Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi

Koko: px
Aloita esitys sivulta:

Download "Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi"

Transkriptio

1 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi Antti Leino 29. maaliskuuta 2005 Tietojenkäsittelytieteen laitos

2 Sisältö Tilan täyttävät käyrät ja niihin perustuvat approksimaatiot R-puu johdannaisineen ja suorakulmioapproksimointi Lawder King 2000: Using Space-lling Curves for Multi-Dimensional Indexing Manolopoulos Nanopoulos Papadopoulos 2003: R-trees Have Grown Everywhere Hellerstein Naughton Pfeffer 1995: Generalized Search Trees for Database Systems

3 Lähtökohta Perinteisessä tietokannassa indeksointi perustuu hakuavaimeen Avainkentässä oltava arvo Eri tietueilla eri avaimet Muillekin kentille voi tehdä indeksejä Arvo voi olla tyhjä Indeksi antaa viitteen osumatietueiden hakuavaimiin Hakuehtona tyypillisesti yhtäsuuruus tai 1-ulotteinen väli

4 Järjestys Tavanomaisten relaatiotietokannan tietotyyppien arvoalue on täysin järjestetty On olemassa relaatio a, b : (a b) (b a) a, b, c : (a b) (b c) a c a, b : (a b) (b a) a = b Tällaiset ehdot täyttäville tietotyypeille indeksin rakentaminen on ollut tunnettu tehtävä jo pitkään Perinteinen ratkaisu B-puu

5 B-puu Kohteen löytämiseen riittää tasan yhden polun kulkeminen Kaikki polut juuresta lehtiin yhtä pitkiä Jokainen sivu (juurta lukuunottamatta) aina vähintään puolillaan tietueita Puun koko O(n) Kohteen haku, lisäys ja poisto vievät O(log n) ajan

6 Ongelma B-puu sopii mainiosti täysin järjestetyn datan indeksointiin Entäpä paikkatieto? Kaksi vaihtoehtoa Laaditaan 2-ulotteiselle tiedolle 1-ulotteinen järjestys Yleistetään B-puu sellaisen aineiston indeksointiin, joka ei ole tällä tapaa järjestetty

7 Ratkaisu 1: tilan täyttävät käyrät Käyrä, jonka fraktaalidimensio = 2 Jatkuva käyrä, joka täyttää koko (rasteri)avaruuden Ensimmäisenä esitteli Giuseppe Peano (1890) Yleisesti käytössä David Hilbertin (1891) esittämä Verraten yleinen myös Z-käyrä

8 Miksi tilan täyttävä käyrä? Perusajatus: se linearisoi moniulotteisen avaruuden Tämän jälkeen indeksointi helppoa Toivottavia ominaisuuksia: Lähekkäisyyden säilyminen Helppo muunnos 2- ja 1-ulotteisten koordinaattien välillä Nämä ominaisuudet ikävä kyllä ristiriitaisia Hilbertin käyrä säilyttää lähekkäisyyden melko hyvin Z-käyrällä pisteen sijainti on helposti laskettavissa koordinaateista

9 Z-järjestys Rasteripisteen järjestysnumero helposti laskettavissa Bittilimitys: otetaan bittejä vuorotellen (binäärimuotoisesta) x- ja y-koordinaatista Esimerkiksi (2 10,1 10 ) = (10 2,01 2 ) = 9 10

10 Indeksointi z-järjestyksen avulla Indeksointiavaimena näppärä käytää alkupään bittejä Tyhjä jono: koko avaruus Parillinen määrä bittejä = neliö Pariton määrä bittejä = kaksi päällekkäistä neliötä Kaikkia suorakulmioita ei voi esittää

11 Kohteen approksimointi Aluekohde approksimoidaan niiden Z-arvojen joukkona, jotka yhdessä kattavat kohteen Tässä siis {0011, 001, 0110, 100, } Approksimaation rakeisuus on suoraan sen pisimmän z-arvon pituus

12 Z-approksimoinin ominaisuuksia Alue, jonka z-arvo on z a sisältyy alueeseen, jonka z-arvo on z b täsmälleen silloin, kun z b on z a :n alkuosa Z-arvojen aakkosjärjestys = niiden osoittamien alueiden järjestys z-käyrällä Peräkkäisten Z-arvojen osoittamat alueet välillä kaukana toisistaan

13 Kysely z-approksimoidusta indeksistä Tehtävä: haetaan kohteet, jotka ovat hakuehtonelikulmion kattamalla alueella Haetaan indeksisolmut, jotka kattavat hakuehdon pag es ; mat ch next_match(0); while mat ch do pag e {p mat ch p}; pag es pag es {pag e}; mat ch next_match(start(pag e + 1));

14 Z-alueiden haku Hakuehto: (2 x 5) (1 y 5) Haetaan piste Haetaan vuorotellen ensimmäinen kulloisenkin indeksiruudun jälkeinen piste, joka on hakualueella Nämä määrittävät indeksiruudut, joita hakualue leikkaa: {0010, 0011, 0110, 10000, , 1001, 1100}

15 Seuraavan osuman etsintä Z-järjestetyn indeksin algoritmi next_match if ollaan hakualueen ulkopuolella then Etsi merkitsevin muutettava bitti; if tämä bitti on nollattava then (ollaan tässä suunnassa hakualueen yläpuolella) Valitse muista koordinaateista vähiten merkitsevä äskeistä merkitsevämpi bitti, jota voidaan kasvattaa ja silti pysyä hakualueen sisällä; else (ollaan tässä suunnassa hakualueen alapuolella) Valitse tämä bitti; Aseta valittu bitti 1:ksi; Nollaa kaikki vähemmän merkitsevät bitit; Kasvata kunkin koordinaatin tuottamia bittejä, kunnes piste on hakualueella;

16 next_match-esimerkki (000,000) (010,000) (010, 001) = (010, 010) = hakualueella (000,100) (010,100) = (010,110) (100,000) (100, 001) = (101,000) (101,001) = (100, 010) = hakualueella (110,000) (100,100) =

17 Hilbertin käyrä Vierekkäiset käyrän pisteet ovat vierekkäisiä myös lähtöavaruudessa Mahdollistaa hiukan monipuolisemman lohkojaon Toisaalta pisteen sijainnin laskeminen monimutkaista Perusalgoritmi puurakenteen avulla

18 Sijainti Hilbertin käyrällä Laskettavissa puun avulla Puurakenteen käyttö algoritmin osana hankalaa Tasojen määrän lisääminen kasvattaa puun kokoa

19 Sijaintipuu tilakoneena Sijaintia Hilbertin käyrällä osoittava puu esitettävissä myös tilakoneena Melko pian tilakoneen koko jää puun kokoa pienemmäksi

20 Sijainti Hilbertin käyrällä current_level 1; current_node root; D 2 ; repeat p x current_level. y current_level; d bits current_node(p); D D.d; if current_level < lea f _level then current_node (p, d); current_level current_level + 1; until current_level > lea f _level;

21 Esimerkki pisteen sijainnin laskennasta Koordinaattien 1. bitit (1, 0), so. oikea alaneljännes Juurisolmusta saadaan avaimen biteiksi 11 Siirrytään puussa 2. tasolle (1,0):n osoittamaa haaraa Koordinattien 2. bitit (1, 1), so. oikea yläneljännes Tästä solmusta saadaan avaimen biteiksi 00 Ollaan lehtisolmussa, avain = 12 10

22 Kysely Hilbertin käyrään perustuvasta indeksistä Hakemiston sivut eivät välttämättä nelikulmioita Tehtävänä etsiä ne hakemistosivut, jotka hakualue leikkaa Perusalgoritmi kuten z-käyrän tapauksessa pag es ; mat ch next_match(0); while mat ch do pag e {p mat ch p}; pag es pag es {pag e}; mat ch next_match(start(pag e + 1));

23 Seuraavan osuman etsintä Hiukan hankalahkoa, koska käyrä erisuuntainen eri puolilla Joka iteraatiokierroksella rajoitutaan pienempään alipuuhun Rajoitetaan etsintä niihin alipuihin, jotka leikkaavat hakualueen Jokaisen iteraatiokierroksen lopussa katsotaan, oliko löydetty osuma aiemmin käyrällä kuin edellisillä kierroksilla löydetty Jos osumia ei löytynyt, kiivetään puussa ylöspäin, kunnes löytyy Jos tämäkään ei auta, seuraavaa osumaa ei ole

24 next_match Hilbertin käyrälle c_level 1; c_search_space root; repeat X derived_key(c_sear c h_spac e, c_pag e_ke y); * Y min(der i ved_ke y(r)) R = quadrant(c_search_space,?) R c_quer y_reg i on Y X; c_search_space quadrant(c_search_space,y ); c_quer y_reg i on c_quer y_reg i on c_search_space; next_mat ch next_mat ch.y ; if X = Y then if c_quer y_reg i on = c_search_space then return c_pag e_ke y; else if c_quer y_reg i on = c_search_space then return(next_mat c h täytettynä nollilla); else return(min(derived_key(p c_quer y_reg i on))); c_level c_level + 1; until c_level > lea f _level;

25 next_match: jatkoa Edellisen sivun algoritmissa monimutkainen osa Y min(d er i ved_ke y(r)) R = quadrant(c_sear ch_spac e,?) R c_quer y_reg i on Tähän sisältyy Y X ; c_sear ch_spac e:en kohdistuva binäärihaku Sen niiden osien muistiinmerkitseminen, joihin voi jatkossa palata Tarvittaessa ja mahdollisuuksien mukaan palaaminen ylemmälle tasolle return( ), jos palaamiseen olisi tarvetta muttei mahdollisuuksia

26 next_match: esimerkki Ensimmäinen osuma: Löydetään vasen alaneljännes: Y = 00 Sen oikea yläneljännes: Y = 10, next_mat ch = 0010 Tämä sisältyy kokonaan hakualueeseen: next_mat ch = = 8 10 Osuma sisältyy sivuun 1, joka käsittää Hilbertin käyrän pisteet 017

Paikkatiedon käsittely 5. Paikkatiedon indeksointi

Paikkatiedon käsittely 5. Paikkatiedon indeksointi HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 5. Paikkatiedon indeksointi Antti Leino antti.leino@cs.helsinki.fi 29.1.2007 Tietojenkäsittelytieteen laitos Mistä

Lisätiedot

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa)

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa) HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa) Antti Leino 4. huhtikuuta 2005 Tietojenkäsittelytieteen

Lisätiedot

Algoritmit 2. Luento 6 Ke Timo Männikkö

Algoritmit 2. Luento 6 Ke Timo Männikkö Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

Paikkatiedon käsittely 6. Kyselyn käsittely

Paikkatiedon käsittely 6. Kyselyn käsittely HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 6. Kyselyn käsittely Antti Leino antti.leino@cs.helsinki.fi 1.2.2007 Tietojenkäsittelytieteen laitos Kysely indeksin

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

Binäärihaun vertailujärjestys

Binäärihaun vertailujärjestys Järjestetyn sanakirjan tehokas toteutus: binäärihaku Binäärihaku (esimerkkikuassa aain = nimi) op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea

Lisätiedot

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint. Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Paikkatiedon käsittely 12. Yhteenveto

Paikkatiedon käsittely 12. Yhteenveto HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 12. Yhteenveto Antti Leino antti.leino@cs.helsinki.fi 22.2.2007 Tietojenkäsittelytieteen laitos Kurssin sisältö

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Miten käydä läpi puun alkiot (traversal)?

Miten käydä läpi puun alkiot (traversal)? inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu

Lisätiedot

58131 Tietorakenteet (kevät 2008) 1. kurssikoe, ratkaisuja

58131 Tietorakenteet (kevät 2008) 1. kurssikoe, ratkaisuja 1 Tietorakenteet (kevät 08) 1. kurssikoe, ratkaisuja Tehtävän 1 korjasi Mikko Heimonen, tehtävän 2 Jaakko Sorri ja tehtävän Tomi Jylhä-Ollila. 1. (a) Tehdään linkitetty lista kaikista sukunimistä. Kuhunkin

Lisätiedot

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja

Lisätiedot

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Algoritmit 2. Luento 4 Ke Timo Männikkö

Algoritmit 2. Luento 4 Ke Timo Männikkö Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

1.1 Tavallinen binäärihakupuu

1.1 Tavallinen binäärihakupuu TIE-20100 Tietorakenteet ja algoritmit 1 1 Puurakenteet http://imgur.com/l77fy5x Tässä luvussa käsitellään erilaisia yleisiä puurakenteita. ensin käsitellään tavallinen binäärihakupuu sitten tutustutaan

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu 1312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu

Lisätiedot

Algoritmit 1. Luento 6 Ke Timo Männikkö

Algoritmit 1. Luento 6 Ke Timo Männikkö Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu 832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa

Lisätiedot

Liitosesimerkki Tietokannan hallinta, kevät 2006, J.Li 1

Liitosesimerkki Tietokannan hallinta, kevät 2006, J.Li 1 Liitosesimerkki 16.02.06 Tietokannan hallinta, kevät 2006, J.Li 1 Esim R1 R2 yhteinen attribuutti C T(R1) = 10,000 riviä T(R2) = 5,000 riviä S(R1) = S(R2) = 1/10 lohkoa Puskuritilaa = 101 lohkoa 16.02.06

Lisätiedot

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.

Lisätiedot

private TreeMap nimella; private TreeMap numerolla;

private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla; Tietorakenteet, laskuharjoitus 7, ratkaisuja 1. Opiskelijarekisteri-luokka saadaan toteutetuksi käyttämällä kahta tasapainotettua binäärihakupuuta. Toisen binäärihakupuun avaimina pidetään opiskelijoiden

Lisätiedot

1 Puu, Keko ja Prioriteettijono

1 Puu, Keko ja Prioriteettijono TIE-20100 Tietorakenteet ja algoritmit 1 1 Puu, Keko ja Prioriteettijono Tässä luvussa käsitellään algoritmien suunnitteluperiaatetta muunna ja hallitse (transform and conquer) Lisäksi esitellään binääripuun

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

Algoritmit 2. Luento 9 Ti Timo Männikkö

Algoritmit 2. Luento 9 Ti Timo Männikkö Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016

Lisätiedot

Liitosesimerkki. Esim R1 R2 yhteinen attribuutti C. Vaihtoehdot

Liitosesimerkki. Esim R1 R2 yhteinen attribuutti C. Vaihtoehdot Esim yhteinen attribuutti C Liitosesimerkki T() = 10,000 riviä T() = 5,000 riviä S() = S() = 1/10 lohkoa Puskuritilaa = 101 lohkoa 1 2 Vaihtoehdot Sisäkkäiset silmukat Liitosjärjestys:, Liitosalgoritmit:

Lisätiedot

PN-puu. Helsinki Seminaari: Tietokannat nyt HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

PN-puu. Helsinki Seminaari: Tietokannat nyt HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos PN-puu Erno Härkönen Helsinki 24.10.2006 Seminaari: Tietokannat nyt HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto

Lisätiedot

Hakemistotyypeistä. Hakemistorakenteet. Hakemiston toteutuksesta. Hakemiston toteutuksesta

Hakemistotyypeistä. Hakemistorakenteet. Hakemiston toteutuksesta. Hakemiston toteutuksesta Hakemistotyypeistä Hakemistorakenteet R & G Chapter 10 Hakemistomerkintä sisältää hakemistoavaimen (indexing key) muodostusperustan määrittelemänä tietueesta tai tietuejoukosta tuotettu tunnus yleensä

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä

Lisätiedot

B + -puut. Kerttu Pollari-Malmi

B + -puut. Kerttu Pollari-Malmi B + -puut Kerttu Pollari-Malmi Tämä monista on alunperin kirjoitettu sksn 2005 kurssille osittain Luukkaisen ja Nkäsen vanhojen luentokalvojen pohjalta. Maaliskuussa 2010 pseudokoodiesits on muutettu vastaamaan

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

1.1 Pino (stack) Koodiluonnos. Graafinen esitys ...

1.1 Pino (stack) Koodiluonnos. Graafinen esitys ... 1. Tietorakenteet Tietorakenteet organisoivat samankaltaisten olioiden muodostaman tietojoukon. Tämä järjestys voidaan saada aikaan monin tavoin, esim. Keräämällä oliot taulukkoon. Liittämällä olioihin

Lisätiedot

Kysymyksiä koko kurssista?

Kysymyksiä koko kurssista? Kysymyksiä koko kurssista? Lisää kysymyksesi osoitteessa slido.com syötä event code: #8777 Voit myös pyytää esimerkkiä jostain tietystä asiasta Vastailen kysymyksiin luennon loppupuolella Tätä luentoa

Lisätiedot

D B. Harvat hakemistot. Harvat hakemistot

D B. Harvat hakemistot. Harvat hakemistot Harvassa hakemistossa on ei ole hakemistomerkintöjä jokaista tietuetta kohden vaan yksi merkintä jotain isompaa kokonaisuutta esimerkiksi sivua tai sivujoukkoa (esim. saman uran sivut) kohti Harvan hakemiston

Lisätiedot

Paikkatiedon hallinta ja analyysi 2. Diskreettiä geometriaa

Paikkatiedon hallinta ja analyysi 2. Diskreettiä geometriaa HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon hallinta ja analyysi 2. Diskreettiä geometriaa Antti Leino 17. maaliskuuta 2005 Tietojenkäsittelytieteen

Lisätiedot

A TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE KLO 12:00

A TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE KLO 12:00 A274101 TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE 9.2.2005 KLO 12:00 PISTETILANNE: www.kyamk.fi/~atesa/tirak/harjoituspisteet-2005.pdf Kynätehtävät palautetaan kirjallisesti

Lisätiedot

Abstraktiot ja analyysi algoritmit ja informaation esitykset

Abstraktiot ja analyysi algoritmit ja informaation esitykset 01110111010110 11110101010101 00101011010011 01010111010101 01001010101010 10101010101010 Abstraktiot ja analyysi algoritmit ja informaation esitykset Petteri Kaski Tietotekniikan laitos Aalto-yliopisto

Lisätiedot

oheishakemistoja voi tiedostoon liittyä useita eri perustein muodostettuja

oheishakemistoja voi tiedostoon liittyä useita eri perustein muodostettuja Tietokantojen hakemistorakenteet Hakemistorakenteiden (indeksien) tarkoituksena on nopeuttaa tietojen hakua tietokannasta. Hakemisto voi olla ylimääräinen oheishakemisto (secondary index), esimerkiksi

Lisätiedot

Lisää segmenttipuusta

Lisää segmenttipuusta Luku 24 Lisää segmenttipuusta Segmenttipuu on monipuolinen tietorakenne, joka mahdollistaa monenlaisten kyselyiden toteuttamisen tehokkaasti. Tähän mennessä olemme käyttäneet kuitenkin segmenttipuuta melko

Lisätiedot

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 9. marraskuuta 2009

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 9. marraskuuta 2009 TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe D tiistai 10.11. klo 10 välikielen generointi Vaihe E tiistai

Lisätiedot

Kimppu-suodatus-menetelmä

Kimppu-suodatus-menetelmä Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2009 1 / 35 Listat Esimerkki: halutaan kirjoittaa ohjelma, joka lukee käyttäjältä 30 lämpötilaa. Kun lämpötilat

Lisätiedot

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi Imperatiivisen ohjelmoinnin peruskäsitteet muuttuja muuttujissa oleva data voi olla yksinkertaista eli primitiivistä (esim. luvut ja merkit) tai rakenteista jolloin puhutaan tietorakenteista. puhuttaessa

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

Stabiloivat synkronoijat ja nimeäminen

Stabiloivat synkronoijat ja nimeäminen Stabiloivat synkronoijat ja nimeäminen Mikko Ajoviita 2.11.2007 Synkronoija Synkronoija on algoritmi, joka muuntaa synkronoidun algoritmin siten, että se voidaan suorittaa synkronoimattomassa järjestelmässä.

Lisätiedot

Lisätään avainarvo 6, joka mahtuu lehtitasolle:

Lisätään avainarvo 6, joka mahtuu lehtitasolle: Helsingin Yliopisto, Tietojenkäsittelytieteen laitos Tietokannan hallinta, kurssikoe 11.6.2004, J. Lindström Ratkaisuehdotuksia 1. Hakemistorakenteet, 15p. Tutkitaan tyhjää B+-puuta, jossa jokaiselle hakemistosivulle

Lisätiedot

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista 811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista

Lisätiedot

Tietorakenteet ja algoritmit Hakurakenteet Ari Korhonen

Tietorakenteet ja algoritmit Hakurakenteet Ari Korhonen Tietorakenteet ja algoritmit Hakurakenteet Ari Korhonen 27.10. & 3.11.2015 Tietorakenteet ja algoritmit - syksy 2015 1 8. HAKURAKENTEET (dictionaries) 8.1 Haku (vrt. sanakirjahaku) 8.2 Listat tallennusrakenteina

Lisätiedot

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti. Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen

Lisätiedot

Jokaisella tiedostolla on otsake (header), joka sisältää tiedostoon liittyvää hallintatietoa

Jokaisella tiedostolla on otsake (header), joka sisältää tiedostoon liittyvää hallintatietoa Tietojen tallennusrakenteet Jokaisella tiedostolla on otsake (header), joka sisältää tiedostoon liittyvää hallintatietoa tiedot tiedostoon kuuluvista lohkoista esim. taulukkona, joka voi muodostua ketjutetuista

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO

TAMPEREEN TEKNILLINEN YLIOPISTO TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 11.08.2010 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 10.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 10.2.2010 1 / 43 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

4. Joukkojen käsittely

4. Joukkojen käsittely 4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Koe Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Kokeessa saa olla mukana A4:n kokoinen kaksipuolinen käsiten tehty, itse kirjoitettu lunttilappu 1 Tärkeää ja vähemmäntärkeää Ensimmäisen

Lisätiedot

D B. Harvat hakemistot

D B. Harvat hakemistot Harvat hakemistot Harvassa hakemistossa on ei ole hakemistomerkintöjä jokaista tietuetta kohden vaan yksi merkintä jotain isompaa kokonaisuutta esimerkiksi sivua tai sivujoukkoa (esim. saman uran sivut)

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten

Lisätiedot

Algoritmit 1. Luento 4 Ke Timo Männikkö

Algoritmit 1. Luento 4 Ke Timo Männikkö Algoritmit 1 Luento 4 Ke 18.1.2017 Timo Männikkö Luento 4 Tietorakenteet Pino Pinon toteutus Jono Jonon toteutus Lista Listaoperaatiot Algoritmit 1 Kevät 2017 Luento 4 Ke 18.1.2017 2/29 Pino Pino, stack,

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja 58053-7 Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja Malliratkaisut ja pisteytysohje: Jyrki Kivinen Tentin arvostelu: Jouni Siren (tehtävät 1 ja 2) ja Jyrki Kivinen (tehtävät

Lisätiedot

Hajautusrakenteet. R&G Chapter Tietokannan hallinta, kevät 2006, Jan 1

Hajautusrakenteet. R&G Chapter Tietokannan hallinta, kevät 2006, Jan 1 Hajautusrakenteet R&G Chapter 11 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Hajautukseen perustuvat tiedostorakenteet Hajautukseen perustuvissa tiedostorakenteissa on tavoitteena yksittäisen tietueen

Lisätiedot

Lisätään avainarvo 1, joka mahtuu lehtitasolle:

Lisätään avainarvo 1, joka mahtuu lehtitasolle: Helsingin Yliopisto, Tietojenkäsittelytieteen laitos Tietokannan hallinta, kurssikoe 14.5.2004, J. Lindström Ratkaisuehdotuksia 1. Hakemistorakenteet, 15p. Tutkitaan tyhjää B+-puuta, jossa jokaiselle hakemistosivulle

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

D B. Tietokannan hallinta kertaus

D B. Tietokannan hallinta kertaus TKHJ:n pääkomponentit metadata TKHJ:ssä Tiedostojen käsittely puskurien rooli tiedostokäsittelyssä levymuistin rakenne ja käsittely mistä tekijöistä hakuaika muodostuu jonotus jos useita samanaikaisia

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

Luento 2: Tiedostot ja tiedon varastointi

Luento 2: Tiedostot ja tiedon varastointi HELIA 1 (19) Luento 2: Tiedostot ja tiedon varastointi Muistit... 2 Päämuisti (Primary storage)... 2 Apumuisti (Secondary storage)... 2 Tiedon tallennuksen yksiköitä... 3 Looginen taso... 3 Fyysinen taso...

Lisätiedot

D B. B+ -puun tasapainotus poistossa. B+ -puun tasapainotus poistossa. Poistot. B+ -puun tasapainotus poistossa. B+ -puun tasapainotus poistossa

D B. B+ -puun tasapainotus poistossa. B+ -puun tasapainotus poistossa. Poistot. B+ -puun tasapainotus poistossa. B+ -puun tasapainotus poistossa Poistot Alkuperäisen B+ -puun idean mukaisesti tasapainotusta tehdään myös poistossa 50 Jos datasivun täyttösuhde laskee alle puoleen ja sivun ja sen velisivun (sibling, saman isäsivun alla oleva vierussivu)

Lisätiedot

Tietokannan indeksointi: B puun ja hajautusindeksin tehokkuus

Tietokannan indeksointi: B puun ja hajautusindeksin tehokkuus Tietokannan indeksointi: B puun ja hajautusindeksin tehokkuus Tuomas Kortelainen 28.4.2008 Joensuun yliopisto Tietojenkäsittelytiede Pro gradu tutkielma Tiivistelmä Tässä tutkielmassa esitellään tietokannan

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2011 1 / 46 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen

Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen 1. Hilbertin aksioomat 1-3 Oletetaan tunnetuiksi peruskäsitteet: piste, suora ja suora kulkee pisteen

Lisätiedot

3. Tietokannan hakemistorakenteet

3. Tietokannan hakemistorakenteet 3. Tietokannan hakemistorakenteet Tiedoston tietueiden haku voi perustua johonkin monesta saantipolusta (access path): - perustiedoston tiedostorakenne - hakemistot, joita voidaan tehdä käsittelytarpeiden

Lisätiedot

3. Tietokannan hakemistorakenteet

3. Tietokannan hakemistorakenteet 3. Tietokannan hakemistorakenteet Tiedoston tietueiden haku voi perustua johonkin monesta saantipolusta (access path): - perustiedoston tiedostorakenne - hakemistot, joita voidaan tehdä käsittelytarpeiden

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PERUSTIETORAKENTEET LISTA, PINO, JONO, PAKKA ABSTRAKTI TIETOTYYPPI Tietotyyppi on abstrakti, kun se on määritelty (esim. matemaattisesti) ottamatta kantaa varsinaiseen

Lisätiedot

Yhtälön ratkaiseminen

Yhtälön ratkaiseminen Yhtälön ratkaiseminen Suora iterointi Kirjoitetaan yhtälö muotoon x = f(x). Ensin päätellään jollakin tavoin jokin alkuarvo x 0 ja sijoitetaan yhtälön oikealle puolelle, jolloin saadaan tarkennettu ratkaisu

Lisätiedot

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 5 Paraabeli Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 13..017 ENNAKKOTEHTÄVÄT 1. a) Jos a > 0, paraabeli aukeaa oikealle. Jos a < 0, paraabeli aukeaa vasemmalle. Jos a = 0, paraabeli

Lisätiedot

HELIA 1 (11) Outi Virkki Tiedonhallinta 4.11.2000

HELIA 1 (11) Outi Virkki Tiedonhallinta 4.11.2000 HELIA 1 (11) Access 1 ACCESS...2 Yleistä...2 Access-tietokanta...3 Perusobjektit...3 Taulu...5 Kysely...7 Lomake...9 Raportti...10 Makro...11 Moduli...11 HELIA 2 (11) ACCESS Yleistä Relaatiotietokantatyyppinen

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto) 811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo

Lisätiedot