MS-A0504 First course in probability and statistics
|
|
- Arttu Honkanen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 MS-A0504 First course in probability and statistics Week 6 Statistical dependence and linear regression Heikki Seppälä Department of mathematics and system analysis School of science Aalto University Spring 2016
2 Contents Description of data set of two variables Least squares method Linear regression
3 Contents Description of data set of two variables Least squares method Linear regression
4 Describing the data set of two variables Collected data: n observed units, p variables. Choose two variables for analysis, which means that we analyse data set (x, y) consisting of pairs (x 1, y 1 ),..., (x n, y n ).
5 Example. Evaluation of the course Can we predict exam points from exercise points? id exam (y) report exercises (x) grade Input (explanatory): x = (0, 20, 0, 16, 20, 17, 3, 9, 12, 0, 19, 0, 17) Output (dependent): y = (0, 17, 15, 12, 19, 21, 0, 13, 19, 0, 15, 12, 13)
6 Scatter plot Data points: (x 1, y 1 ),..., (x n, y n )
7 Sample variance The sample covariance of data vectors x and y is defined by s(x, y) = 1 n 1 n (x i m(x))(y i m(y)), i=1 where m(x) and m(y) are sample means of data vectors. Remark: s(x, x) = s 2 (x) is the sample variance of x s(y, y) = s 2 (y) is the sample variance of y s(x, x) = s(x) is the sample standard deviation of x s(y, y) = s(y) is the sample standard deviation of y
8 Example. Evaluation of the course id exam (y) report exercises (x) grade The sample covariance s(x, y) = cov(x,y) = We need to normalise this to be able to interpret it.
9 Sample correlation Pearson s sample correlation of data vectors x and y is defined by r(x, y) = s(x, y) [ 1, +1] s(x)s(y) Karl Pearson FRS Pearson s correlation measures linear dependence: If r(x, y) > 0, then x and y are positively correlated If r(x, y) = 0, then x and y are uncorrelated If r(x, y) < 0, then x and y are negatively correlated
10 Example. Evaluation of the course id exam (y) report exercises (x) grade Pearson s sample correlation r(x, y) = cor(x,y) = Exercise points and exam points appears to be positively correlated Or is this caused by random variation?
11 Testing for correlations Null hypothesis (stochastic model): Observed pairs (x i, y i ) are realizations of independent random vectors (X i, Y i ) N 2 (µ X, µ Y, σ 2 X, σ2 Y, ρ XY ). H 0 : ρ XY = 0 vs. H 1 : ρ XY 0 William S Gosset (a.k.a. Student ) If the initial hypothesis and the null hypothesis hold, the test statistic t(x, Y ) = r(x, Y ) n 2 1 r(x, Y ) 2 is t-distributed with degrees of freedom n 2. If the absolute value of test statistic is large, then it is unlikely that the null hypothesis is true
12 Example. Evaluation of the course id exam (y) report exercises (x) grade Is the joint distribution of exam and exercise points a bi-variate normal distribution? No. Both variables are discrete and usually neither of them is symmetric. In this case we can not test the correlation using the aforementioned test.however, there are non-parametric tests which can be used also in this setting (course MS-C2104 Introduction to Statistical Inference).
13 Example. Heights of fathers and sons Height Son Father Are the heights of fathers and sons from a bi-variate normal distribution?
14 f Example. Heights of fathers and sons Son Father
15 Example. Heights of fathers and sons Histogram of Fathers Histogram of Sons Density Density Height Height
16 Example. Heights of fathers and sons Are the heights of fathers and sons from a bi-variate normal distribution? Yes - or at least bi-variate normal distribution provides accurate enough approximation. We can test the correlation using the test. Sample correlation is cor(x,y) = The test statistic calculated from the data t(x, y) = p-value Pr( t(x, Y ) 18.85) = 2*(1-pt(18.85,1076)) = 0 Since the p-value is less than 0.01, the null hypothesis (ρ XY = 0) is rejected with 1 % significance level. Conclusion: heights of fathers and sons are linearly dependent.
17 Contents Description of data set of two variables Least squares method Linear regression
18 Example. Evaluation of the course id exam (y) report exercises (x) grade Pearson s sample correlation r(x, y) = Linear dependence between variables is somewhat strong What is the best line for illustrating linear dependence?
19 Scatter plot Data points: (x 1, y 1 ),..., (x n, y n )
20 Fitting the line Fitted values: ŷ i = β 0 + β 1 x i
21 Residuals Residuals: e i = y i ŷ i
22 Minimization of residuals How to choose the optimal slope β 1 and constant β 0?
23 Minimization of residuals Sum of squares of residuals of line ŷ = β 0 + β 1 x SSE(β 0, β 1 ) = n (y i ŷ i ) 2 = i=1 n (y i β 0 β 1 x i ) 2 i=1 Least squares method Find (β 0, β 1 ) such that sum of squared residuals is minimized. Solution: Differentiate SSE(β 0, β 1 ) with respect to β 0 and β 1, set both to zero and solve these equations. Answer: (β 0, β 1 ) = (b 0, b 1 ), where b 1 = r(x, y) s(y) s(x), b 0 = m(y) b 1 m(x).
24 Example. Evaluation of the course id exam (y) report exercises (x) grade Sample means: m(x) = 10.2, m(y) = 12.0 Sample standard deviations: s(x) = 8.51, s(y) = 7.39 Pearson s sample correlation r(x, y) = b 1 = r(x, y) s(y) s(x) = 0.60 b 0 = m(y) b 1 m(x) = 5.82
25 Example: Heights of fathers and sons Height Son Father Sample means: m(x) = , m(y) = Sample standard deviations: s(x) = 6.98, s(y) = 7.14 Pearson s sample correlation r(x, y) = b 1 = r(x, y) s(y) s(x) = b 0 = m(y) b 1 m(x) = 86.83
26 Example: Heights of fathers and sons Height Son Father
27 Contents Description of data set of two variables Least squares method Linear regression
28 Prediction interval of fitted line If we fit a line to a data set of two variables using least squares method, how accurately this line predicts the values of the response variable? How likely it is that the fitted value is close to observed value? We need the stochastic model of statistical experiment.
29 Linear regression model Suppose that the response variable Y depends on input x as follows: Y = β 0 + β 1 x + ɛ, where ɛ N(0, σ 2 ). We take n independent measurements with input values x 1,..., x n and obtain the values Y k = β 0 + β 1 x k + ɛ k, k = 1,..., n, where the random residuals ɛ 1,..., ɛ n of the stochastic model are independent and N(0, σ 2 )-distributed. There are 3 unknown parameters: (β 0, β 1, σ 2 ).
30 Estimation of parameters of linear regression model The best estimators of parameters β 0, β 1 in the sense of expected squared residuals are the least squares estimators b 1 = r(x, y) s(y) s(x), b 0 = m(y) b 1 m(x). Unbiased estimator of the unknown variance parameter σ 2 S 2 = 1 n 2 n (y j ŷ j ) 2 = 1 n 2 k=1 n (y j b 0 b 1 x j ) 2. k=1
31 Prediction interval of fitted value of response We want to predict the value Y ( x) of response variable corresponding to input variable x based on observed data set (x 1,..., x n ; y 1,..., y n ). Predicted value is Ŷ ( x) = b 0 + b 1 x, where b 0, b 1 are estimated from the data using least squares method. The end points of (1 α) prediction interval for the response are b 0 + b 1 x ± t α/2 S ( x m(x))2 + n (n 1)s 2 (x), where t α/2 is a number, for which t(n 2)-distributed random number T satisfies Pr( t α/2 T t α/2 ). Remark: The prediction interval is wider if x is far from the sample mean m(x) of observed data.
32 Example. Evaluation of the course Can we predict the exam points from exercise points? id exam (y) report exercises (x) grade Probably yes - but we can t test it using the method above, because residuals are not normally distributed.
33 Example: Heights of fathers and sons Height Son Father
34 Residuals of the regression model when father is approximately 165cm Histogram of residuals vs. normal distribution Density
35 Example: Heights of fathers and sons Height Son Father
36 Residuals of the regression model when father is approximately 170cm Histogram of residuals vs. normal distribution Density
37 Example: Heights of fathers and sons Can we predict the heights of sons from the heights of fathers? It seems that the residuals are normally distributed with equal variances so we can use the regression model. (The normality assumption for residuals is not necessary, course MS-2128 Prediction and time series analysis.)
38 Height of son, when father is approximately 165cm Heights of sons Density Height Distribution of the heights of sons and the 90% prediction interval, when the height of the father is 165cm.
39 Height of son, when father is approximately 170cm Heights of sons Density Height Distribution of the heights of sons and the 90% prediction interval, when the height of the father is 170cm.
40 Example: Heights of fathers and sons (90 % prediction interval) Height Sons
41 What next?
42 Stochastics and Statistics Courses MS-C2111 S TOKASTISET PROSESSIT MS-E1600 P ROBABILITY THEORY Periodi I, 5 op, tekn. kand. Luennoitsija: Lasse Leskelä Esitiedot: MS-A050X Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A000X Matriisilaskenta MS-A020X Differentiaali- ja integraalilaskenta 2 Stokastisilla prosesseilla mallinnetaan tekniikan, talouden ja luonnontieteiden sovelluksissa esiintyviä ajasta riippuvia satunnaisilmiöitä. Tällä kurssilla opimme analysoimaan stokastisia populaatiomalleja Markov-prosessien avulla sekä ennakoimattomien tapahtumien esiintymistä Poisson-prosessien avulla. Lisäksi opimme analysoimaan yksinkertaisten uhkapelien sijoitusstrategioita martingaalien avulla. Tämän kurssin tiedot ovat tärkeitä useimmilla stokastiikan ja tilastotieteen jatkokursseilla. Period III, 5 cr, MSc Lecturer: Prerequisites: MS-C2103 KOESUUNNITTELU JA TILASTOLLISET MALLIT MS-C2128 E NNUSTAMINEN JA AIKASARJA - ANALYYSI la. Kurssin tavoitteena on oppia, kuinka aikasarjoja analysoidaan ja miten niiden avulla laaditaan ennusteita. Kurssi kattaa yleisimmät mallit, kuten ARIMA-mallit ja dynaamiset regressiomallit, mutta myös muita tulosten kannalta oleellisia asioita, kuten diagnostiikan ja mallin valinnan. Kurssilla käytetään R-ohjelmistoa. -Niels Bohr Jos tietyt matemaattiset oletukset täyttyvät, voidaan tehdä käyttökelpoisia ennusteita historiallisten aikasarja-aineistojen perusteel "Ennustaminen on vaikeaa, varsinkin tulevaisuuden" Date MS-E1601 B ROWNIAN MOTION AND STOCHASTIC ANALYSIS Period II, 5 cr, MSc Lecturer: Prerequisites: Lauri Viitasaari MS-E1600 Probability theory (MS-C2111 Stokastiset prosessit) This course introduces the foundations of stochastic analysis and stochastic integration with respect to a Brownian motion. The course starts with a construction of Brownian motion and analysis of its basic properties, and continues with the construction of Ito stochastic integral. We derive the Ito formula which is the equivalent of the fundamental theorem of calculus for stochastic integrals, and discuss its applications to mathematical finance. MS-E1996 M ULTIVARIATE LOCATION AND SCATTER Where is the data? How is it scattered? When dealing with multivariate observations, the very first questions that come to mind are: 20 Pauliina Ilmonen At least one matrix algebra and one MSc level statistics/probability course 5 Period II, 5 cr, MSc Lecturer: Prerequisites: Periodit III IV, 5 op, tekn. kand./di Luennoitsija: Heikki Seppälä Esitiedot: MS-A050X Todennäköisyyslaskennan ja tilastotieteen peruskurssi Kurssilla esitellään tavallisimpia koejärjestelyitä sekä menetelmiä tilastollisen analyysin tekemiseen. Tavoitteena on oppia valitsemaan sopiva koejärjestely tilastollisen testin toteuttami- seksi, suorittamaan testi ja analysoimaan tulokset. Kurssi kattaa regressioanalyysin perusteet, varianssianalyysin sekä valikoituja koejärjestelyitä, kuten lohkoasetelmat, faktorikokeet sekä vastepintamenetelmän. Kurssilla käytetään R-ohjelmistoa. 20 Tenor basis spread (bp) 40 Periodi II, 5 op, tekn. kand. Luennoitsija: Heikki Seppälä Esitiedot: MS-A050X Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A020X Differentiaali- ja integraalilaskenta 2 (MS-C2111 Stokastiset prosessit) Kalle Kytölä MS-C1540 Euklidiset avaruudet This course is about the mathematical foundations of randomness. Most advanced topics in stochastics and statistics rely on probability theory. The basic constructions are identical to measure theory, but there are a number of distinctly probabilistic features such as independence, notions of convergence of random variables, information contained in a sigma-algebra, conditional expectation, characteristic functions and generating functions, laws of large numbers and central limit theorems, etc. These questions are discussed together with selected applications. This is an advanced course in statistics for MSc and doctoral students. Only 10 students are admitted to this course, so the lecturer ASAP to register. Topics include: M-estimates of location and scatter, MCD-estimates, spatial sign and rank based estimates, multivariate location tests, autocovariance matrices and applications, PCA using different location and scatter estimates, multivariate regression analysis based on spatial signs and ranks, scatter matrix based ICA, complex time series ICA, ICS and skewness and kurtosis. MS-C2104 T ILASTOLLISEN ANALYYSIN PERUSTEET Periodit III IV, 5 op, tekn. kand./di Luennoitsija: Pauliina Ilmonen Esitiedot: MS-A050X Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A000X Matriisilaskenta Kurssi on johdatus tietokoneavusteiseen tilastolliseen analyysiin ja tilastolliseen päättelyyn. Kurssin aiheita ovat estimointi ja väliestimointi, yksinkertaiset parametriset ja epäparametriset testit, tilastollinen riippuvuus ja korrelaatio, lineaarinen regressioanalyysi ja varianssianalyysi. Kurssilla käytetään R-ohjelmistoa. MS-E2112 M ULTIVARIATE STATISTICAL ANALYSIS Periods III IV, 5 cr, MSc Lecturer: Pauliina Ilmonen Prerequisites: At least one statistics/probability and one matrix algebra course This course is an introduction to multivariate statistical analysis. The goal is to learn basics of common multivariate data analy- sis techniques and to use the methods in practice. Software R is used in the exercises of this course. The topics of the course are multivariate location and scatter, principal component analysis, bivariate correspondence analysis, multivariate correspondence analysis, canonical correlation analysis, discriminant analysis, classification, and clustering. MS-E1602 L ARGE RANDOM SYSTEMS Period IV, 5 cr, MSc Lecturers: Lasse Leskelä and Kalle Kytölä Prerequisites MS-E1600 Probability theory, (MS-C2111 Stokastiset prosessit) Many interesting random systems contain a large number of simpler constituents interacting with each other. This course covers both mathematical techniques for the study of such systems, and important probabilistic models of a range of different phenomena. The theory focuses on tightness and weak convergence of probability measures. Examples include random walk and Brownian motion, percolation, Curie-Weiss model and Ising model, and voter model and contact process.
43 Stochastics & Aalto Bachelor courses First course in probability and statistics (E) Stochastic processes Introduction to Statistical Inference (E) Design of experiments and statistical models Prediction and time series analysis Masters courses Probability theory (E) Large random systems (E) Multivariate statistical analysis (E) Brownian motion and stochastic analysis (E) Multivariate location and scatter (E)
44 The course ends here. Thanks for attending and good luck for exams!
45 References The slides are partly based on the previous lecture slides (Ilkka Mellin, Milla Kibble, Juuso Liesiö, Lasse Leskelä, Kalle Kytölä).
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6B Kertaus ja yhteenveto Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 6 Tilastollinen riippuvuus ja lineaarinen regressio Kalle Kytölä, Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotCapacity Utilization
Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run
LisätiedotEfficiency change over time
Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel
LisätiedotThe CCR Model and Production Correspondence
The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls
LisätiedotE80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering
Lecture 2 Data Uncertainty, Data Fitting, Error Propagation Jan. 23, 2014 Jon Roberts Purpose & Outline Data Uncertainty & Confidence in Measurements Data Fitting - Linear Regression Error Propagation
LisätiedotUEF Statistics Teaching Bulletin, Fall 2017
UEF Statistics Teaching Bulletin, Fall 2017 The minor subject of statistics offers methodological courses to all students of the university. In Fall 2017, we offer the following basic courses in Finnish:
LisätiedotReturns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu
Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Kalle Kytölä, Heikki Seppälä, Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015,
LisätiedotGap-filling methods for CH 4 data
Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling
LisätiedotOther approaches to restrict multipliers
Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of
LisätiedotAlternative DEA Models
Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex
LisätiedotT Statistical Natural Language Processing Answers 6 Collocations Version 1.0
T-61.5020 Statistical Natural Language Processing Answers 6 Collocations Version 1.0 1. Let s start by calculating the results for pair valkoinen, talo manually: Frequency: Bigrams valkoinen, talo occurred
LisätiedotInformation on preparing Presentation
Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals
Lisätiedot16. Allocation Models
16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Heikki Seppälä, Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Osaamistavoitteet
LisätiedotValuation of Asian Quanto- Basket Options
Valuation of Asian Quanto- Basket Options (Final Presentation) 21.11.2011 Thesis Instructor and Supervisor: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Kevät 2016, periodi III Stochastics and
LisätiedotStatistical design. Tuomas Selander
Statistical design Tuomas Selander 28.8.2014 Introduction Biostatistician Work area KYS-erva KYS, Jyväskylä, Joensuu, Mikkeli, Savonlinna Work tasks Statistical methods, selection and quiding Data analysis
LisätiedotInformation on Finnish Language Courses Spring Semester 2017 Jenni Laine
Information on Finnish Language Courses Spring Semester 2017 Jenni Laine 4.1.2017 KIELIKESKUS LANGUAGE CENTRE Puhutko suomea? Do you speak Finnish? -Hei! -Moi! -Mitä kuuluu? -Kiitos, hyvää. -Entä sinulle?
LisätiedotUEF Statistics Teaching Bulletin, Spring 2018
UEF Statistics Teaching Bulletin, Spring 2018 The minor subject of statistics offers methodological courses to all students of the university. In Spring 2018, we offer the following basic courses in Finnish:
LisätiedotBounds on non-surjective cellular automata
Bounds on non-surjective cellular automata Jarkko Kari Pascal Vanier Thomas Zeume University of Turku LIF Marseille Universität Hannover 27 august 2009 J. Kari, P. Vanier, T. Zeume (UTU) Bounds on non-surjective
LisätiedotInformation on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies
Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine 4.1.2018 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve
LisätiedotOn instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 1A Todennäköisyyden käsite ja laskusäännöt Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotLYTH-CONS CONSISTENCY TRANSMITTER
LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are
LisätiedotMS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot
LisätiedotMS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Aikataulu ja suoritustapa (Katso MyCourses) Luennot
LisätiedotAlternatives to the DFT
Alternatives to the DFT Doru Balcan Carnegie Mellon University joint work with Aliaksei Sandryhaila, Jonathan Gross, and Markus Püschel - appeared in IEEE ICASSP 08 - Introduction Discrete time signal
LisätiedotOn instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
LisätiedotOPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI
OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI 2008-2009 Muutokset on hyväksytty teknillisen tiedekunnan tiedekuntaneuvostossa 13.2.2008 ja 19.3.2008. POISTUVAT OPINTOJAKSOT:
LisätiedotMaster's Programme in Life Science Technologies (LifeTech) Prof. Juho Rousu Director of the Life Science Technologies programme 3.1.
Master's Programme in Life Science Technologies (LifeTech) Prof. Juho Rousu Director of the Life Science Technologies programme 3.1.2017 Life Science Technologies Where Life Sciences meet with Technology
LisätiedotMS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Aikataulu ja suoritustapa (Katso MyCourses) Luennot
Lisätiedot19. Statistical Approaches to. Data Variations Tuomas Koivunen S ysteemianalyysin. Laboratorio. Optimointiopin seminaari - Syksy 2007
19. Statistical Approaches to Data Variations Tuomas Koivunen 24.10.2007 Contents 1. Production Function 2. Stochastic Frontier Regressions 3. Example: Study of Texas Schools 4. Example Continued: Simulation
Lisätiedot1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,
LisätiedotI. Principles of Pointer Year Analysis
I. Principles of Pointer Year Analysis Fig 1. Maximum (red) and minimum (blue) pointer years. 1 Fig 2. Principle of pointer year calculation. Fig 3. Skeleton plot graph created by Kinsys/Kigraph programme.
LisätiedotBachelor level exams by date in Otaniemi
Bachelor level exams by date in Otaniemi 2015-2016 (VT1 means that the place of the exam will be announced later) YOU FIND INFORMATION ABOUT THE PLACE OF THE EXAM IN OTAKAARI 1 U-WING LOBBY (M DOOR) Day
LisätiedotBachelor level exams by subject in Otaniemi
Bachelor level exams by subject in Otaniemi 2015-2016 (VT1 means that the place of the exam will be announced later) YOU FIND INFORMATION ABOUT THE PLACE OF THE EXAM IN OTAKAARI 1 U-WING LOBBY (M DOOR)
Lisätiedot7.4 Variability management
7.4 Variability management time... space software product-line should support variability in space (different products) support variability in time (maintenance, evolution) 1 Product variation Product
LisätiedotKvanttilaskenta - 2. tehtävät
Kvanttilaskenta -. tehtävät Johannes Verwijnen January 8, 05 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem The inner product of + and is. Edelleen false, kts. viikon tehtävä 6..
LisätiedotHARJOITUS- PAKETTI A
Logistiikka A35A00310 Tuotantotalouden perusteet HARJOITUS- PAKETTI A (6 pistettä) TUTA 19 Luento 3.Ennustaminen County General 1 piste The number of heart surgeries performed at County General Hospital
Lisätiedot1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.
START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The
LisätiedotOn instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
LisätiedotSIMULINK S-funktiot. SIMULINK S-funktiot
S-funktio on ohjelmointikielellä (Matlab, C, Fortran) laadittu oma algoritmi tai dynaamisen järjestelmän kuvaus, jota voidaan käyttää Simulink-malleissa kuin mitä tahansa valmista lohkoa. S-funktion rakenne
LisätiedotThe Viking Battle - Part Version: Finnish
The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman
LisätiedotUusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen
LisätiedotSupplementary Table S1. Material list (a) Parameters Sal to Str
Tooth wear as a means to quantify intra-specific variations in diet and chewing movements - Scientific Reports 2016, 6:3037 Ivan Calandra, Gaëlle Labonne, Ellen Schulz-Kornas, Thomas M. Kaiser & Sophie
LisätiedotCapacity utilization
Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure
LisätiedotKysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)
Tilasto T1106120-s2012palaute Kyselyn T1106120+T1106120-s2012palaute yhteenveto: vastauksia (4) Kysymys 1 Degree programme: (4) TIK: TIK 1 25% ************** INF: INF 0 0% EST: EST 0 0% TLT: TLT 0 0% BIO:
LisätiedotOP1. PreDP StudyPlan
OP1 PreDP StudyPlan PreDP The preparatory year classes are in accordance with the Finnish national curriculum, with the distinction that most of the compulsory courses are taught in English to familiarize
LisätiedotFinFamily PostgreSQL installation ( ) FinFamily PostgreSQL
FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...
LisätiedotEsim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501
Esim. 2.1.1. Brand lkm keskiarvo keskihajonta A 10 251,28 5,977 B 10 261,06 3,866 C 10 269,95 4,501 y = 260, 76, n = 30 SS 1 = (n 1 1)s 2 1 = (10 1)5, 977 2 321, 52 SS 2 = (n 2 1)s 2 2 = (10 1)3, 8662
LisätiedotECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana
ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana Taustaa KAO mukana FINECVET-hankeessa, jossa pilotoimme ECVETiä
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotResults on the new polydrug use questions in the Finnish TDI data
Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen
LisätiedotNational Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its
LisätiedotInformation on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku Centre for Language and Communication Studies
Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku 24.8.2017 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve terve!
Lisätiedot1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä
OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 811122P (5 op.) 12.12.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan
LisätiedotLiite B. Suomi englanti-sanasto
Liite B Suomi englanti-sanasto Alla tässä monisteessa esiintynyttä sanastoa englanniksi käännettynä. Monet tähän aihepiiriin liittyvät termit eivät kuitenkaan ole täysin vakiintuneita kummassakaan kielessä.
LisätiedotTilastotieteen johdantokurssi (TJK) 3 tai 5 op Introduction to Statistics
Tilastotieteen johdantokurssi (TJK) 3 tai 5 op 3622230 Introduction to Statistics Osaamistavoitteet: Tutustua havaintoaineiston hankintamenetelmiin ja sen problematiikkaan. Perehtyä havaintoaineiston kuvailumenetelmiin.
LisätiedotNetwork to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi
Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi
LisätiedotLauri Tarkkonen: Erottelu analyysi
Lauri Tarkkonen: Erottelu analyysi Erotteluanalyysin ongelma on kaksijakoinen:. Mikä havaittujen muuttujien (x i ) lineaarinen yhdistely erottaa mahdollisimman hyvin toisistaan tunnetut ryhmät? Siis selitettävä
LisätiedotStrict singularity of a Volterra-type integral operator on H p
Strict singularity of a Volterra-type integral operator on H p Santeri Miihkinen, University of Helsinki IWOTA St. Louis, 18-22 July 2016 Santeri Miihkinen, University of Helsinki Volterra-type integral
Lisätiedot812336A C++ -kielen perusteet, 21.8.2010
812336A C++ -kielen perusteet, 21.8.2010 1. Vastaa lyhyesti seuraaviin kysymyksiin (1p kaikista): a) Mitä tarkoittaa funktion ylikuormittaminen (overloading)? b) Mitä tarkoittaa jäsenfunktion ylimääritys
LisätiedotTIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo
TIEKE Verkottaja Service Tools for electronic data interchange utilizers Heikki Laaksamo TIEKE Finnish Information Society Development Centre (TIEKE Tietoyhteiskunnan kehittämiskeskus ry) TIEKE is a neutral,
LisätiedotGeneral studies: Art and theory studies and language studies
General studies: Art and theory studies and language studies Centre for General Studies (YOYO) Aalto University School of Arts, Design and Architecture ARTS General Studies General Studies are offered
LisätiedotCategorical Decision Making Units and Comparison of Efficiency between Different Systems
Categorical Decision Making Units and Comparison of Efficiency between Different Systems Mat-2.4142 Optimointiopin Seminaari Source William W. Cooper, Lawrence M. Seiford, Kaoru Tone: Data Envelopment
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotTeknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät
Numeeriset menetelmät 1. välikoe, 14.2.2009 1. Määrää matriisin 1 1 a 1 3 a a 4 a a 2 1 LU-hajotelma kaikille a R. Ratkaise LU-hajotelmaa käyttäen yhtälöryhmä Ax = b, missä b = [ 1 3 2a 2 a + 3] T. 2.
LisätiedotOPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAn JA FYSIIKAN LAITOS LUKUVUOSI
OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAn JA FYSIIKAN LAITOS LUKUVUOSI 007-008 POISTUVAT OPINTOJAKSOT: Ti41010 Matematiikka EnA1 op Ti41010 Matematiikka KeA1 op Ti410170 Matematiikka SäA1 op Ti410140
Lisätiedot1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä
OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 81122P (4 ov.) 30.5.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan
LisätiedotToppila/Kivistö 10.01.2013 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.
..23 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla -6 pistettä. Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (a) Lineaarisen kokonaislukutehtävän
Lisätiedot1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Usean selittäjän lineaarinen regressiomalli Estimaatti, Estimaattori, Estimointi, Jäännösneliösumma, Jäännöstermi, Jäännösvarianssi,
LisätiedotTilanne sekä MS-A0003/4* Matriisilaskenta 5 op
MATEMATIIKKA Mat-1.1210 Matematiikan peruskurssi S1 ei järjestetä enää MS-A0103/4* Differentiaali- ja integraalilaskenta I 5 op sekä MS-A0003/4* Matriisilaskenta 5 op Mat-1.1110 Matematiikan peruskurssi
LisätiedotUEF Statistics Teaching Bulletin, Spring 2017
UEF Statistics Teaching Bulletin, Spring 2017 The minor subject of statistics offers methodological courses to all students of the university. In Spring 2017, we offer the following basic courses in Finnish:
LisätiedotWindows Phone. Module Descriptions. Opiframe Oy puh. +358 44 7220800 eero.huusko@opiframe.com. 02600 Espoo
Windows Phone Module Descriptions Mikä on RekryKoulutus? Harvassa ovat ne työnantajat, jotka löytävät juuri heidän alansa hallitsevat ammatti-ihmiset valmiina. Fiksuinta on tunnustaa tosiasiat ja hankkia
LisätiedotTM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.9.269
Lisätiedotmake and make and make ThinkMath 2017
Adding quantities Lukumäärienup yhdistäminen. Laske yhteensä?. Countkuinka howmonta manypalloja ballson there are altogether. and ja make and make and ja make on and ja make ThinkMath 7 on ja on on Vaihdannaisuus
LisätiedotHITSAUKSEN TUOTTAVUUSRATKAISUT
Kemppi ARC YOU GET WHAT YOU MEASURE OR BE CAREFUL WHAT YOU WISH FOR HITSAUKSEN TUOTTAVUUSRATKAISUT Puolitetaan hitsauskustannukset seminaari 9.4.2008 Mikko Veikkolainen, Ratkaisuliiketoimintapäällikkö
LisätiedotResearch plan for masters thesis in forest sciences. The PELLETime 2009 Symposium Mervi Juntunen
Modelling tree and stand characteristics and estimating biomass removals and harvesting costs of lodgepole pine (Pinus contorta) plantations in Iceland Research plan for masters thesis in forest sciences
LisätiedotOperatioanalyysi 2011, Harjoitus 2, viikko 38
Operatioanalyysi 2011, Harjoitus 2, viikko 38 H2t1, Exercise 1.1. H2t2, Exercise 1.2. H2t3, Exercise 2.3. H2t4, Exercise 2.4. H2t5, Exercise 2.5. (Exercise 1.1.) 1 1.1. Model the following problem mathematically:
LisätiedotC++11 seminaari, kevät Johannes Koskinen
C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,
LisätiedotOperatioanalyysi 2011, Harjoitus 4, viikko 40
Operatioanalyysi 2011, Harjoitus 4, viikko 40 H4t1, Exercise 4.2. H4t2, Exercise 4.3. H4t3, Exercise 4.4. H4t4, Exercise 4.5. H4t5, Exercise 4.6. (Exercise 4.2.) 1 4.2. Solve the LP max z = x 1 + 2x 2
LisätiedotMat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Mat-2.4142 Seminar on Optimization Data Envelopment Analysis Economies of Scope 21.11.2007 Economies of Scope Introduced 1982 by Panzar and Willing Support decisions like: Should a firm... Produce a variety
Lisätiedot7. Product-line architectures
7. Product-line architectures 7.1 Introduction 7.2 Product-line basics 7.3 Layered style for product-lines 7.4 Variability management 7.5 Benefits and problems with product-lines 1 Short history of software
LisätiedotMetsälamminkankaan tuulivoimapuiston osayleiskaava
VAALAN KUNTA TUULISAIMAA OY Metsälamminkankaan tuulivoimapuiston osayleiskaava Liite 3. Varjostusmallinnus FCG SUUNNITTELU JA TEKNIIKKA OY 12.5.2015 P25370 SHADOW - Main Result Assumptions for shadow calculations
LisätiedotISEB/ISTQB FOUNDATION CERTIFICATE IN SOFTWARE TESTING III
KOULUTUSTIEDOTE 1(5) ISEB/ISTQB FOUNDATION CERTIFICATE IN SOFTWARE TESTING III Kuvaus ja tavoite ISEB/ISTQB Foundation Certificate in Software Testing -sertifikaattiin valmentava koulutus (2,5 pv) ja sertifikaattikoe
LisätiedotTM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
LisätiedotConstructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland
Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland Anne Mari Juppo, Nina Katajavuori University of Helsinki Faculty of Pharmacy 23.7.2012 1 Background Pedagogic research
LisätiedotKvanttilaskenta - 1. tehtävät
Kvanttilaskenta -. tehtävät Johannes Verwijnen January 9, 0 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem False, sillä 0 0. Problem False, sillä 0 0 0 0. Problem A quantum state
LisätiedotMALE ADULT FIBROBLAST LINE (82-6hTERT)
Double-stranded methylation patterns of a 104-bp L1 promoter in DNAs from male and female fibroblasts, male leukocytes and female lymphoblastoid cells using hairpin-bisulfite PCR. Fifteen L1 sequences
Lisätiedot,0 Yes ,0 120, ,8
SHADOW - Main Result Calculation: Alue 2 ( x 9 x HH120) TuuliSaimaa kaavaluonnos Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered
LisätiedotMiehittämätön meriliikenne
Rolls-Royce & Unmanned Shipping Ecosystem Miehittämätön meriliikenne Digimurros 2020+ 17.11. 2016 September 2016 2016 Rolls-Royce plc The 2016 information Rolls-Royce in this plc document is the property
LisätiedotUse of spatial data in the new production environment and in a data warehouse
Use of spatial data in the new production environment and in a data warehouse Nordic Forum for Geostatistics 2007 Session 3, GI infrastructure and use of spatial database Statistics Finland, Population
Lisätiedot( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145
OX2 9 x N131 x HH145 Rakennuskanta Asuinrakennus Lomarakennus Liike- tai julkinen rakennus Teollinen rakennus Kirkko tai kirkollinen rak. Muu rakennus Allas Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 2 km
LisätiedotTM ETRS-TM35FIN-ETRS89 WTG
VE1 SHADOW - Main Result Calculation: 8 x Nordex N131 x HH145m Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia/Exercises 2017 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotTM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Calculation: N117 x 9 x HH141 Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG
Lisätiedot