2, kulkee A: virta. Arvioi Drude
LisätiedotPuolijohteet II. luku 2 ja 4
Puolijohteet II luku 2 ja 4 Satuaisliike Varauksekuljettaja siroaa kitee epäideaalisuuksista. Termie ettoopeus o olla. Törmäyste välie aika m ~ 0,1 ps 2 Keskimääräie eergia o E 3kT 2 m v 2 mistä saadaa
LisätiedotSÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:
FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia
Lisätiedotelektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni
3.1 Atomin rakenneosat Kaikki aine matter koostuu alkuaineista elements. Jokaisella alkuaineella on omanlaisensa atomi. Mitä osia ja hiukkasia parts and particles atomissa on? pieni ydin, jossa protoneja
Lisätiedot3.1 Varhaiset atomimallit (1/3)
+ 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
LisätiedotVäriaineaurinkokenno (Dye-sensitized solar cell, DSSC) 4. Kennon komponenteista huokoinen puolijohde
Väriaineaurinkokenno (Dye-sensitized solar cell, DSSC) 1. Johdanto 2. Rakenne ja toimintaperiaate 3. Kennon suorituskyvyn karakterisointi 4. Kennon komponenteista huokoinen puolijohde 5. Kennon komponenteista
LisätiedotVarauksenkuljettajien diffuusio. Puolijohteissa varauksenkuljettajat diffusoituvat termisen energian vaikutuksesta (k B
17.11.008. Varauksekuljettajie iffuusio Puolijohteissa varauksekuljettajat iffusoituvat termise eergia vaikutuksesta (k B T) suuremmasta kosetraatiosta ieemaa (/ tai /) ( if ) ( if ) D, D ( ) D D iffuusiokerroi
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotKvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
LisätiedotAtomien rakenteesta. Tapio Hansson
Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista
LisätiedotJOEL SALMI METALLOINNIN ERIKOISKYSYMYKSIÄ. Diplomityö
JOEL SALMI METALLOINNIN ERIKOISKYSYMYKSIÄ Diplomityö Tarkastaja: TkT Jukka Viheriälä Tarkastaja: TkT Pirjo Leinonen Tarkastajat ja aihe hyväksytty Luonnontieteiden tiedekuntaneuvoston kokouksessa 4.6.2014
Lisätiedot1 Kohina. 2 Kohinalähteet. 2.1 Raekohina. 2.2 Terminen kohina
1 Kohina Kohina on yleinen ongelma integroiduissa piireissä. Kohinaa aiheuttavat pienet virta- ja jänniteheilahtelut, jotka ovat komponenteista johtuvia. Myös ulkopuoliset lähteet voivat aiheuttaa kohinaa.
LisätiedotVaihdetaan ryhmässä (1) summausindeksiksi K, jolloin saadaan (E E 0 k K 1
Heikot periodiset potentiaalit Useiden metallien (alkuaineryhmissä I, II, III ja IV) johde-elektronit liikkuvat heikossa kiteen ionien muodostamassa potentiaalissa, sillä näillä metalleilla on s- tai p-elektroni
Lisätiedote n 4πε S Fysiikka III (Est) 2 VK
S-11.137 Fysiikka III (Est) VK 7.5.009 1. Bohrin vtyatomimallissa lktronilla voi olla vain tittyjä nopuksia. Johda kaava sallituill nopuksill, ja lask sn avulla numrinn arvo suurimmall mahdollisll nopudll.
LisätiedotFYSA240/4 (FYS242/4) TERMINEN ELEKTRONIEMISSIO
FYSA240/4 (FYS242/4) TERMINEN ELEKTRONIEMISSIO Työssä tutkitaan termistä elektroniemissiota volframista, todetaan Stefanin - Boltzmannin lain paikkansapitävyys ja Richardsonin - Dushmanin yhtälön avulla
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotNeutriino-oskillaatiot
Neutriino-oskillaatiot Seminaariesitys Joonas Ilmavirta Jyväskylän yliopisto 29.11.2011 Joonas Ilmavirta (JYU) Neutriino-oskillaatiot 29.11.2011 1 / 16 Jotain vikaa β-hajoamisessa Ytimen β-hajoamisessa
LisätiedotTUOMAS LAPP AURINKOVOIMALAN KÄYTTÖ LISÄENERGIAN LÄHTEENÄ KIILTO OY:SSÄ
TUOMAS LAPP AURINKOVOIMALAN KÄYTTÖ LISÄENERGIAN LÄHTEENÄ KIILTO OY:SSÄ Diplomityö Tarkastajat: professori Seppo Valkealahti ja lehtori Aki Korpela Tarkastajat ja aihe hyväksytty Tieto- ja sähkötekniikan
LisätiedotVyöteoria. σ = neμ. Orbitaalivyöt
Vyöteoria Elektronirakenne ja sähkönjohtokyky: Metallit σ = 10 4-10 6 ohm -1 cm -1 (sähkönjohteet) Epämetallit σ < 10-15 ohm -1 cm -1 (eristeet) Puolimetallit σ = 10-5 -10 3 ohm -1 cm -1 σ = neμ elektronien
Lisätiedot(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme
S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät
LisätiedotNeutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa
Neutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa Graduseminaari Joonas Ilmavirta Jyväskylän yliopisto 15.6.2012 Joonas Ilmavirta (JYU) Neutriinot ja cqpa 15.6.2012 1 / 14 Osa 1: Neutriinot
LisätiedotARTO HILTUNEN AURINKOKENNON MAKSIMITEHOPISTEEN RIIPPUVUUS TOIMINTAOLOSUHTEISTA Kandidaatintyö
ARTO HILTUNEN AURINKOKENNON MAKSIMITEHOPISTEEN RIIPPUVUUS TOIMINTAOLOSUHTEISTA Kandidaatintyö Tarkastaja: lehtori Aki Korpela 26. toukokuuta 2009 II TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Sähkötekniikka
LisätiedotDEE Aurinkosähkön perusteet
DEE-53010 Aurinkosähkön perusteet Yleistietomateriaalia luentojen tueksi Aurinkokennotyypit: Mitä erilaisia aurinkokennotyyppejä on olemassa, ja miten ne poikkeavat ominaisuuksiltaan toisistaan? Yksikiteisen
LisätiedotSisältö. Magnetismin fysikaaliset perusteet. Diamagnetismi. Paramagnetismi. Magnetismin lajit Yksiköt. Petriina Paturi. Vapaat ionit Atomijoukot
Sisältö Fysiikan laitos Turun yliopisto 8.11.2007 1 2 3 4 Paramagnetismi Diamagnetismi Atomeilla magneettinen momentti Ei pysyvää kokonaismomenttia χ = C/T = Curien laki M = χb, χ 10 4 10 5 Valtaosa puhtaista
LisätiedotHapettimen sitoessa elektronin muodostuu pelkistin (hapetin pelkistyy) ja pelkistimen luovuttaessa elektronin muodostuu hapetin (pelkistin hapettuu).
Kennon komponenteista elektrolyytti ja vastaelektrodi Elektrolyytti muodostuu liuottimesta sekä hapetin-pelkistin-parista (redox pair). Jälkimmäinen on ionipari, joka pystyy luovuttamaan (pelkistin) ja
LisätiedotDEE Aurinkosähkön perusteet
DEE-53010 Aurinkosähkön perusteet Kuudennen luennon aihepiirit Tulevaisuuden aurinkokennotyypit: väriaineaurinkokenno Rakenne Toimintaperiaate Kehityskohteet 1 AURINKOKENNOJEN NYKYTUTKIMUS Aurinkokennotutkimuksessa
LisätiedotSMG-4450 Aurinkosähkö
Väriaineaurinkokenno Rakenne Toimintaperiaate Kehityskohteet SMG-4450 Aurinkosähkö Neljännen luennon aihepiirit 1 AURINKOKENNOJEN SUKUPOLVET Aurinkokennotyypit luokitellaan yleensä kolmeen sukupolveen.
LisätiedotPHYS-C0240 Materiaalifysiikka (5op), kevät 2016
PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen
LisätiedotS Fysiikka III (Est) 2 VK
S-37 Fysiikka III (Est) VK 500 Tarkastellaan vedyn p energiatasoa a) Mikä on tämän tason energia Bohrin mallissa? b) Oletetaan että spinratavuorovaikutus voidaan jättää huomiotta Kirjoita kaikki tähän
LisätiedotEksimeerin muodostuminen
Fysikaalisen kemian Syventävät-laboratoriotyöt Eksimeerin muodostuminen 02-2010 Työn suoritus Valmista pyreenistä C 16 H 10 (molekyylimassa M = 202,25 g/mol) 1*10-2 M liuos metyylisykloheksaaniin.
LisätiedotFysikaaliset ominaisuudet
Fysikaaliset ominaisuudet Ominaisuuksien alkuperä Mistä materiaalien ominaisuudet syntyvät? Minkälainen on materiaalin rakenne? Onko rakenteellisesti samankaltaisilla materiaaleilla samankaltaiset ominaisuudet?
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää
LisätiedotNormaalipotentiaalit
Normaalipotentiaalit MATERIAALIT JA TEKNOLOGIA, KE4 Yksittäisen elektrodin aiheuttaman jännitteen mittaaminen ei onnistu. Jännitemittareilla voidaan havaita ja mitata vain kahden elektrodin välinen potentiaaliero
LisätiedotTyppiseostettu grafeeni. Pro Gradu -tutkielma Jyväskylän yliopisto Kemian laitos Fysikaalisen kemian osasto 7. maaliskuuta 2017 Karoliina Karppinen
Typpiseostettu grafeeni Pro Gradu -tutkielma Jyväskylän yliopisto Kemian laitos Fysikaalisen kemian osasto 7. maaliskuuta 2017 Karoliina Karppinen i Tiivistelmä Tässä Pro Gradu -tutkielmassa perehdytään
LisätiedotS , Fysiikka III (S) I välikoe Malliratkaisut
S-4.35, Fysiikka III (S) I välikoe 9.0.000 Malliratkaisut Tehtävä Kuution uotoisessa säiliössä, jonka särän pituus on 0,0, on 3,0 0 olekyyliä happea (O) 300 K läpötilassa. a) Kuinka onta kertaa kukin olekyyli
LisätiedotFysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
LisätiedotLuku 2: Atomisidokset ja ominaisuudet
Luku 2: Atomisidokset ja ominaisuudet Käsiteltävät aiheet: Mikä aikaansaa sidokset? Mitä eri sidostyyppejä on? Mitkä ominaisuudet määräytyvät sidosten kautta? Chapter 2-1 Atomirakenne Atomi elektroneja
LisätiedotFYSA220/1 (FYS222/1) HALLIN ILMIÖ
FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys
LisätiedotLIITE 11A: VALOSÄHKÖINEN ILMIÖ
LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,
LisätiedotAlikuoret eli orbitaalit
Alkuaineiden jaksollinen järjestelmä Alkuaineen kemialliset ominaisuudet määräytyvät sen ulkokuoren elektronirakenteesta. Seuraus: Samanlaisen ulkokuorirakenteen omaavat alkuaineen ovat kemiallisesti sukulaisia
LisätiedotCHEM-A1200 Kemiallinen rakenne ja sitoutuminen
CHEM-A1200 Kemiallinen rakenne ja sitoutuminen Orgaaninen reaktio Opettava tutkija Pekka M Joensuu Orgaaniset reaktiot Syyt Pelkkä törmäys ei riitä Varaukset (myös osittaisvaraukset) houkuttelevat molekyylejä
Lisätiedot1.1 ATOMIN DISKREETIT ENERGIATILAT
1.1 ATOMIN DISKREETIT ENERGIATILAT 1. MITTAUKSET Franckin ja Hertzin kokeen ja ionisaatiopotentiaalin mittauslaitteisto: jännitelähde digitaalinen yleismittari suojatut banaanijohdot neonputki telineineen
Lisätiedot1. Puolijohdekiteiden kasvatus
1. Puolijohdekiteiden kasvatus PTP, sl 2011 1 Aineiden ominaisuuksien perusta on niiden atomaarisessa rakenteessa, siinä kuinka elektronit sitovat atomeja toisiinsa sekä siinä kuinka atomit ja elektronit
LisätiedotLuku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 14: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
Lisätiedot9. JAKSOLLINEN JÄRJESTELMÄ
9. JAKSOLLINEN JÄRJESTELMÄ Jo vuonna 1869 venäläinen kemisti Dmitri Mendeleev muotoili ajatuksen alkuaineiden jaksollisesta laista: Jos alkuaineet laitetaan järjestykseen atomiluvun mukaan, alkuaineet,
LisätiedotRatkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on:
Esimerkki Pourbaix-piirroksen laatimisesta Laadi Pourbaix-piirros, jossa on esitetty metallisen ja ionisen raudan sekä raudan oksidien stabiilisuusalueet vesiliuoksessa 5 C:een lämpötilassa. Ratkaisu Tarkastellaan
LisätiedotLASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä
LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:
LisätiedotMikroskooppisten kohteiden
Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε
LisätiedotSähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Diodi ja puolijohteet Luento Ideaalidiodi = kytkin Puolijohdediodi = epälineaarinen vastus Sovelluksia, mm. ilmaisin ja LED, tasasuuntaus viimeis. viikolla
LisätiedotCoulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =
LisätiedotPotentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.
LisätiedotIlmaisimet. () 17. syyskuuta 2008 1 / 34
Ilmaisimet Ilmaisin eli detektori on laite, jolla kaukoputken kokoama valo rekisteröidään ja muutetaan käsiteltävään muotoon. Aina 1800-luvun puoliväliin saakka ainoana ilmaisimena oli silmä. Sen jälkeen
Lisätiedot6. Yhteenvetoa kurssista
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä
LisätiedotLuku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw
Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut
A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan
LisätiedotAineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto
Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn
LisätiedotWien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:
1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2
LisätiedotFaasimuutokset ja lämpökäsittelyt
Faasimuutokset ja lämpökäsittelyt Yksinkertaiset lämpökäsittelyt Pehmeäksihehkutus Nostetaan lämpötilaa Diffuusio voi tapahtua Dislokaatiot palautuvat Materiaali pehmenee Rekristallisaatio Ei ylitetä faasirajoja
Lisätiedot1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin
LisätiedotSMG KENTTÄ JA LIIKKUVA KOORDINAATISTO
SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen
LisätiedotSMG-4450 Aurinkosähkö
SMG-4450 Aurinkosähkö Kolmannen luennon aihepiirit Aurinkokennon ja diodin toiminnallinen ero: Puolijohdeaurinkokenno ja diodi ovat molemmat pn-liitoksia. Mietitään aluksi, mikä on toiminnallinen ero näiden
LisätiedotTermodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki
Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät
LisätiedotMIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma
MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen
LisätiedotFRANCKIN JA HERTZIN KOE
FRANCKIN JA HRTZIN KO 1 Atomin kokonaisenergian kvantittuneisuuden osoittaminen Franck ja Hertz suorittivat vuonna 1914 ensimmäisinä kokeen, jonka avulla voitiin osoittaa oikeaksi Bohrin olettamus, että
LisätiedotMikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
LisätiedotSuhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson
Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa Tapio Hansson Laskentoa SI-järjestelmä soveltuu hieman huonosti kvantti- ja hiukaksfysiikkaan. Sen perusyksiköiden mittakaava
Lisätiedot