Äärellisten mallien teoria

Koko: px
Aloita esitys sivulta:

Download "Äärellisten mallien teoria"

Transkriptio

1 Äärellisten mallien teoria Harjoituksen 4 ratkaisut Tehtävä 1. Määritä suurin aste k, johon saakka kuvan verkot G ja G ovat osittaisesti isomorfisia: Ratkaisu 1. Huomataan aluksi, että G =4 G : Ehrenfeucht-Fraïssé pelissä Akseli valitsee neljän pituisessa pelissä ensin verkon G keskipisteen (ainoan solmun astetta kolme) ja sen jälkeen vuoron perään kaikki sen naapurit. Elina ei pysty matkimaan, koska verkossa G ei ole astetta kolme olevaa solmua. Osoitetaan seuraavaksi että G = 3 G. Olkoon g verkon G keskellä oleva kolmiasteinen solmu ja olkoon g vastaavasti verkon G keskimmäinen solmu. Määritellään ekvivalenssirelaatio verkoissa siten, että kaikilla a, b G, a b jos a = b tai on olemassa polku solmujen a ja b välillä, joka ei kulje solmun g kautta. Samoin määritellään kaikilla a, b G, a b jos a = b tai on olemassa polku solmujen a ja b välillä, joka ei kulje solmun g kautta. Tarkoittakoon d G (a, b) tavallista etäisyyttä, eli lyhimmän polun pituutta, solmujen a ja b välillä. Valitaan I 3 = { } I 2 = {{(a, a )} d G (g, a) = d G (g, a )} I 1 = {{(a, a ), (b, b )} d G (g, a) = d G (g, a ), d G (g, b) = d G (g, b ), a b a b } I 0 = Part(G, G ). Kuvaus laajenee edestakaisesti I 2 :een, koska etäisin solmu g:stä verkossa G on etäisyyden 3 päässä, kuten on myös etäisin solmu verkossa G solmusta g ja laajentamiseksi riittää löytää solmu, joka on yhtä etäällä keskustasta kuin toisessa verkossa. Olkoon sitten p = {(a, a )} I 2. Osoitetaan, että se laajenee edestakaisin I 1 :een. Jos b G, riittää valita b siten, että d(g, b ) = d(g, b) ja b a b a. Koska G :ssa on kaksi ekvivalenssiluokkaa, jossa on alkiot kutakin 1

2 etäisyyttä 1, 2, 3 kohden, tällainen löytyy. Samoin laajennus onnistuu toiseen suuntaan. Olkoon sitten p = {(a, a ), (b, b )} I 1 ja c G. Valitaan c siten, että p {(c, c )} on osittainen isomorfismi. Jos c a tai c b valitaan c siten, että d(c, g) = d(c, g ) ja c a jos c a ja c b jos c b. Jos c a ja c b valitaan c seuraavasti. Jos a = g tai b = g, valitaan c vapaasta ekvivalenssiluokasta, jossa on kolme alkiota. Muutoin (a, c) / E G ja (b, c) / E G ja G :sta voitaan valita alkio c joka ei ole a :n tai b naapuri (G :ssa on 7 alkiota ja a, b ja näiden naapurit ovat yhteensä 6 alkiota). Laajennus toiseen suuntaan on yksinkertaisempi, koska G:ssä on enemmän ekvivalenssiluokkia. Tehtävä 2. Olkoon n N ja τ = {U, } relationaalinen aakkosto, missä #(U) = 1 ja #( ) = 2. Tarkastellaan aakkoston τ malleja M, joissa M on universumin lineaarijärjestys. Kun k = 0, 1, 2, log 2 n 1, esitä esimerkki tällaisista malleista A k ja B k, joiden koot ovat n ja n + 1, A k =k B k sekä A k =k+1 B k. Ratkaisu 2. Tämän tehtävän ratkaisussa käytetään alla olevia tehtäviä 4 ja 5 sekä luentojen Lausetta 7.1. Käsitellään ensin tapaukset k {1, 2}. Oletetaan, että mallien universumit ovat doma = {0,..., n 1} ja domb = {0,..., n} ja että lineaarijärjestys noudattaa luonnollisten lukujen järjestystä. Kun k = 1, niin olkoon U A yksiö ja U B kahden alkion joukko (mahdollista, koska n 1, sillä mallin määritelmän nojalla sen universumi ei voi olla tyhjä). Silloin Elina voittaa yhden mittaisen pelin: molemmissa struktuureissa on alkioita jotka ovat U:ssa ja alkioita U:n ulkopuolella. Mutta kahden mittaisen pelin hän häviää: ensin Akseli valitsee B:stä alkion b 0 U B, jolloin Elinan on pakko vastata alkiolla a 0 U A ja sitten Akseli poimii toisen b 1 U B johon Elina ei pysty vastaamaan, sillä mikään a 1 doma, joka ei ole a 0 ei ole joukossa U A. Kun k = 2, on järkevää tarkastella ainoastaan tilannetta n > 2, koska jos lineaarijärjestysten koot ovat 2 ja 3, niin Akseli voittaa kahden siirron mittaisen EF-pelin pelaamalla ensin 3:n pituisen lineaarijärjestyksen keskelle. Oletetaan, että n > 2 ja asetetaan U A = {0, 1, 2} ja U B = {0, 1, 2, 3}. Nyt selvästi A = 2 B, mutta kolmen siirron pelissä Akseli valitsee B:stä alkiot 1 ja 2, jonka jälkeen Elina on jättänyt valitsemasta jonkun yhden alkion joukosta U A. Jos se on 0, Akseli voittaa pelaamalla 3 B, jos se on 2, Akseli voittaa pelaamalla 0 B ja jos se on 1, niin Akseli voittaa pelaamalla sen, eli 1 A. Käsitellään seuraavaksi tapaus k = log 2 (n 1). 2

3 Kun n = 1, k ei ole määritelty ja kun n = 2, niin k = 0: silloin asetetaan U A = doma ja U B =, jolloin selvästi A = 0 B, mutta A =1 B. Oletetaan n > 2. Olkoon A = A k ja B = B k seuraavat mallit. Oletetaan jälleen, että doma = {0,..., n 1} ja domb = {0,..., n} ja lineaarijärjestys noudattaa luonnollisten lukujen järjestystä. Huomataan, että määritelmän nojalla 2 k n 1 2 k+1, Asetetaan U A = U B = {0,..., m 1}, missä m = n (2 k 1). (Jos m = 0, niin U A = U B = ) Merkitään A = A U A A + = A (doma \ U A ) B = B U B B + = B (domb \ U B ). Nyt A + = 2 k 1 ja B + = 2 k. Näytetään, että A = r B jos ja vain jos A + =r B +. Jos A = r B, niin selvästi A + =r B +, koska Elinan voittostrategia pelissä EF r (A, B) on sellainen, että jos Akseli pelaa joukkoon doma + domb +, niin Elina vastaa saman joukon alkiolla (muuten hän häviäisi), eli Elina voi soveltaa samaa strategiaa pelissä EF r (A +, B + ) ja voittaa. Toisaalta oletetaan että A + =r B +. Huomataan että A = A A + ja B = B B +, ja A = B, joten tehtävän 4 nojalla A = r B. Nyt tehtävän 5 nojalla A =k+1 B, koska A + isomorfisinen (2 k 1)-pituisen lineaarijärjestyksen kanssa ja B, 2 k -pituisten. Toisaalta Lauseesta 7.1 seuraa että A = k B samasta syystä. Tehtävä 3. Olkoon S = {(k, k + 1) k {0,..., 3n 2}} joukon X = {0,..., 3n 1} seuraajarelaatio, n N. Tarkastellaan malleja M = X, S, n 1, 2n 1 ja N = X, S, 2n 1, n 1. Osoita, että M = r N, missä r = log 2 n 1. Ratkaisu 3. Olkoon X = {0,..., 3n 1} ja M = X, S, n 1, 2n 1 ja N = X, S, 2n 1, n 1. 3

4 Jos a, a X ja h N, olkoon f a,a,h osittainen kuvaus X X siten, että dom(f a,a,h) = {x X x a < h} ja f a,a,h(x) = a a + x. Kun p on osittainen kuvaus X X, olkoon g p,h = {(x, x) x < h tai x > 3n 1 h} f n 1,2n 1,h f 2n 1,n 1,h f a,p(a),h. Olkoon a dom(p) I i = {p Part(M, N) g p,2 i on osittainen injektiivinen kuvaus}. Osoitetaan aluksi, että I r. Tämä seuraa siitä, että h = 2 r = 2 log 2 n 1 2 log 2 n 1 = n/2 ja x x + n g,h (x) = x n x if x < h if n 1 h < x < n 1 + h if 2n 1 h < x < 2n 1 + h if x > 3n 1 h on tällöin osittainen injektiivinen kuvaus. Olkoon sitten p I i+1. Osoitetaan, että p laajenee edestakaisesti I i :hin. Olkoon a X. Jos a / dom(g p,2 i+1), valitaan mielivaltaisesti a X \ ran(g p,2 i+1). Tällöin dom(g p,2 i) dom(f a,a,2 i) = ja ran(g p,2 i) ran(f a,a,2 i) =, joten g p,2 i = g p,2 i f a,a,2i on osittainen injektiivinen kuvaus. Lisäksi a ei ole minkään dom(p) alkion seuraaja tai edeltäjä, eikä a ole minkään ran(p) alkion seuraaja tai edeltäjä, joten p on osittainen isomorfismi. Jos a dom(g p,2 i+1), olkoon a = g p,2 i+1(a) ja laajennetaan p = p {(a, a )}. Jos b dom(p) ja (a, b) S, a b 1 < 2 i+1, joten a = g p,2 i+1(a) = f b,p(b),2 i+1(a) = p(b) b + a = p(b) 1. Siispä (a, b ) S. Koska sama pätee toisin päin, p on osittainen isomorfismi. Täytyy vielä osoittaa, että g p,2 i on osittainen injektiivinen kuvaus. Jos b dom(p) ja b a < 2 i+1, b a = p(b) a, joten f a,a,2 i ja f b,p(b),2 i ovat yhteensopivia. Jos b a 2 i+1, f a,a,2 i ja f b,p(b),2i ovat myös yhteensopivia, koska dom(f a,a,2 i) dom(f b,p(b),2 i) = ja ran(f a,a,2 i) ran(f b,p(b),2i) =. Samoin on laita f n 1,2n 1,2 i, f 2n 1,n 1,2 i ja kuvauksen g p,2i reunoilla olevien osien kanssa. Tehtävä 4. Olkoon τ relationaalinen aakkosto, k N sekä M ja N aakkoston τ malleja, joilla on erilliset perusjoukot. Mallipari (tai erillinen yhdiste) M N on määritelmän mukaan aakkoston τ malli A, jolle dom(a) = dom(m) dom(n) ja R A = R M R N, kun R τ = Rel(τ). Olkoot M ja N 4

5 myös aakkoston τ malleja, joille dom(m ) dom(n ) =. Osoita, että jos M = k M ja N = k N, niin M N = k N N. Ratkaisu 4. Olkoon (I 0,... I k ) jono osittaisia isomorfismeja joka todistaa ekvivalenssin M = k M ja (J 0,... J k ) vastaavasti ekvivalenssille N = N. Olkoon jokaiselle 0 i k K i = {p q p I k a, q J k b, a + b = k i}. Osoitetaan, että tämä jono osittaisia isomorfismeja kelpaa näyttämään että M N = k M N. Ensin pitää osoittaa, että p q on osittainen isomorfismi M N M N mikäli p ja q ovat osittaisia isomorfismeja M M ja N N. Todistetaan, että p q säilyttää relaatiosymboolien tulkinnat ja jätetään loput lukijan tehtäväksi. Olkoon ā = (a 0,..., b n ) jono mallin M M alkioita. Jos ā:ssa esiintyy alkioita sekä M:stä että M :sta, niin määritelmän mukaan ā ei ole yhdessäkään relaatiossa. Toisaalta sen kuva, ((p q)(a 0 ),..., (p q)(a n )) sisältää myös alkioita molemmista strutuureista, M :sta ja N :sta, joten sekään ei sisälly mihinkään relaatioon. Oletetaan siis että jonon alkiot ovat kaikki mallisssa M ja pätee ā R M jollain R τ. Mutta nyt (p q)(a i ) = p(a i ) kaikilla i, joten koska p on osittainen isomorfismi, myös (p(a 0 ),..., p(a n ) R M. Samoin jos ā / R. Koska I k J k, saadaan, että = K k, koska = k k. Oletetaan, että i > 0 ja r K i. Silloin r = p q joillekin p I k a ja q J k b siten että a + b = k i. Huomataan lisäksi että a < k ja b < k, koska muuten ei voisi olla a + b = k i k. Olkoon x M N mielivaltainen alkio x / domr. Oletetaan ensin että x M. Silloin x / domp, eli löytyy p I k a 1 = I k (a+1) siten että x domp ja p p. Nyt p q K i 1, koska k (i 1) = k i + 1 = a + b + 1 = (a + 1) + b. Samoin jos x N, niin löytyy q J k (b+1) joka laajentaa q:n ja jonka lähtöjoukko sisltää x : n, jolloin taas p q K i 1. Laajentaminen taaksepäin menee symmetrisesti. Tehtävä 5. Olkoot A ja B erikokoisia äärellisiä lineaarijärjestettyjä joukkoja, joista toisessa on vähemmän kuin 2 k 1 alkiota. Osoita, että Akselilla on voittostrategia pelissä EF k (A, B). Ratkaisu 5. Todistetaan induktiolla k:n suhteen. Jos k = 2, niin toisen mallin koko on vähemmän kuin = 2, eli 1 ja toisen isompi, joten Akseli selvästi voittaa pelin jonka pituus on k = 2. Oletetaan, että väite pätee luvulle k ja osoitetaan se luvulle k +1. Olkoon A ja B lineaarijärjestyksiä siten että A:n koko on pienempi kuin 2 k+1 1 = 2 k 5

6 ja B:n koko on eri. Ensimmäisellä siirrolla Akseli valitsee mallista A pisteen a, jonka järjestysnumero alusta laskien on 2 k 1. Oletetaan, että Elina vastaa b B. Nyt joko tai #{x A x < a} #{x B x < b} #{x A x > a} #{x B x > b}. Ensimmäisessä tapauksessa Akseli pelaa tästä eteenpäin vain pisteiden a ja b alapuolella soveltamalla induktio-oletuksen voittostrategiaa malleihin ja A {x A x < a} B {x B x < b} ja voittaa. Jälkimmäisessä tapauksessa hän pelaa vastaavasti pisteiden a ja b yläpuolelle. Huomaa, että induktio-oletusta voi käyttää, koska A < 2 k, joten sekä #{x A x < a} < 2 k 1 että #{x A x > a} < 2 k 1. Tehtävä 6. Tarkastellaan 4 solmun verkkojen G ja G välistä kahden kierroksen Ehrenfeuchtin ja Fraïssén peliä EF 2 (G, G ). a) Osoita, että Akselilla on voittostrategia pelissä, jos G = G ja verkossa G on 0 tai 6 särmää. b) Osoita, että Akseli voittaa pelin, jos verkossa G on solmu, josta ei lähde särmiä, ja verkossa G ei ole tällaista solmua. c) Määritä sellaiset neljän solmun verkkojen parit (G, G ), että G = G, mutta Elinalla on voittostrategia pelissä EF 2 (G, G ). Ratkaisu 6. a) Jos verkossa G ei ole särmiä, mutta verkossa G on Akseli pelaa kummatkin siirtonsa b 0 ja b 1 verkkoon G siten, että näiden välillä on särmä. Koska verkossa G ei ole särmiä, Elina ei voi vastata näihin siirtoihin siten, että syntyvä kuvaus olisi osittainen isomorfismi. Jos G on täysi verkko, mutta G ei, Akseli pelaa vastaavasti verkosta G solmut, joiden välillä ei ole särmää. 6

7 b) Akseli pelaa aluksi verkosta G solmun a 0, josta ei lähde särmiä. Elina vastaa tähän solmulla b 0 verkossa G. Koska kaikista verkon G solmuista lähti särmä, voi Akseli pelata alkion b 1 verkosta G siten, että solmujen b 0 ja b 1 välillä on särmä. Nyt Elina ei voi pelata alkiota a 1 siten, että solmujen a 0 ja a 1 välillä olisi särmä ja häviää pelin. c) Osoitetaan, että G = 2 G, jos ja vain jos G:ssä on solmu, johon ei liity särmiä, jos ja vain jos G :ssa on solmu, johon ei liity särmiä. G:ssä on solmu, joka liittyy särmällä kaikkiin solmuihin, jos ja vain jos G :ssa on solmu, joka liittyy särmällä kaikkiin solmuihin. G:ssä on solmu, jonka aste on 1 tai 2, jos ja vain jos G :ssa on solmu, jonka aste on 1 tai 2. Jos ehdot eivät ole voimassa edelliset tehtävän kohdat osoittavat, että Akseli voittaa kahden siirron EF -pelin. Olkoon (G, G ) verkkopari, jolle ehdot ovat voimassa. Oletetaan, että Akseli pelaa ensimmäisellä siirrolla solmun c 0. Jos solmuun ei liity särmiä, Elina pelaa solmun d 0 toisesta verkosta siten, ettei siihen liity särmiä. Jos c 0 liittyy kaikkiin verkon muihin solmuihin särmällä, Elina pelaa solmun d 0 toisesta verkosta siten, että se liittyy särmällä kaikkiin muihin solmuihin. Jos c 0 :sta lähtee särmiä, mutta ei kaikkiin muihin solmuihin, Elina pelaa solmun d 0 josta lähtee särmiä, mutta ei kaikkiin solmuihin. Nyt Elina voi vastata mihin tahansa Akselin toiseen siirtoon sen mukaan onko siirretyn alkion ja toisen malliin pelatun alkion välillä särmä vai ei. Aikaisemmissa laskuharjoituksissa on todettu, että 4 alkion verkkoja on 11 kpl. Ekvivalenssi 2 siirron EF -pelin suhteen jakaa nämä nyt viiteen luokkaan: Ei särmiä * * * * Solmu, johon ei liity särmiä

8 * * * * * * \ * * *-* *-* Kaikkien solmujen aste on * * * * *-* * * *-* *-* Solmu, joka liittyy särmällä kaikkiin muihin solmuihin * * * * *-* / / / *-* *-* *-* Täysi verkko *-* X *-* 8

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 5 ratkaisut (Hannu Niemistö) Tehtävä 1 OlkootGjaG neljän solmun verkkoja Määritä, milloing = 2 G eli verkot ovat osittaisesti isomorfisia kahden muuttujan suhteen

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 7 ratkaisut (Hannu Niemistö) Tehtävä 1 Olkoot G ja H äärellisiä verkkoja, joilla kummallakin on l yhtenäistä komponenttia Olkoot G i, i {0,,l 1}, verkon G ja H i,

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 2 ratkaisut Tehtävä 1 Olkoon X = {a, b, c} kolmen alkion joukko. a) Mikä on joukon X eri laskutoimitusten lukumäärä? b) Kuinka moni näistä laskutoimituksista on

Lisätiedot

Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä.

Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä. Tehtävä 6 : 1 Oletetaan ensin joukon X olevan sisältymisen suhteen minimaalinen solmut a ja b toisistaan erotteleva joukon V(G)\{a, b} osajoukko. Olkoon x joukon X alkio. Oletuksen nojalla joukko X\{x}

Lisätiedot

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on

Lisätiedot

Ehrenfeucht-Fraïssé-pelistä

Ehrenfeucht-Fraïssé-pelistä TAMPEREEN YLIOPISTO Pro gradu -tutkielma Hanna Sulonen Ehrenfeucht-Fraïssé-pelistä Informaatiotieteiden yksikkö Matematiikka 2012 2 Tampereen yliopisto Informaatiotieteiden yksikkö SULONEN, HANNA: Ehrenfeucht-Fraïssé-pelistä

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Tehtävä 8 : 1. Tehtävä 8 : 2

Tehtävä 8 : 1. Tehtävä 8 : 2 Tehtävä 8 : 1 Merkitään kirjaimella G tarkasteltavaa Petersenin verkkoa. Olkoon A joukon V(G) niiden solmujen joukko, joita vastaavat solmut sijaitsevat tehtäväpaperin kuvassa ulkokehällä. Joukon A jokaisella

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 1,

Johdatus diskreettiin matematiikkaan Harjoitus 1, Johdatus diskreettiin matematiikkaan Harjoitus 1, 15.9.2014 1. Hahmottele tasossa seuraavat relaatiot: a) R 1 = {(x, y) R 2 : x y 2 } b) R 2 = {(x, y) R 2 : y x Z} c) R 3 = {(x, y) R 2 : y > 0 and x 2

Lisätiedot

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, (s) symmetrinen, jos xry yrx, (as) antisymmetrinen, jos xry yrx x =

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Luonnollisten lukujen induktio-ominaisuudesta

Luonnollisten lukujen induktio-ominaisuudesta Solmu 1/2019 19 Luonnollisten lukujen induktio-ominaisuudesta Tuomas Korppi Johdanto Kuten lukija varmaan tietääkin, luonnollisille luvuille voidaan tehdä induktiotodistuksia. Tämä mahdollisuus on ominainen

Lisätiedot

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z

Lisätiedot

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen

Lisätiedot

Tehtävä 4 : 2. b a+1 (mod 3)

Tehtävä 4 : 2. b a+1 (mod 3) Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A

Lisätiedot

Verkkojen elementaarinen ekvivalenssi

Verkkojen elementaarinen ekvivalenssi Verkkojen elementaarinen ekvivalenssi Mikko Männikkö pro gradu -tutkielma Matematiikan ja tilastotieteen laitos Helsingin yliopisto Lokakuu 2004 Sisältö 1. Johdanto 3 2. Perusteet 4 2.1 Verkot 4 2.2 Ensimmäisen

Lisätiedot

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan Tehtävä 7 : 1 a) Olkoon G jokin epäyhtenäinen verkko. Tällöin väittämä V (G) 2 pätee jo epäyhtenäisyyden nojalla. Jokaisella joukolla X on ehto X 0 voimassa, joten ehdot A < 0 ja F < 0 toteuttavilla joukoilla

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. (24.3-25.3) Jeremias Berg 1. Olkoot A 1 = {1, 2, 3}, A 2 = {A 1, 5, 6}, A 3 = {A 2, A 1, 7}, D = {A 1, A 2, A 3 } Kirjoita auki seuraavat joukot:

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Olkoon perusjoukkona X := {,,,, } ja := {(, ), (, ), (, ), (, )}. Muodosta yhdistetyt (potenssi)relaatiot,,,. Entä mitä on yleisesti n, kun

Lisätiedot

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta). Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

Tehtävä 5 : 1. Tehtävä 5 : 2

Tehtävä 5 : 1. Tehtävä 5 : 2 Tehtävä 5 : 1 Merkitään kirjaimella H kuvan punaisten solmujen virittämää verkon G yhtenäistä aliverkkoa, jossa on yhteensä kolme särmää. Aliverkosta H voidaan kahdella tavalla valita kahden solmun joukko

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Ehrenfeuchtin ja Fraïssén peli

Ehrenfeuchtin ja Fraïssén peli TAMPEREEN YLIOPISTO Pro gradu -tutkielma Piia Nieminen Ehrenfeuchtin ja Fraïssén peli Matematiikan ja tilastotieteen laitos Matematiikka Marraskuu 2008 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Matematiikan ja tilastotieteen laitos Helsingin yliopisto Syksy 1999, kevät 2002, 2005, 2008, syksy 2010 Äärellisten mallien teoria Kotisivu: http://mathstat.helsinki.fi/kurssit/aemt/

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

Tehtävä 10 : 1. Tehtävä 10 : 2

Tehtävä 10 : 1. Tehtävä 10 : 2 Tehtävä 0 : Kuvassa Etelä-Amerikan valtioita vastaavat solmut on sijoitettu toisiinsa nähden niiden pääkaupunkien keskinäistä sijaintia vastaavalla tavalla. Kuvioon on joukon {0,, 2, 3 alkioilla merkitty

Lisätiedot

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,... Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

PRO GRADU -TUTKIELMA. Satu Vahtera. 0 1 lait äärellisissä malleissa

PRO GRADU -TUTKIELMA. Satu Vahtera. 0 1 lait äärellisissä malleissa PRO GRADU -TUTKIELMA Satu Vahtera 0 1 lait äärellisissä malleissa TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Matematiikka Tammikuu 2012 2 Tampereen yliopisto Informaatiotieteiden yksikkö VAHTERA,

Lisätiedot

8 Joukoista. 8.1 Määritelmiä

8 Joukoista. 8.1 Määritelmiä 1 8 Joukoista Joukko on alkoidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukkooppi aksiomaattisesti. Näin ei tässä tehdä

Lisätiedot

1. Esitä rekursiivinen määritelmä lukujonolle

1. Esitä rekursiivinen määritelmä lukujonolle Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)

Lisätiedot

Lokaalisuus ja määriteltävyys

Lokaalisuus ja määriteltävyys TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heini Lehtipuu Lokaalisuus ja määriteltävyys Luonnontieteiden tiedekunta Matematiikka Toukokuu 2017 2 Tampereen yliopisto Luonnontieteiden tiedekunta LEHTIPUU,

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa Määritelmä 1 Olkoot x ja y joukon A alkioita. Jos R on jokin ominaisuus/ehto, joka määritellään yksikäsitteisesti joukon A kaikkien alkioiden välille siten, että se joko toteutuu tai ei toteudu alkioiden

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto

Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto Tehtävä 3 : 1 Olkoon G mielivaltainen epätyhjä verkko. Erityisesti siltä ei vaadita äärellisyyttä. Polut ovat verkon G koosta riippumatta määritelmän mukaan aina äärellisiä, joten kahden solmun välisen

Lisätiedot

Tietojenkäsittelyteorian alkeet, osa 2

Tietojenkäsittelyteorian alkeet, osa 2 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään

Lisätiedot

4. Ryhmien sisäinen rakenne

4. Ryhmien sisäinen rakenne 4. Ryhmien sisäinen rakenne Tässä luvussa tarkastellaan joitakin tapoja päästä käsiksi ryhmien sisäiseen rakenteeseen. Useimmat tuloksista ovat erityisen käyttökelpoisia äärellisten ryhmien tapauksessa.

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

14. Juurikunnat Määritelmä ja olemassaolo.

14. Juurikunnat Määritelmä ja olemassaolo. 14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.

Lisätiedot

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1) MS-A0401 Diskreetin matematiikan perusteet Tentti ja välikokeiden uusinta 10.11.015 Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskimia tai taulukoita ei saa käyttää tässä kokeessa!

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg Diskreetin Matematiikan Paja Tehtäviä viikolle 2. (24.3-25.3) Jeremias Berg Tämän viikon tehtävien teemoina on tulojoukot, relaatiot sekä kuvaukset. Näistä varsinkin relaatiot ja kuvaukset ovat tärkeitä

Lisätiedot

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen anton.mallasto@aalto.fi. 1. 2. Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin

Lisätiedot

keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5

keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5 Johdatus diskreettiin matematiikkaan Harjoitus 6, 21.10.2015 1. Ovatko verkot keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 2 b 4 a

Lisätiedot

Predikaattilogiikan malli-teoreettinen semantiikka

Predikaattilogiikan malli-teoreettinen semantiikka Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset 1. Etsi lauseen (p 0 (p 1 p 0 )) p 1 kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa

Lisätiedot

1.1. Määritelmä. a) Termit ovat merkkijonoja, jotka muodostuvat induktiivisesti. k 1

1.1. Määritelmä. a) Termit ovat merkkijonoja, jotka muodostuvat induktiivisesti. k 1 Tähän mennessä aakkoston rooli on jäänyt mallin käsitteessä hivenen irralliseksi seikaksi, sillä symboleita on käytetty lähinnä mallin rakenneosien (funktioiden, relaatioiden ja vakioiden) indeksoimiseen.

Lisätiedot

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia Algebra 1, harjoitus 9, 11.-12.11.2014. 1. Olkoon G ryhmä ja H G normaali aliryhmä. Tiedetään, että tällöin xhx 1 H kaikilla x G. Osoita, että itse asiassa xhx 1 = H kaikilla x G. Ratkaisu: Yritetään osoittaa,

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

TIETOTEKNIIKAN MATEMATIIKKA

TIETOTEKNIIKAN MATEMATIIKKA TIETOTEKNIIKAN MATEMATIIKKA Harjoitus 4 syksy 2016 Ratkaisut 1. Mitä ehtoja joukkojen M ja N tulee täyttää (kussakin kohdassa erikseen), jotta seuraavat väittämät olisivat tosia a) M = b) N \ M = c) M

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.

Lisätiedot

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = = JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia

Lisätiedot

Ratkaisu: (b) A = x 0 (R(x 0 ) x 1 ( Q(x 1 ) (S(x 0, x 1 ) S(x 1, x 1 )))).

Ratkaisu: (b) A = x 0 (R(x 0 ) x 1 ( Q(x 1 ) (S(x 0, x 1 ) S(x 1, x 1 )))). HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 3 Ratkaisuehdotukset 1. Palataan Partakylään. Olkoon P partatietokanta ja M tästä saatu malli kuten Harjoitusten 1

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Diskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10

Diskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10 Diskreetin matematiikan perusteet Esimerkkiratkaisut / vko 0 Tuntitehtävät - lasketaan alkuviikon harjoituksissa ja tuntitehtävät - loppuviikon harjoituksissa. Kotitehtävät - tarkastetaan loppuviikon harjoituksissa.

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Matematiikan ja tilastotieteen laitos Helsingin yliopisto 1999 2010 Äärellisten mallien teoria on matemaattisen logiikan haara, jossa tutkitaan äärellisiä matemaattisia rakenteita

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot

Determinoiruvuuden aksiooma

Determinoiruvuuden aksiooma Determinoiruvuuden aksiooma Vadim Kulikov Esitelma 12 Maaliskuuta 2008 Tiivistelma. Valinta-aksioomasta seuraa, etta Leb(R) ( P(R), eli on olemassa epamitallisia joukkoja. Tassa esitelmassa nahdaan, etta

Lisätiedot

Todistusmenetelmiä Miksi pitää todistaa?

Todistusmenetelmiä Miksi pitää todistaa? Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi

Lisätiedot

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on 0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

Yhtenäisyydestä. Johdanto. Lähipisteavaruus. Tuomas Korppi

Yhtenäisyydestä. Johdanto. Lähipisteavaruus. Tuomas Korppi Solmu 2/2012 1 Yhtenäisyydestä Tuomas Korppi Johdanto Tarkastellaan kuvassa 1 näkyviä verkkoa 1 ja R 2 :n (eli tason) osajoukkoa. Kuvan 2 verkko voidaan jakaa kolmeen osaan niin, että osien välillä ei

Lisätiedot