MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Koko: px
Aloita esitys sivulta:

Download "MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi"

Transkriptio

1 MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Kevät 2016, periodi III

2 Stochastics and Statistics Courses MS-C2111 S TOKASTISET PROSESSIT MS-E1600 P ROBABILITY THEORY Periodi I, 5 op, tekn. kand. Luennoitsija: Lasse Leskelä Esitiedot: MS-A050X Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A000X Matriisilaskenta MS-A020X Differentiaali- ja integraalilaskenta 2 Stokastisilla prosesseilla mallinnetaan tekniikan, talouden ja luonnontieteiden sovelluksissa esiintyviä ajasta riippuvia satunnaisilmiöitä. Tällä kurssilla opimme analysoimaan stokastisia populaatiomalleja Markov-prosessien avulla sekä ennakoimattomien tapahtumien esiintymistä Poisson-prosessien avulla. Lisäksi opimme analysoimaan yksinkertaisten uhkapelien sijoitusstrategioita martingaalien avulla. Tämän kurssin tiedot ovat tärkeitä useimmilla stokastiikan ja tilastotieteen jatkokursseilla. Period III, 5 cr, MSc Lecturer: Prerequisites: MS-C2103 KOESUUNNITTELU JA TILASTOLLISET MALLIT MS-C2128 E NNUSTAMINEN JA AIKASARJA - ANALYYSI la. Kurssin tavoitteena on oppia, kuinka aikasarjoja analysoidaan ja miten niiden avulla laaditaan ennusteita. Kurssi kattaa yleisimmät mallit, kuten ARIMA-mallit ja dynaamiset regressiomallit, mutta myös muita tulosten kannalta oleellisia asioita, kuten diagnostiikan ja mallin valinnan. Kurssilla käytetään R-ohjelmistoa. -Niels Bohr Jos tietyt matemaattiset oletukset täyttyvät, voidaan tehdä käyttökelpoisia ennusteita historiallisten aikasarja-aineistojen perusteel "Ennustaminen on vaikeaa, varsinkin tulevaisuuden" Date MS-E1601 B ROWNIAN MOTION AND STOCHASTIC ANALYSIS Period II, 5 cr, MSc Lecturer: Lauri Viitasaari Prerequisites: MS-E1600 Probability theory (MS-C2111 Stokastiset prosessit) This course introduces the foundations of stochastic analysis and stochastic integration with respect to a Brownian motion. The course starts with a construction of Brownian motion and analysis of its basic properties, and continues with the construction of Ito stochastic integral. We derive the Ito formula which is the equivalent of the fundamental theorem of calculus for stochastic integrals, and discuss its applications to mathematical finance. MS-E1996 M ULTIVARIATE LOCATION AND SCATTER Where is the data? How is it scattered? When dealing with multivariate observations, the very first questions that come to mind are: 20 Pauliina Ilmonen At least one matrix algebra and one MSc level statistics/probability course 5 Period II, 5 cr, MSc Lecturer: Prerequisites: Periodit III IV, 5 op, tekn. kand./di Luennoitsija: Heikki Seppälä Esitiedot: MS-A050X Todennäköisyyslaskennan ja tilastotieteen peruskurssi Kurssilla esitellään tavallisimpia koejärjestelyitä sekä menetelmiä tilastollisen analyysin tekemiseen. Tavoitteena on oppia valitsemaan sopiva koejärjestely tilastollisen testin toteuttami- seksi, suorittamaan testi ja analysoimaan tulokset. Kurssi kattaa regressioanalyysin perusteet, varianssianalyysin sekä valikoituja koejärjestelyitä, kuten lohkoasetelmat, faktorikokeet sekä vastepintamenetelmän. Kurssilla käytetään R-ohjelmistoa. 20 Tenor basis spread (bp) 40 Periodi II, 5 op, tekn. kand. Luennoitsija: Heikki Seppälä Esitiedot: MS-A050X Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A020X Differentiaali- ja integraalilaskenta 2 (MS-C2111 Stokastiset prosessit) Kalle Kytölä MS-C1540 Euklidiset avaruudet This course is about the mathematical foundations of randomness. Most advanced topics in stochastics and statistics rely on probability theory. The basic constructions are identical to measure theory, but there are a number of distinctly probabilistic features such as independence, notions of convergence of random variables, information contained in a sigma-algebra, conditional expectation, characteristic functions and generating functions, laws of large numbers and central limit theorems, etc. These questions are discussed together with selected applications. This is an advanced course in statistics for MSc and doctoral students. Only 10 students are admitted to this course, so the lecturer ASAP to register. Topics include: M-estimates of location and scatter, MCD-estimates, spatial sign and rank based estimates, multivariate location tests, autocovariance matrices and applications, PCA using different location and scatter estimates, multivariate regression analysis based on spatial signs and ranks, scatter matrix based ICA, complex time series ICA, ICS and skewness and kurtosis. MS-C2104 T ILASTOLLISEN ANALYYSIN PERUSTEET Periodit III IV, 5 op, tekn. kand./di Luennoitsija: Pauliina Ilmonen Esitiedot: MS-A050X Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A000X Matriisilaskenta Kurssi on johdatus tietokoneavusteiseen tilastolliseen analyysiin ja tilastolliseen päättelyyn. Kurssin aiheita ovat estimointi ja väliestimointi, yksinkertaiset parametriset ja epäparametriset testit, tilastollinen riippuvuus ja korrelaatio, lineaarinen regressioanalyysi ja varianssianalyysi. Kurssilla käytetään R-ohjelmistoa. MS-E2112 M ULTIVARIATE STATISTICAL ANALYSIS Periods III IV, 5 cr, MSc Lecturer: Prerequisites: Pauliina Ilmonen At least one statistics/probability and one matrix algebra course This course is an introduction to multivariate statistical analysis. The goal is to learn basics of common multivariate data analy- sis techniques and to use the methods in practice. Software R is used in the exercises of this course. The topics of the course are multivariate location and scatter, principal component analysis, bivariate correspondence analysis, multivariate correspondence analysis, canonical correlation analysis, discriminant analysis, classification, and clustering. MS-E1602 L ARGE RANDOM SYSTEMS Period IV, 5 cr, MSc Lecturers: Lasse Leskelä and Kalle Kytölä Prerequisites MS-E1600 Probability theory, (MS-C2111 Stokastiset prosessit) Many interesting random systems contain a large number of simpler constituents interacting with each other. This course covers both mathematical techniques for the study of such systems, and important probabilistic models of a range of different phenomena. The theory focuses on tightness and weak convergence of probability measures. Examples include random walk and Brownian motion, percolation, Curie-Weiss model and Ising model, and voter model and contact process.

3 Todennäköisyysteoria on matematiikan osa-alue, jossa tutkitaan matemaattisesti määriteltyjä satunnaisilmiöitä. Tilastotiede pyrkii kuvailemaan havaittuja satunnaisilmiöitä, mallintamaan niitä ja tekemään päätelmiä niistä.

4 Esim. adsl-nettiliittymän nopeustesti Ilmoitetut tiedonsiirtonopeuden vaihteluvälit: Lataus: 5 10 Mbit/s, lähetys Mbit/s Vastaavatko mittaustulokset palvelukuvausta? Lähetys (Mbit/s) Lataus (Mbit/s) Vasteaika (ms) Palvelun ilmoitettu tiedonsiirtonopeus on enimmäisnopeus ja tiedonsiirtonopeus vaihtelee yhteyden kestäessä ja voi tilapäisesti laskea alle tiedonsiirtonopeuden vaihteluvälin.

5 Kurssin järjestelyt Luennoitsija: Lasse Leskelä Vastaanotto ma 14 Y242a Pääassistentti: Vesa Husgafvel vesa.husgafvel@aalto.fi Luennot: ma ja pe klo Harjoitukset: Viikoittain 2 x 2h + STACK-tehtävät Yksityiskohtaiset tiedot:

6 Suorittaminen Kurssin voi suorittaa kahdella eri tavalla: (1) Tekemällä harjoitustehtäviä sekä osallistumalla välikokeisiin 50% maksimipistemäärästä tulee välikokeista ja 50% laskuharjoituksista (koti-/harjoitustehtävät + stack tehtävät) kurssin läpäisemiseksi molemmista välikokeista on saatava vähintään 6/24 pistettä. laskuharjoituspisteiden saamiseksi laskuharjoituksissa on oltava paikalla: tehtäviä ei voi palauttaa paperilla tai sähköpostitse. välikokeita ei voi uusia ja niitä voi siirtää ainoastaan erityisen painavasta syystä (kertausharjoitus, lääkärintodistus). Samaan aikaan oleva muun kurssin tentti ei ole riittävä syy. (2) Tenttimällä Arvosana määräytty täysin tenttipisteiden mukaan, eikä laskuharjoituksia huomioida. Tenttimässä voi käydä aina kun jostakin koodilla MS-A0501, MS-A0502, MS-A0503 tai MS-A0504 olevasta kurssista on tentti ja paras arvosana jää voimaan.

7 Kurssimateriaalia verkossa Päämateriaali Luentokalvot Esimerkkikokoelmat Harjoitustehtävät Tilastolliset taulukot Lisämateriaalia I Mellin. Todennäköisyyslaskenta. I Mellin. Tilastolliset menetelmät. C M Grinstead & J L Snell Introduction to Probability and Statistics. DeGroot & Schervish Probability and Statistics.

8 Kysyttävää kurssin järjestelyistä? Luennoitsija: Lasse Leskelä Vastaanotto ma 14 Y242a Pääassistentti: Vesa Husgafvel vesa.husgafvel@aalto.fi MyCourses:

9 Osaamistavoitteet Kurssin suorittanut: 1. Osaa laskea yksinkertaisten satunnaisilmiöiden ehdollisia todennäköisyyksiä Bayesin kaavan avulla. 2. Osaa määrittää keskeisimpien todennäköisyysjakaumien tunnuslukuja analyyttisesti ja tilastollisten taulukoiden avulla. 3. Tunnistaa tilanteita, joissa satunnaisilmiön jakaumaa voi arvioida normaalijakauman avulla. 4. Osaa estimoida yksinkertaisen tilastollisen mallin parametrit annetusta datajoukosta. 5. Osaa testata yksinkertaisten tilastollisten hypoteesien paikkansapitävyyttä. 6. Osaa analysoida kaksiulotteisen datajoukon korrelaatioita lineaarisen regressiomallin avulla.

10 Kurssin sisältö I Todennäköisyyslaskenta Viikko 1 Viikko 2 Viikko 3 Todennäköisyyden käsite ja laskusäännöt. Tilastollinen riippumattomuus. Ehdollinen todennäköisyys. Diskreetit satunnaismuuttujat. Jatkuvat satunnaismuuttujat, jakaumat ja tunnusluvut. Generoivat funktiot. Yksiulotteisia diskreettejä ja jatkuvia jakaumia. Satunnaisvektorit ja niiden jakaumat. Moniulotteisia jakaumia. II Tilastotiede Viikko 4 Viikko 5 Viikko 6 Tilastollisen datan mittaaminen ja kuvaaminen. Otokset ja otosjakaumat. Tilastollinen estimointi. Tilastollinen merkitsevyys. Tilastollinen testaaminen Tilastollinen riippuvuus ja korrelaatio. Yhden selittäjän lineaarinen regressiomalli.

11 MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 1: Todennäköisyyden perusteet Lasse Leskelä Aalto-yliopisto

12 Sisältö Satunnaisilmiöt, realisaatiot ja tapahtumat Empiirinen, symmetrinen ja yleinen todennäköisyys Todennäköisyyden peruslaskusäännöt Ehdollinen todennäköisyys ja riippumattomuus Kokonaistodennäköisyys ja Bayesin kaava Satunnaismuuttujan käsite Diskreetit satunnaismuuttujat

13 Sisältö Satunnaisilmiöt, realisaatiot ja tapahtumat Empiirinen, symmetrinen ja yleinen todennäköisyys Todennäköisyyden peruslaskusäännöt Ehdollinen todennäköisyys ja riippumattomuus Kokonaistodennäköisyys ja Bayesin kaava Satunnaismuuttujan käsite Diskreetit satunnaismuuttujat

14 Satunnaisilmiö Satunnaisilmiö on ilmiö, jonka realisaatiota ei varmuudella tunneta. Realisaatio on satunnaisilmiön toteuma. Perusjoukko S on satunnaisilmiön mahdollisten realisaatioiden joukko. (Sanotaan myös otosavaruudeksi.) Tapahtumia ovat perusjoukon S osajoukot A S. Tulkinta Tapahtuma A sattuu, kun satunnaisilmiön realisaatio s A. Täysi osajoukko S on varma tapahtuma. Tyhjä osajoukko on mahdoton tapahtuma.

15 Esim. Nopan heitto Realisaatio i = nopan silmäluku Perusjoukko S = {1, 2,..., 6} Tapahtumia ovat S:n osajoukot, esim. A = silmäluku on parillinen = {2, 4, 6}. B = silmäluku on suurempi kuin neljä = {5, 6}.

16 Esim. Kahden nopan heitto Realisaatio on pari (i, j), missä i on ensimmäisen ja j toisen nopan silmäluku. Perusjoukko on S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}. Tapahtumia ovat S:n osajoukot, esim. A = silmäluvut ovat samat = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}. B = ensimmäisen nopan silmäluku on 1 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}.

17 Esim. Huomisen sademäärä Espoossa (mm) Realisaatiot ovat reaalilukuja x 0. Perusjoukko S = {x R : x 0}. Tapahtumia ovat esim. A = huomenna sataa yli 10 mm = (10, ) B = huomenna ei sada = {0}

18 Tapahtumien yhdisteleminen Perusjoukon tapahtumista voidaan muodostaa uusia tapahtumia loogisin päättelysäänöin: A ja B sattuvat A tai B sattuu A ei satu B sattuu mutta A ei Todennäköisyyslaskentaa varten tapahtumat tulee ilmaista joukko-opin kielellä.

19 Tapahtumien leikkaus Tapahtuma A ja B sattuvat sisältää ne realisaatiot, jotka kuuluvat sekä joukkoon A että joukkoon B: A B = {s S : s A ja s B}. Esim (Nopan heitto) A = Silmäluku on > 3 = {4, 5, 6} B = Silmäluku on parillinen = {2, 4, 6} A B = Silmäluku on > 3 ja parillinen = {4, 6}

20 Tapahtumien yhdiste Tapahtuma A tai B sattuu sisältää ne realisaatiot, jotka kuuluvat joko joukkoon A tai joukkoon B: A B = {s S : s A tai s B}. Esim (Nopan heitto) A = Silmäluku on > 3 = {4, 5, 6} B = Silmäluku on parillinen = {2, 4, 6} A B = Silmäluku on > 3 tai parillinen = {2, 4, 5, 6}

21 Tapahtuman vastakohta Tapahtuma A ei satu sisältää ne realisaatiot, jotka eivät kuulu joukkoon A: A c = {s S : s A}. Esim (Nopan heitto) A = Silmäluku on suurempi kuin 3 = {4, 5, 6} A c = Silmäluku ei ole suurempi kuin 3 = Silmäluku on korkeintaan 3 = {1, 2, 3}

22 Tapahtumien erotus Tapahtuma B sattuu mutta A ei sisältää ne realisaatiot, jotka kuuluvat joukkoon B mutta eivät joukkoon A: B \ A = {s S : s B ja s A}. Esim (Nopan heitto) A = Silmäluku on > 3 = {4, 5, 6} B = Silmäluku on parillinen = {2, 4, 6} B \ A = Silmäluku on parillinen ja 3 = {2}

23 Toisensa poissulkevat tapahtumat Tapahtumat A ja B poissulkevat toisensa, jos vain toinen niistä voi sattua, eli A B =. Tapahtumat A 1, A 2,... poissulkevat toisensa, jos vain yksi niistä voi sattua, eli A i A j = aina kun i j. Esim (Nopan heitto) A = Silmäluku on parillinen, B = Silmäluku on kolme tai viisi Tapahtumat A ja B poissulkevat toisensa. A i = Silmäluku on i. Tapahtumat A 1, A 2,..., A 6 poissulkevat toisensa.

24 Tapahtumien yhdisteleminen Yhteenveto Tulkinta Varma tapahtuma Mahdoton tapahtuma A sattuu A ja B sattuvat A tai B sattuu A ei satu B sattuu mutta A ei A ja B poissulkevat toisensa Joukko-opin lauseke S A A B A B A c B \ A A B =

25 Sisältö Satunnaisilmiöt, realisaatiot ja tapahtumat Empiirinen, symmetrinen ja yleinen todennäköisyys Todennäköisyyden peruslaskusäännöt Ehdollinen todennäköisyys ja riippumattomuus Kokonaistodennäköisyys ja Bayesin kaava Satunnaismuuttujan käsite Diskreetit satunnaismuuttujat

26 Todennäköisyyden käsite Reaalimaailmassa todennäköisyys ilmenee monin eri tavoin: Huomenna sataa todennäköisyydellä 5 %. CERN on löytänyt uuden alkeishiukkasen todennäköisyydellä %. Auer vangittiin todennäköisin syin epäiltynä murhasta. Todennäköisyyden yleispätevä tieteellinen määrittely kaikkia konteksteja tyydyttävällä tavalla on vaikeaa. (Matemaattinen todennäköisyysteoria kuitenkin soveltuu filosofisesta tulkinnasta riippumatta!) David Aldous: Annotated list of contexts where we perceive chance

27 Empiirinen todennäköisyys Tarkastellaan satunnaisilmiötä, josta voidaan tehdä n riippumatonta havaintoa olosuhteiden säilyessä muuttumattomina. Tapahtuman A suhteellinen frekvenssi on suhdeluku f A n, missä f A on niiden havaintojen lkm, joissa tapahtuma A sattuu Tietyissä konteksteissa voidaan olettaa, että suhteellinen frekvenssi lähestyy raja-arvoa f A n p A, kun n. Jos tällainen raja-arvo p A on olemassa, kutsutaan sitä tapahtuman A empiiriseksi todennäköisyydeksi ja tällöin p A f A n.

28 Esim. Kolikon heitto Kruunan suhteellinen frekvenssi heittojen määrän kasvaessa Kruunan ja klaavan suhteelliset frekvenssit 1000 heitossa. n < x <- sample(c(0,1),n,replace=true) plot(cumsum(x)/(1:n),type="l") plot(table(x))

29 Esim. Nopan heitto Kuutosen suhteellinen frekvenssi heittojen määrän kasvaessa Kaikkien silmälukujen suhteelliset frekvenssit 1000 heitossa. n < x <- sample(1:6,n,replace=true) plot(cumsum(x==6)/(1:n),type="l") plot(table(x))

30 Empiirinen todennäköisyys Rajoituksia Suhteellisen frekvenssin määrääminen vaatii empiirisen kokeen toistamista Mikään ei automaattisesti takaa, että suhteellisen frekvenssin raja-arvo on olemassa Ei voida käsitellä tilanteita, joista havaintoja ei ole saatavilla Esim Todennäköisyys, että langattomasta tukiasemasta lähetetty bittijono saapuu virheettä päätelaitteeseen. Todennäköisyys, että Olkiluoto 1 toimii ongelmitta seuraavat kymmenen vuotta. Todennäköisyys päästä läpi tästä kurssista ensi yrittämällä.

31 Symmetrinen todennäköisyys (tasainen todennäköisyys) Jos äärellisen perusjoukon S jokainen realisaatio on yhtä todennäköinen, on tapahtuman A S todennäköisyys luontevaa määritellä kaavalla Pr(A) = n(a) n(s), missä n(a) on joukon A alkioiden lukumäärä. Symmetrisiä satunnaisilmiöitä Kolikon heitto Nopan heitto Lottoarvonta Ei-symmetrisiä satunnaisilmiöitä Nastan putoaminen lattialle Tikan heitto Vakioveikkaus

32 Diskreetti tasajakauma Kuvaus A Pr(A) = n(a) n(s) Se toteuttaa ehdot: on joukon S tasajakauma. (i) Varman tapahtuman todennäköisyys on Pr(S) = 1. (ii) Jokaiselle tapahtumalle A pätee 0 Pr(A) 1. (iii) Toisensa poissulkeville tapahtumille A 1,..., A k pätee Pr(A 1 A k ) = Pr(A 1 ) + + Pr(A k ). Huom Yo. määritelmässä täytyy perusjoukon S olla äärellinen.

33 Kombinatorinen todennäköisyyslaskenta Kun äärellisen perusjoukon S satunnaisilmiö on symmetrinen eli tasajakautunut, voidaan kaikkien tapahtumien todennäköisyydet periaatteessa suoraan laskea kaavasta Pr(A) = n(a) n(s). Kun joukko A (tai S) on suuri, voi lukumäärän n(a) laskeminen olla vaikeaa, ellei jopa mahdotonta. Kombinatoriikka on tämäntyyppisiin ongelmiin keskittynyt matematiikan osa-alue. Esim (Vaikea kombinatorinen ongelma) Millä todennäköisyydellä 10 8 askeleen itseään välttävä satunnaiskävely neliöhilalla Z 2 päättyy etäisyydelle 10 6 lähtöpisteestään?

34 Kaksi alkeellista kombinatorista tulosta Fakta (Järjestetyt listat) Joukosta, jossa on n alkiota, voidaan poimia k eri alkiota järjestettyyn listaan n(n 1) (n k + 1) eri tavalla. Erityisesti n:n alkion joukon kaikki alkiot voidaan listata järjestykseen n! = n(n 1) 1 eri tavalla. Fakta (Järjestämättömät osajoukot) Joukosta, jossa on n alkiota, voidaan muodostaa k:n alkion järjestämätön osajoukko binomikertoimen ( ) n n! = k k!(n k)! ilmaisemalla määrällä eri tapoja.

35 Esimerkki: Lottoarvonta Mikä on todennäköisyys saada 7 oikein yhdellä 7 numeron lottorivillä? Veikkaus Oy:n lottoarvonnan perusjoukko on S = 7:n alkion osajoukot joukosta {1,..., 39} ja sen koko on n(s) = ( 39 7 ). Tapahtuma A = valitulla lottorivillä 7 oikein sisältää täsmälleen yhden realisaation, joten n(a) = 1. Symmetrian perusteella lottoarvonta on tasajakautunut, joten Pr(A) = n(a) n(s) = 1 ( 39 7 ) =

36 Yleinen todennäköisyys Todennäköisyysjakauma eli todennäköisyysmitta perusjoukolla S on kuvaus, joka liittää jokaiseen tapahtumaan A S luvun Pr(A), ja toteuttaa: (i) Varman tapahtuman S todennäköisyys on Pr(S) = 1. (ii) Jokaiselle tapahtumalle A pätee 0 Pr(A) 1. (iii) Mille tahansa äärelliselle tai äärettömälle jonolle toisensa poissulkevia tapahtumia A 1, A 2,... pätee Huom Pr(A 1 A 2 ) = Pr(A 1 ) + Pr(A 2 ) + Ominaisuus (iii) on poissulkevien yhteenlaskusääntö. Diskreetti tasajakauma Pr(A) = n(a) n(s) toteuttaa ehdot (i) (iii), joten se on todennäköisyysjakauma.

37 Sisältö Satunnaisilmiöt, realisaatiot ja tapahtumat Empiirinen, symmetrinen ja yleinen todennäköisyys Todennäköisyyden peruslaskusäännöt Ehdollinen todennäköisyys ja riippumattomuus Kokonaistodennäköisyys ja Bayesin kaava Satunnaismuuttujan käsite Diskreetit satunnaismuuttujat

38 Poissulkevien yhteenlaskusääntö Laskusääntö Toisensa poissulkeville tapahtumille A 1, A 2,..., A k pätee Pr(A 1 A 2 A k ) = Pr(A 1 ) + + Pr(A k ). Todistus. Väite on todennäköisyysjakauman ominaisuus (iii). Esim Umpimähkään valitun suomalaisen veriryhmä on O- tai A- todennäköisyydellä Pr( O- tai A- ) = Pr( O- ) + Pr( A- ) = 0.1.

39 Vastakohdan todennäköisyys Laskusääntö A:n vastakohdan todennäköisyys on Pr(A c ) = 1 Pr(A). Todistus. Koska A A c = S, ja koska A ja A c poissulkevat toisensa, 1 (i) = Pr(S) = Pr(A A c ) (iii) = Pr(A) + Pr(A c ). Esim Todennäköisyys, että kahdella kolikonheitolla saadaan vähintään yksi kruuna on Pr( vähintään 1 kruuna ) = 1 Pr( molemmat klaavoja ) = = 3 4.

40 Mahdottoman tapahtuman todennäköisyys Laskusääntö Mahdottoman tapahtuman todennäköisyys on Pr( ) = 0. Todistus. Koska on varman tapahtuman S vastakohta, havaitaan vastakohdan laskusääntöä ja aksioomaa (i) käyttämällä, että Pr( ) = 1 Pr(S) (i) = 1 1 = 0. Esim Eduskunnasta umpimähkään valittu kansanedustaja on SDP:n ja Kokoomuksen jäsen todennäköisyydelllä Pr( SDP ja Kok ) = Pr( ) = 0.

41 Erotuksen todennäköisyys Laskusääntö Tapahtuman B sattuu mutta A ei todennäköisyys on Pr(B \ A) = Pr(B) Pr(A B). Todistus. Kirjoittamalla B poissulkevien tapahtumien B \ A ja A B yhdisteenä, Pr(B) = Pr((B \ A) (A B)) (iii) = Pr(B \ A) + Pr(A B). Esim Vedetään satunnainen pelikortti korttipakasta: Pr( kortti on pata muttei kuva ) = Pr( pata ) Pr( pata ja kuva ) = =

42 Yleinen yhteenlaskusääntö Laskusääntö Tapahtumien A ja B yhdisteelle pätee Pr(A B) = Pr(A) + Pr(B) Pr(A B). Todistus. Kirjoitetaan A B = (A \ B) (A B) (B \ A), jolloin Pr(A B) (iii) = Pr(A \ B) + Pr(A B) + Pr(B \ A). Erotustapahtuman laskusäännön mukaan Pr(A \ B) = Pr(A) Pr(A B), Pr(B \ A) = Pr(B) Pr(A B). Väite seuraa summaamalla yo. yhtälöt ja sieventämällä.

43 Todennäköisyyden monotonisuus Laskusääntö Jos A B, niin Pr(A) Pr(B). Todistus. Koska tässä tapauksessa A B = A, seuraa tulos erotuksen laskusäännöstä 0 Pr(B \ A) = Pr(B) Pr(A B) = Pr(B) Pr(A). Esim (Satunnainen kortti pakasta) Jos kortti on pata, on se myös musta. Näin ollen = Pr( pata ) Pr( musta ) =

44 Todennäköisyyden peruslaskusäännöt Yhteenveto Yleinen yhteenlaskusääntö: Pr(A B) = Pr(A) + Pr(B) Pr(A B). Poissulkevien yhteenlaskusääntö: Pr(A B) = Pr(A) + Pr(B), kun A B =. Vastakohdan ja erotuksen todennäköisyydet: Pr(A c ) = 1 Pr(A), Pr(B \ A) = Pr(B) Pr(A B). Monotonisuus: Pr(A) Pr(B), kun A B.

45 Sisältö Satunnaisilmiöt, realisaatiot ja tapahtumat Empiirinen, symmetrinen ja yleinen todennäköisyys Todennäköisyyden peruslaskusäännöt Ehdollinen todennäköisyys ja riippumattomuus Kokonaistodennäköisyys ja Bayesin kaava Satunnaismuuttujan käsite Diskreetit satunnaismuuttujat

46 Ehdollinen todennäköisyys Tapahtuman A ehdollinen todennäköisyys tapahtuman B sattuessa määritellään kaavalla Pr(A B) = Pr(A B), Pr(B) 0. Pr(B) Mikäli Pr(B) = 0, jätetään Pr(A B) määrittelemättä.

47 Esim. Eduskunta Eduskunnan 200 kansanedustajasta naisia on 83. SDP:llä on 34 kansanedustajaa, joista 21 on naisia. Umpimähkään valittu kansanedustaja on SDP:n jäsen todennäköisyydellä Pr( SDP ) = = Mikä on todennäköisyys, että umpimähkään valittu naiskansanedustaja on SDP:n jäsen? Pr( SDP ja nainen ) Pr( SDP nainen ) = Pr( nainen ) = 21/200 83/

48 Yleinen tulosääntö Laskusääntö Aina kun Pr(A) 0, pätee yleinen tulosääntö Pr(A B) = Pr(A) Pr(B A). Tulkinta Yhteistapahtuman sekä A että B sattuvat todennäköisyys saadaan kertomalla tapahtuman A todennäköisyys tapahtuman B ehdollisella todennäköisyydellä A:n sattuessa. Todistus. Ehdollisen todennäköisyyden määritelmän perusteella Pr(A B) Pr(A B) = Pr(A) = Pr(A) Pr(B A). Pr(A)

49 Monen tapahtuman tulosääntö Laskusääntö Aina kun Pr(A 1 A k 1 ) 0, pätee yleinen tulosääntö Pr(A 1 A k ) = Pr(A 1 ) Pr(A 2 A 1 ) Pr(A 3 A 1 A 2 ) Pr(A k A 1 A k 1 ). Tulkinta Yhteistapahtuman jokainen tapahtumista A 1,..., A k sattuu todennäköisyys saadaan kertomalla keskenään: A 1 :n todennäköisyys, A 2 :n ehdollinen tn tapahtuman A 1 sattuessa, A 3 :n ehdollinen tn tapahtumien A 1 ja A 2 sattuessa,... A k :n ehdollinen tn tapahtumien A 1, A 2,..., A k 1 sattuessa.

50 Tulosääntö Esimerkki Nostetaan korttipakasta palauttamatta 3 korttia. Millä todennäköisyydellä kaikki ovat patoja? A i = i:s kortti on pata A = A 1 A 2 A 3 Yleisen tulosäännön perusteella Pr(A) = Pr(A 1 ) Pr(A 2 A 1 ) Pr(A 3 A 1 A 2 ) = Vaihtoehtoinen kombinatorinen tapa: S = kolmen kortin järjestämättömät osajoukot, n(s) = ( ) Tapahtuman A realisaatiot vastaavat kolmen kortin osajoukkoja patojen joukosta. Näitä on n(a) = ( ) 13 3 kpl. Symmetrian nojalla satunnaisilmiö on tasajakautunut, joten Pr(A) = n(a) n(s) = ( 13 3 ) ( 52 3 ) =

51 Tilastollinen riippuvuus ja riippumattomuus Tapahtumat A ja B ovat toisistaan riippumattomat, jos Pr(A B) = Pr(A) Pr(B). Kokoelma tapahtumia {A i, i I } on riippumaton, jos kaikilla i 1, i 2,..., i k I. Pr(A i1 A ik ) = Pr(A i1 ) Pr(A ik ) Esim Tilanteita, joissa riippumattomuus on intuitiivisesti selvää: Perättäiset kolikonheitot, kunhan kolikkoa heitetään riittävän korkealle. Otanta palauttaen: nostetaan uurnasta arpalippuja niin, että nostettu lippu palautetaan uurnaan ja sen jälkeen uurna sekoitetaan hyvin.

52 Riippumattomuus ja ehdollinen todennäköisyys Fakta Kun Pr(A) 0 ja Pr(B) 0, ovat seuraavat yhtäpitävät: A ja B ovat riippumattomat. Pr(A B) = Pr(A). Pr(B A) = Pr(B). Tulkinta Jos Pr(A B) Pr(A), niin tieto B:n sattumisesta sisältää informaatiota, jota voidaan hyödyntää A:n todennäköisyyden määrittämiseen. Todistus. Hyvä harjoitustehtävä.

53 Esimerkki: Korttipakka Nostetaan pakasta satunnainen kortti. A = kortti on pata B = kortti on ässä Ovatko A ja B riippuvat vai riippumattomat? Tarkastetaan laskemalla, päteekö Pr(A B) = Pr(A) Pr(B). Pr(A) = = 1 4. Pr(B) = 4 52 = Pr(A B) = Pr( kortti on pataässä ) = Koska Pr(A B) = Pr(A) Pr(B), ovat A ja B toisistaan riippumattomat.

54 Sisältö Satunnaisilmiöt, realisaatiot ja tapahtumat Empiirinen, symmetrinen ja yleinen todennäköisyys Todennäköisyyden peruslaskusäännöt Ehdollinen todennäköisyys ja riippumattomuus Kokonaistodennäköisyys ja Bayesin kaava Satunnaismuuttujan käsite Diskreetit satunnaismuuttujat

55 Kokonaistodennäköisyyden kaava Perusjoukon S ositus on kokoelma toisensa poissulkevia tapahtumia B 1,..., B n, joiden yhdiste on S. Laskusääntö Jos B 1,..., B n muodostavat perusjoukon osituksen ja Pr(B i ) 0 kaikilla i, niin n Pr(A) = Pr(B i ) Pr(A B i ). i=1

56 Todistus. Tapahtumat C i = A B i poissulkevat toisensa ja niiden yhdiste on A. Poissulkevien yhteenlaskusäännöstä ja tulosäännöstä Pr(A B i ) = Pr(B i ) Pr(A B i ) seuraa ( n ) Pr(A) = Pr C i = i=1 n Pr(C i ) = i=1 = n Pr(A B i ) i=1 n Pr(B i ) Pr(A B i ). i=1

57 Kokonaistodennäköisyyden kaava: Esimerkki Oletetaan tunnetuksi, että naisista 75 %:lla ja miehistä 15 %:lla on pitkät hiukset. Teekkareista naisia on arviolta 27 %. Millä todennäköisyydellä satunnaisesti ohikulkevalla teekkarilla on pitkät hiukset? H = { ohikulkijalla on pitkät hiukset } N = { ohikulkija on nainen } M = { ohikulkija on mies } Toistensa vastakohtina N ja M muodostavat perusjoukon osituksen. Kokonaistodennäköisyyden kaavasta Pr(H) = Pr(N) Pr(H N) + Pr(M) Pr(H M) = (1 0.27) 0.15 =

58 Bayesin kaava Kun tunnetaan Pr(A B) sekä Pr(A) 0 ja Pr(B) 0, voidaanko määrittää käänteinen ehdollinen todennäköisyys Pr(B A)? Laskusääntö (Bayesin kaava) Pr(B A) = Pr(A B) Pr(B). Pr(A) Todistus. Ehdollisen todennäköisyyden määritelmästä Pr(B A) = Pr(A B) Pr(A) = Pr(A B) Pr(B) Pr(B) Pr(A) = Pr(A B)Pr(B) Pr(A).

59 Bayesin kaava: Esimerkki Oletetaan tunnetuksi, että naisista 75 %:lla ja miehistä 15 %:lla on pitkät hiukset. Teekkareista naisia on arviolta 27 %. Millä todennäköisyydellä satunnaisesti ohikulkeva pitkähiuksinen teekkari on nainen? H = { ohikulkijalla on pitkät hiukset } N = { ohikulkija on nainen } M = { ohikulkija on mies } Tiedetään: Pr(H N) = 0.75 Pr(N) = 0.27 Pr(H) = (edellinen esimerkki) Bayesin kaavaa käyttämällä Pr(N H) = Pr(H N) Pr(N) Pr(H) = %.

60 Laajennettu Bayesin kaava Oletetaan, että B 1,..., B n muodostavat perusjoukon osituksen ja että todennäköisyydet Pr(A B i ) ja Pr(B i ) 0 tunnetaan. Voidaanko näistä määrittää käänteiset ehdolliset todennäköisyydet Pr(B i A)? Fakta (Laajennettu Bayesin kaava) Kun Pr(A) 0, Pr(B i A) = Pr(A B i ) Pr(B i ) n j=1 Pr(A B, i = 1,..., n. j) Pr(B j ) Todistus. Kokonaistodennäköisyyden kaavasta Pr(A) = n j=1 Pr(A B j) Pr(B j ). Aiemmin todistetun Bayesin kaavan mukaan siis Pr(B i A) = Pr(A B i) Pr(B i ) Pr(A) = Pr(A B i ) Pr(B i ) n j=1 Pr(A B j) Pr(B j ).

61 Bayesin kaavan tulkinta Pr(B i A) = Pr(A B i ) Pr(B i ) n j=1 Pr(A B, i = 1,..., n. j) Pr(B j ) Lukuja Pr(B i ) kutsutaan priori-todennäköisyyksiksi prior (lat.) edeltävä, aikaisempi Käsityksemme tapahtuman B i todennäköisyydestä ennen kuin saamme tietää onko tapahtuma A sattunut vai ei. Lukuja Pr(B i A) kutsutaan posteriori-todennäköisyyksiksi posterior (lat.) jälkeen tuleva, myöhäisempi Päivitetty näkemys tapahtuman B i todennäköisyydestä, kun on saatu tietää, että tapahtuma A on sattunut.

62 Esimerkki: Tehtaan laadunvalvonta Samaa tuotetta valmistetaan kahdella tuotantolinjalla. Valmiit tuotteet sekoitetaan ja pakataan laatikoihin. Linjalta 1 valmistuu 3 tuotetta/min, joista 5 % on viallisia. Linjalta 2 valmistuu 5 tuotetta/min, joista 8 % on viallisia. Tarkastetaan satunnaisesta laatikosta satunnaisesti valittu tuote. Millä todennäköisyydellä tarkastettava tuote on linjalta 1? Jos tuote osoittautuu vialliseksi, millä todennäköisyydellä se on linjalta 1?

63 Esimerkki: Tehtaan laadunvalvonta Ratkaisu Linjalta 1 valmistuu 3 tuotetta/min, joista 5 % on viallisia. Linjalta 2 valmistuu 5 tuotetta/min, joista 8 % on viallisia. Tunnetut todennäköisyydet: B 1 = Tuote on linjalta 1, Pr(B 1 ) = 3/8 B 2 = Tuote on linjalta 2, Pr(B 2 ) = 5/8 A = Tuote on viallinen, Pr(A B 1 ) = 0.05, Pr(A B 2 ) = 0.08 Tapahtumat B 1 ja B 2 muodostavat perusjoukon osituksen, joten laajennetulla Bayesin kaavalla Pr(A B 1 ) Pr(B 1 ) Pr(B 1 A) = Pr(A B 1 ) Pr(B 1 ) + Pr(A B 2 ) Pr(B 2 ) /8 = / /

64 Esimerkki: Tehtaan laadunvalvonta Yhteenveto Samaa tuotetta valmistetaan kahdella tuotantolinjalla. Valmiit tuotteet sekoitetaan ja pakataan laatikoihin. Linjalta 1 valmistuu 3 tuotetta/min, joista 5 % on viallisia. Linjalta 2 valmistuu 5 tuotetta/min, joista 8 % on viallisia. Tarkastettavan tuotteen alkuperän priori-todennäköisyydet ovat: Tuote on linjalta 1 tn:llä 3/8 = 37.5 % Tuote on linjalta 2 tn:llä 5/8 = 62.5 % Tarkastettavan tuotteen alkuperän posteriori-todennäköisyydet (sen jälkeen kun tuote on havaittu vialliseksi) ovat: Tuote on linjalta 1 tn:llä 27.3 % Tuote on linjalta 2 tn:llä 72.7 %

65 Todennäköisyyden laskusäännöt Yhteenveto Yhteenlaskusääntö Pr(A B) = Pr(A) + Pr(B) Pr(A B) Tulosääntö = Pr(A) + Pr(B) (kun A ja B poissulkevat toisensa) Pr(A B) = Pr(A) Pr(B A) Kokonaistodennäköisyys = Pr(A) Pr(B) (kun A ja B riippumattomat) Pr(A) = i Pr(B i ) Pr(A B i ) (kun B i :t muodostavat osituksen) Bayesin kaava Laajennettu Bayesin kaava Pr(B A) = Pr(B i A) = Pr(A B i) Pr(B i ) j Pr(A B j) Pr(B j ) Pr(A B) Pr(B) Pr(A) (kun B i :t muodostavat osituksen)

66 Sisältö Satunnaisilmiöt, realisaatiot ja tapahtumat Empiirinen, symmetrinen ja yleinen todennäköisyys Todennäköisyyden peruslaskusäännöt Ehdollinen todennäköisyys ja riippumattomuus Kokonaistodennäköisyys ja Bayesin kaava Satunnaismuuttujan käsite Diskreetit satunnaismuuttujat

67 Satunnaismuuttuja Satunnaismuuttuja on funktio 1 X : S S, joka liittää jokaiseen satunnaisilmiön realisaatioon s S arvon X (s) S. Tulkinta Sattuma määrää satunnaisilmiön realisaation s S. Realisaatio s määrittää satunnaismuuttujan arvon X (s). X :n arvo on a on tapahtuma {X = a} := {s S : X (s) = a}. X kuuluu joukkoon A on tapahtuma {X A } := {s S : X (s) A }. 1 Täsmällisemmin, satunnaismuuttujan tulee olla mitallinen funktio. Tällä tarkoitetaan karkeasti sitä, että satunnaismuuttujaa X : S S koskevalle tapahtumalle {X A} voidaan määritellä todennäköisyys aina kun joukko A S on riittävän säännöllinen. (kts. MS-E1600 Todennäköisyysteoria).

68 Eri tyyppisiä satunnaismuuttujia Satunnaismuuttujasta X : S S saatetaan käyttää nimitystä satunnaisluku, kun S R satunnaisvektori, kun S R n satunnaismatriisi, kun S R m n satunnaisverkko, kun S {n:n solmun verkot} stokastinen prosessi, kun S { ajan t funktiot t f (t)} Tällä kurssilla käsitellään lähes yksinomaan satunnaislukuja (eli reaaliarvoisia satunnaismuuttujia) ja R 2 :n satunnaisvektoreita.

69 Esim. Kolme nopanheittoa Heitetään noppaa kolme kertaa peräkkäin ja merkitään: X = heiton 1 silmäluku Y = silmälukujen summa Z = suurin silmäluku Satunnaisilmiön realisaatiot ovat kolmen alkion järjestetyt jonot s = (s 1, s 2, s 3 ), missä s i {1,..., 6}, ja perusjoukko S on näiden jonojen kokoelma. X, Y, Z ovat perusjoukolla S määriteltyjä satunnaismuuttujia: X (s) = s 1, Y (s) = s 1 + s 2 + s 3, Z(s) = max{s 1, s 2, s 3 }. Huom Jos satunnaisilmiön realisaatio tunnetaan, niin tunnetaan kaikkien siihen liittyvien satunnaismuuttujien arvot.

70 Satunnaismuuttuja: Tulkinta Satunnaismuuttuja on funktio X : S S, joka liittää jokaiseen satunnaisilmiön realisaatioon s S arvon X (s) S. Satunnaismuuttujat ovat satunnaisilmiöstä havaittavia suureita Jos satunnaisilmiön realisaatio s S tiedetään tarkasti, niin tiedetään kaikkien siihen liittyvien satunnaismuuttujien arvot. Todennäköisyyslaskennassa tutkitaan satunnaismuuttujien arvojen todennäköisyyksiä, kun satunnaisilmiötä kuvaava perusjoukon S todennäköisyysjakauma Pr oletetaan tunnetuksi. Tilastotieteessä pyritään havaittujen satunnaismuuttujien arvojen perusteella tekemään johtopäätöksiä perusjoukon S tuntemattomasta todennäköisyysjakaumasta Pr.

71 Satunnaismuuttujan jakauma Satunnaismuuttujan X jakauma P X (A ) := Pr(X A ) kertoo, millä todennäköisyydellä X kuuluu joukkoon A S. Fakta Satunnaismuuttujan X jakauma P X on X :n arvojoukon todennäköisyysjakauma. Näin ollen jakaumaan P X voi soveltaa yleisiä todennäköisyyden laskusääntöjä, esim. P X (A c ) = Pr(X A c ) = Pr(X / A) = 1 Pr(X A) = 1 P X (A).

72 Sisältö Satunnaisilmiöt, realisaatiot ja tapahtumat Empiirinen, symmetrinen ja yleinen todennäköisyys Todennäköisyyden peruslaskusäännöt Ehdollinen todennäköisyys ja riippumattomuus Kokonaistodennäköisyys ja Bayesin kaava Satunnaismuuttujan käsite Diskreetit satunnaismuuttujat

73 Diskreetti satunnaismuuttuja Satunnaismuuttuja X : S S on diskreetti, jos sen arvojoukko S voidaan numeroida muodossa S = {x 1,..., x n } tai S = {x 1, x 2, x 3,... }. Diskreetin satunnaismuuttujan X pistetodennäköisyysfunktio f (x i ) = Pr(X = x i ) kertoo, millä todennäköisyydellä X :n arvo on x i. Pistetodennäköisyysfunktio määrää diskreetin satunnaismuuttujan jakauman, eli sen avulla voidaan laskea tapahtumien {X A} todennäköisyydet kaavasta Pr(X A) = f (x i ). i: x i A

74 Diskreetti tasajakauma Diskreetti satunnaismuuttuja X noudattaa joukon {x 1,..., x n } tasajakaumaa, jos sen pistetodennäköisyysfunktio on f (x i ) = 1, kaikilla i = 1,..., n. n Esim Jos X on symmetrisen nopan heiton silmäluku, niin sen pistetodennäköisyysfunktio on f (k) = Pr(X = k) = 1, k = 1,..., 6. 6 Diskreetti satunnaismuuttuja X siis noudattaa joukon {1,..., 6} tasajakaumaa.

75 Binomijakauma Diskreetti satunnaismuuttuja X noudattaa binomijakaumaa parametrein n ja p, jos X :n arvojoukko on {0, 1,..., n} ja pistetodennäköisyysfunktio on ( ) n f (k) = p k (1 p) n k, kaikilla k = 0, 1,..., n. k Esim Jos X on saatujen kuutosten lukumäärä kolmessa perättäisessä nopanheitossa, niin f (k) = Pr(X = k) = ( 3 k ) ( 1 6 ) k ( ) 5 3 k, k = 0, 1, 2, 3. 6 Diskreetti satunnaismuuttuja X siis noudattaa binomijakaumaa parametrein n = 3 ja p = 1 6.

76 Multinomijakauma Diskreetti satunnaisvektori (X 1,..., X k ) noudattaa multinomijakaumaa parametrein (p 1,..., p k ) ja n, jos sen arvojoukko on {x {0,..., n} k : x x k = n} ja pistetodennäköisyysfunktio on f (x 1,..., x k ) = n! x 1! x k! px1 1 px k k. Esim Millä tn:llä n = 10 nopanheittoa tuottaa tasan 2 ykköstä ja 3 kuutosta? X 1 = ykkösten lkm; X 2 = kuutosten lkm; X 3 = n X 1 X 2 Voidaan todistaa, että (X 1, X 2, X 3 ) noudattaa multinomijakaumaa parametrein (p 1, p 2, p 3 ) = (1/6, 1/6, 4/6) ja n = 10. Kysytty tn = n! x 1!x 2!x 3! px1 1 px2 2 px3 3 = 10! 2!3!5! (1/6)2 (1/6) 3 (4/6) Jos X 1 on binomijakautunut parametrein n ja p, niin tällöin (X 1, n X 1 ) on multinomijakautunut parametrein (p 1, p 2 ) = (p, 1 p) ja n.

77 Ensi viikolla puhumme jatkuvista satunnaismuuttujista ja niiden jakaumista, sekä generoivista funktioista...

78 Aineistolähteet Luentokalvot pohjautuvat osittain kurssin edellisten vuosien luentokalvoihin (Milla Kibble, Kalle Kytölä, Lasse Leskelä, Juuso Liesiö, Ilkka Mellin, Heikki Seppälä).

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Heikki Seppälä, Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Osaamistavoitteet

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Kalle Kytölä, Heikki Seppälä, Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015,

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6B Kertaus ja yhteenveto Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi M-0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 1: Todennäköisyyslaskennan peruskäsitteet; Todennäköisyyden aksioomat; Todennäköisyyslaskennan peruslaskusäännöt; Kokonaistodennäköisyyden

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 1A Todennäköisyyden käsite ja laskusäännöt Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 6 Tilastollinen riippuvuus ja lineaarinen regressio Kalle Kytölä, Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos

Lisätiedot

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1 Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt - Satunnaiskokeet, otosavaruudet ja tapahtumat - Todennäköisyyden määritteleminen KE (2014) 1 Satunnaiskokeet, otosavaruudet ja tapahtumat

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden peruslaskusäännöt >> Uusien tapahtumien muodostaminen

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

30A02000 Tilastotieteen perusteet

30A02000 Tilastotieteen perusteet 30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi

Lisätiedot

MS-A0504 First course in probability and statistics

MS-A0504 First course in probability and statistics MS-A0504 First course in probability and statistics Week 6 Statistical dependence and linear regression Heikki Seppälä Department of mathematics and system analysis School of science Aalto University Spring

Lisätiedot

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,

Lisätiedot

(x, y) 2. heiton tulos y

(x, y) 2. heiton tulos y Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen

Lisätiedot

A. Jos A on niiden perusjoukon S alkioiden x joukko, jotka toteuttavat ehdon P(x) eli joille lause P(x) on tosi, niin merkitsemme

A. Jos A on niiden perusjoukon S alkioiden x joukko, jotka toteuttavat ehdon P(x) eli joille lause P(x) on tosi, niin merkitsemme Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 Aiheet: Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Klassinen todennäköisyys

Lisätiedot

&idx=2&uilang=fi&lang=fi&lvv=2015

&idx=2&uilang=fi&lang=fi&lvv=2015 20.10.2015/1 MTTTP5, luento 20.10.2015 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Todennäköisyyslaskennan käsitteitä Satunnaisuus ja deterministisyys Deterministisessä ilmiössä alkutila määrää lopputilan yksikäsitteisesti. Satunnaisilmiö puolestaan arpoo - yhdestä alkutilasta voi päätyä

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyslaskenta ja puudiagrammit Puutodennäköisyydet Todennäköisyyslaskennan laskusääntöjen

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida

Lisätiedot

Todennäköisyyden käsite ja laskusäännöt

Todennäköisyyden käsite ja laskusäännöt Luku 1 Todennäköisyyden käsite ja laskusäännöt Lasse Leskelä Aalto-yliopisto 12. syyskuuta 2017 1.1 Todennäköisyyden käsite Todennäköisyys on tapa kuvailla kvantitatiivisesti jonkin tapahtuman uskottavuutta,

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden aksioomat Todennäköisyyden määritteleminen Todennäköisyyden aksioomat äärellisissä otosavaruuksissa

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 25.10.2016/1 MTTTP5, luento 25.10.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskenta ja puudiagrammit iite: Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskenta ja puudiagrammit: Mitä opimme? Verkkoteoria

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden aksioomat >> Todennäköisyyden määritteleminen Todennäköisyyden

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden peruslaskusäännöt Tapahtumat Peruslaskusäännöt todennäköisyydelle Ehdollinen todennäköisyys

Lisätiedot

Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt: Esitiedot

Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt: Esitiedot TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskennan peruslaskusäännöt Johdatus todennäköisyyslaskentaan Todennäköisyyslaskennan peruslaskusäännöt TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskennan

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyslaskenta ja puudiagrammit >> Puutodennäköisyydet

Lisätiedot

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja. Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Kurssi käsittelee todennäköisyyslaskentaa ja tilastotiedettä. Laaditaan satunnaisilmiöille todennäköisyysmalleja. Miten hyvin mallit kuvaavat todellisuutta?

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 13. syyskuuta 2007 Antti Rasila () TodB 13. syyskuuta 2007 1 / 21 1 Klassinen todennäköisyys 2 Kombinatoriikkaa Kombinatoriikan perusongelmat Permutaatiot

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Tehtävä 1 on klassikko. 1. Tässä tehtävässä tapahtumat A ja B eivät välttämättä

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 Aiheet: Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Klassinen

Lisätiedot

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

1. laskuharjoituskierros, vko 4, ratkaisut

1. laskuharjoituskierros, vko 4, ratkaisut 1. laskuharjoituskierros, vko 4, ratkaisut D1. Heitetään kahta virheetöntä noppaa, joiden kuudella tahkolla on silmäluvut 1, 2, 3, 4, 5 ja 6. Tällöin heittotuloksiin liittyvä otosavaruus on S = {(x, y)

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Todennäköisyyden käsite ja laskusäännöt

Todennäköisyyden käsite ja laskusäännöt Luku 1 Todennäköisyyden käsite ja laskusäännöt Lasse Leskelä Aalto-yliopisto 17. marraskuuta 2017 1.1 Todennäköisyyden käsite Todennäköisyys on tapa kuvailla kvantitatiivisesti jonkin tapahtuman uskottavuutta,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

1. Matkalla todennäköisyyteen

1. Matkalla todennäköisyyteen 1. Matkalla todennäköisyyteen Wovon man nicht sprechen kann, darüber muss man schweigen (Ludwig Wittgenstein, Tractatus Logico-Philosophicus 1921) Miten ihmeessä tämä liittyy tähän kurssiin????!?? 1.1

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyys ja sen määritteleminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyys ja sen määritteleminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyys ja sen määritteleminen TKK (c) Ilkka Mellin (2005) 1 Todennäköisyys ja sen määritteleminen Deterministisyys ja satunnaisuus Todennäköisyyden määritteleminen

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Satunnaismuuttujat ja jakaumat

Satunnaismuuttujat ja jakaumat Luku 2 Satunnaismuuttujat ja jakaumat Lasse Leskelä Aalto-yliopisto 2. syyskuuta 207 2. Satunnaismuuttujan käsite Käytännön tilanteissa ei yleensä olla kiinnostuneita satunnaisilmiön kaikista yksityiskohdista,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

031021P Tilastomatematiikka (5 op)

031021P Tilastomatematiikka (5 op) 031021P Tilastomatematiikka (5 op) Jukka Kemppainen Mathematics Division Yleinen todennäköisyys Kertausmateriaalissa esiteltiin koulusta tuttuja todennäköisyysmalleja. Tällä kurssilla todennäköisyys on

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Käytännön järjestelyt Luennot: Luennot maanantaisin (sali E) ja keskiviikkoisin (sali U4) klo 10-12 Luennoitsija: (lauri.viitasaari@aalto.fi)

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan

Lisätiedot

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Todennäköisyyslaskennan kertaus Satunnaismuuttujat ja tn-jakaumat Tunnusluvut χ 2 -, F- ja t-jakauma Riippumattomuus Tilastotieteen

Lisätiedot

Satunnaismuuttujan odotusarvo ja laskusäännöt

Satunnaismuuttujan odotusarvo ja laskusäännöt Luku 3 Satunnaismuuttujan odotusarvo ja laskusäännöt Lasse Leskelä Aalto-yliopisto 16. syyskuuta 2017 3.1 Odotusarvon käsite ja suurten lukujen laki Lukuarvoisen satunnaismuuttujan X odotusarvo määritellään

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Johdanto: Deterministisyys ja satunnaisuus Todennäköisyyden määritteleminen Todennäköisyyslaskennan peruskäsitteet TKK (c)

Lisätiedot

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 Luku 1 Bayesläiset estimaattorit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 217 1.1 Bayesläiset piste-estimaatit Tarkastellaan datalähdettä, joka tuottaa tiheysfunktion f(x θ) mukaan jakautuneita riippumattomia

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Stokastiikka ja tilastollinen ajattelu

Stokastiikka ja tilastollinen ajattelu Stokastiikka ja tilastollinen ajattelu Versio 0.990 Lasse Leskelä Aalto-yliopisto 8. maaliskuuta 209 Sisältö Todennäköisyyden käsite ja laskusäännöt 5. Todennäköisyyden käsite...................... 5.2

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja niiden todennäköisyysjakaumat

Lisätiedot

Todennäköisyyslaskenta I. Ville Hyvönen

Todennäköisyyslaskenta I. Ville Hyvönen Todennäköisyyslaskenta I Ville Hyvönen Kesä 2016 Sisältö 1 Todennäköisyys 3 1.1 Klassinen todennäköisyys............................ 3 1.2 Kombinatoriikkaa................................ 6 1.2.1 Tuloperiaate...............................

Lisätiedot

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen

Lisätiedot

Stokastiikka ja tilastollinen ajattelu

Stokastiikka ja tilastollinen ajattelu Stokastiikka ja tilastollinen ajattelu Versio 0.9 Lasse Leskelä Aalto-yliopisto 3. tammikuuta 208 Sisältö Todennäköisyyden käsite ja laskusäännöt 5. Todennäköisyyden käsite...................... 5.2 Satunnaisilmiön

Lisätiedot

Stokastiikka ja tilastollinen ajattelu

Stokastiikka ja tilastollinen ajattelu Stokastiikka ja tilastollinen ajattelu Versio 0.93 Lasse Leskelä Aalto-yliopisto 7. helmikuuta 208 Sisältö Todennäköisyyden käsite ja laskusäännöt 5. Todennäköisyyden käsite...................... 5.2 Satunnaisilmiön

Lisätiedot

Stokastiikka ja tilastollinen ajattelu

Stokastiikka ja tilastollinen ajattelu Stokastiikka ja tilastollinen ajattelu Versio 0.96 Lasse Leskelä Aalto-yliopisto 7. syyskuuta 208 Sisältö Todennäköisyyden käsite ja laskusäännöt 5. Todennäköisyyden käsite...................... 5.2 Satunnaisilmiön

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Kurssin puoliväli ja osan 2 teemat

Kurssin puoliväli ja osan 2 teemat Kurssin puoliväli ja osan 2 teemat Kurssin osa 1 keskittyi mittaukseen, tiedonkeruuseen ja kuvailevaan tilastotieteeseen. Osassa 2 painottuu tilastollinen päättely, joka puolestaan rakentuu voimakkaasti

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku Harjoitus 2 (vko 39/2003) (ihe: tapahtumien todennäköisyys, Laininen luvut 1.6 2.4) 1. Tarkastellaan rinnan- ja sarjaankytketyistä

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

031021P Tilastomatematiikka (5 op)

031021P Tilastomatematiikka (5 op) 031021P Tilastomatematiikka (5 op) Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 11 4 h) ti 12-14 ja to 8-10 (ks. tarkempi opetusohjelma Oodista tms.) Harjoitukset (yht. 11 2 h)

Lisätiedot